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Abstract

Using the methods of classical irreversible thermodynamics with
internal variables, the heat dissipation function for magnetizable ani-
sotropic media, in which phenomena of magnetic relaxation occur, is
derived. It is assumed that if different types of irreversible microscopic
phenomena give rise to magnetic relaxation, it is possible to describe
these microscopic phenomena splitting the total specific magnetization
in two irreversible parts and introducing one of these partial specific
magnetizations as internal variable in the thermodynamic state space.
It is seen that, when the theory is linearized, the heat dissipation func-
tion is due to the electric conduction, magnetic relaxation, viscous,
magnetic irreversible phenomena. This is the case of complex media,
where different kinds of molecules have different magnetic susceptibili-
ties and relaxation times, present magnetic relaxation phenomena and
contribute to the total magnetization. These situations arise in nuclear
magnetic resonance in medicine and biology and in other fields of the
applied sciences. Also, the heat conduction equation for these media
is worked out and the special cases of anisotropic Snoek media and

∗Accepted for publication on February 7-th, 2023
†lrestuccia@unime.it University of Messina, Department of Mathematical and Com-

puter Sciences, Physical Sciences and Earth Sciences , Viale F. Stagno d’Alcontres, Salita
Sperone, 31, 98166 Messina, Italy

119

DOI https://doi.org/10.56082/annalsarscimath.2023.1-2.119



120 L. Restuccia

anisotropic De-Groot-Mazur media are treated.
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1 Introduction

In some previous papers [1]-[8] a linear theory for magnetic relaxation phe-
nomena in magnetizable continuous media was developed, that is based on
thermodynamics of irreversible processes [9]-[15] with internal variables (see
[16]). In [5]-[7] it was shown that, if an arbitrary number n of microscopic
phenomena give rise to magnetic relaxation, it is possible to describe these
microscopic phenomena introducing n macroscopic axial vectorial internal
variables in the thermodynamic state vector and assuming that the specific
magnetization axial vector m can be split in n+1 irreversible contributions,
i.e.,

m = m(0) +

n∑
k=1

m(k), (1)

where m(0) and m(k) (k = 1, ..., n) are called partial specific magnetiza-
tions.

In the isotropic case (see [5], [6]) the following magnetic relaxation equa-
tion generalizing Snoek equation was obtained having the form of a linear
relation among the magnetic field B, the first n time derivatives of this field,
the total magnetization M and the first n + 1 time derivatives of M

χ
(0)
(BM)B + χ

(1)
(BM)

dB

dt
+ ...+ χ

(n−1)
(BM)

dn−1B

dtn−1
+
dnB

dtn
=

χ
(0)
(MB)M + χ

(1)
(MB)

dM

dt
+ ...+ χ

(n)
(MB)

dnM

dtn
+ χ

(n+1)
(MB)

dn+1M

dtn+1
, (2)

where n is the number of phenomena that give rise to the total magnetization
M, with M = ρm, being ρ the mass density of the medium, supposed

a constant quantity, and χ
(k)
(BM)(k = 0, 1, ..., n − 1) and χ

(k)
(MB) (k =

0, 1, ..., n + 1) are constant quantities. In particular, they are algebraic
functions of the coefficients occurring in the phenomenological equations
and in the equations of state.
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This is the case of media where different kinds of molecules (for instance
of water, of proteins, etc.) contribute to the total magnetization, have dif-
ferent magnetic susceptibilities and relaxation times, and present particular
magnetic relaxation phenomena. These physical situations arise in nuclear
magnetic resonance in medicine, in biology and also in different fields of
appplied sciences, where complex media are used. In [17]-[21] Maugin gives
a continuous description of the magnetization field in a deformable crys-
tal, below its magnetic phase-transition temperature Tcr, assuming that
the magnetization field per unit mass is the sum of n partial magnetiza-
tion fields, arising from n different ionic species. According to microscopic
considerations, a spin density per unit mass is associated with each partial
magnetization per unit mass, so that the total spin intrinsic momentum
per unit mass is given by the sum of n partial spin densities. Following
Maugin, n interactions arise between each magnetic sublattice and the crys-
tal lattice, called spin-lattice interactions, having dimensions of magnetic
fields. This fact is known as magnetic anisotropy (since each magnetic in-
teraction is linked to the orientation of the relative corresponding partial
magnetization density with respect to the crystal lattice) [7]. It is seen that
magnetic interactions also account for the intra and intermagnetic-sublattice
interactions describing the short-range spin-interactions. The continuum
theory for magnetizable bodies developed by Maugin gives an explanation
to internal mechanisms in magnetizable bodies with internal variables. For
this multimagnetic-sublattice approach used for the description of magnetic
properties of complex media see also [22]-[28].

In the present paper we consider anisotropic magnetizable media in
which the magnetization axial vector m is additively composed of two irre-
versible contributions m(0) and m(1), i.e.,

m = m(0) + m(1). (3)

The explicit expression for the heat dissipation function is worked out. It is
seen that this function is due to the electric conduction, magnetic relaxation,
viscous, magnetic irreversible processes. Also the heat conduction equation
for these media is worked out. The methods of classical irreversible ther-
modynamics with internal variables are used, where the local equilibrium
hypothesis is assumed (see [29]-[37]). Each point in the considered medium
can be considered as an elementary volume, where the reversible thermody-
namics is valid. The values of the fields differ from elementary volume to
elementary volume describing a non-equilibrium situation. The size d of this
elementary volume should be bigger than the average distance traveled by
the (charges, heat) carriers between two successive collisions, defined mean
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free path l (d > l), see [31]. In Section 2 the governing equations for mag-
netizable media are introduced. In Section 3 the entropy balance equation
and the phenomenological equations are derived. In Section 4 a reference
state and a thermodynamic equilibrium state are introduced. In Sections 5
and 6 the linear equations of state and the magnetic relaxation equations
are considered, in the linear case and when all cross effects are disregarded,
except for possible cross effects among different types of magnetic relaxation
phenomena. In Section 7 the heat conduction equation is derived and it is
seen that the heat dissipated per unit of volume and per unit of time due
to the presence of irreversible phenomena inside the considered media is de-
scribed by the heat dissipation function, that has the form of a quadratic
function of the components of the strain tensor, the components of the elec-
tric field, the components of the magnetic field, the components of the total
magnetization, the components of the time derivatives of this last axial vec-
tor and of the temperature. In Sections 8 and 9 the results are applied to
the particular cases of anisotropic Snoek media (see [38]) and anisotropic
De Groot-Mazur media.

2 Governing equations for magnetizable media

The standard Cartesian tensor notation in a rectangular coordinate system
is used and the equations governing the behavior of magnetizable media are
considered in a current configuration Kt. In Galilean approximation the
physical processes occurring inside the magnetizable media under consider-
ation are governed by the following laws (see [14] and [5]-[7]):

Maxwell’s equations (in rationalized Gauss system), keeping the form

rotH− 1

c

∂E

∂t
=

1

c
J(el), divE = ρ(el), rotE+

1

c

∂B

∂t
= 0, divB = 0, (4)

where c is the modulus of the light velocity, E, B, and H, denote the
electric field, the magnetic induction and the magnetic displacement, respec-
tively, and J(el) and ρ(el) are the electric current density per unit volume
and the electric charge density per unit volume, satisfying the conservation
law

∂ρ(el)

∂t
= −divJ(el); (5)

the mass conservation law, having the form

∂ρ

∂t
= −divρv, or ρ

dv

dt
= divv, (6)
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with d/dt the material derivative, defined by d
dt = ∂

∂t+vγ
∂
∂xγ

(where Einstein

convention on repeating indices is used), ρ the density mass of the medium
under consideration, that is assumed a constant quantity, v the specific
volume, defined by v = ρ−1, and v the velocity field, given by v = du

dt ,
where u is the displacement field;

the equation of motion, taking the form [14]

ρ
dv

dt
= divτ + ρ(el)E+

1

c
J(el) ×B+ (gradB) ·M− 1

c

d

dt
(M×E) + ρF, (7)

where τ is the symmetric stress tensor, F is the volume force per unit of
mass and M is the magnetization axial vector defined by

M = B−H, M = ρm, (8)

with m the magnetization per unit volume, called specific magnetization;
the first law of thermodynamics, having the form

ρ
du

dt
= −divJ(q) + ταβ

dεαβ
dt

+ J(el) ·E + ρB · dm
dt
, (9)

where u is the specific internal energy (energy per unit of mass), J(q) is the
heat flux vector and the small strain tensor εαβ (assuming that the defor-
mations and rotations of the considered media are small from a kinematical
point of view) is defined by εαβ = 1

2(∂uα∂xβ
+

∂uβ
∂xα

) (α, β = 1, 2, 3), i.e., as the

symmetric part of the gradient of the displacement field u.

3 A description of anisotropic media with mag-
netic relaxation

In [1]-[8] within the framework of the classical irreversible thermodynam-
ics with internal variables, a theory was developed for magnetizable media
with relaxation phenomena. In this paper we consider anisotropic magne-
tizable media in which the contributions of microscopic phenomena to the
macroscopic magnetization axial vector can be described by introducing one
internal variable in the expression of the entropy. Then, we suppose that
the total specific magnetization m is additively composed of two irreversible
parts, m = m(0) +m(1), and we introduce the partial specific magnetization
m(1) as internal variable in the state space C

C = C
(
u, εαβ,m,m(1)

)
. (10)
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Following the general philosophy of TIP (see [29]-[37]) the local equilibrium
hypothesis is assumed and dissipative fluxes, gradients and time derivatives
of the considered physical fields are not included in the thermodynamic state
space (10).

Now, let us assume that the specific entropy (the entropy per unit of
mass) is a constitutive function of the state space C

s = s
(
u, εαβ,m,m(1)

)
. (11)

According to the reversible thermodynamics, we shall define the equilib-
rium temperature (the absolute temperature) T, the equilibrium stress ten-

sor τ
(eq)
αβ , the equilibrium magnetic field B(eq) and the axial vector field

B(1) (that represents the thermodynamic affinity conjugate to the internal
variable m(1) ) by

T−1 =
∂

∂u
s
(
u, εαβ,m,m(1)

)
, (12)

τ
(eq)
αβ = −ρT ∂

∂εαβ
s
(
u, εαβ,m,m(1)

)
, (13)

B(eq) = −T ∂

∂m
s
(
u, εαβ,m,m(1)

)
, (14)

B(1) = T
∂

∂m(1)
s
(
u, εαβ,m,m(1)

)
. (15)

We expand the entropy (11) into Taylor’s series with respect to an equi-
librium state, considering very small deviations with respect to this state.
Confining our considerations to the linear terms, we obtain the differential of
the entropy in a point of the thermodynamic phase space in thermodynamic
equilibrium (see [39], [40]), corresponding to a local position x in a current
configuration Kt , having the following form

s = s(eq) +
∂s

∂u

(
u− u(eq)

)
+

∂s

∂εαβ

(
εαβ − ε

(eq)
αβ

)
+

∂s

∂m

(
m−m(eq)

)
+

∂s

∂m(1)

(
m(1) −m(1eq)

)
. (16)

Multiplying the obtained expression (16) by the temperature T and taking
into account (12)-(15) and the definition ρ = 1

v , we obtain the following
Gibbs relation

Tds = du− vτ (eq)αβ dεαβ −B(eq) · dm + B(1) · dm(1). (17)
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Thus, from (17) it follows that the time derivative of the entropy (11) in the
point x keeps the form

T
ds

dt
=
du

dt
− vτ (eq)αβ

dεαβ
dt
−B(eq) · dm

dt
+ B(1) · dm

(1)

dt
. (18)

Inserting in (18) the expression (9) for the time derivative of the specific
internal energy we obtain the following entropy balance valid for small de-
viations from a thermodynamical equilibrium state

ρ
ds

dt
= − divJ (s) + σ(s), (19)

where J (s) = T−1J(q) is the entropy flux and σ(s) is the entropy production
per unit volume and per unit time given by

σ(s) = T−1
(
τ
(vi)
αβ

dεαβ
dt

+ J(q) ·X(q) + J(el) ·E+

ρB(ir) · dm
dt

+ ρB(1) · dm
(1)

dt

)
. (20)

In equation (20) the viscous stress tensor (called also irreversible stress ten-

sor) τ
(vi)
αβ , the irreversible magnetic field B(ir) and the field X(q) are

defined, respectively, by

τ
(vi)
αβ = ταβ − τ

(eq)
αβ , B(ir) = B−B(eq), X(q) = −T−1gradT. (21)

The theory for relaxation magnetizable phenomena developed in [1]-[8] is
a linear theory. The deviations with respect to the thermodynamical equi-
librium states are very small, and all the considered equations (Maxwell’s
equations, balance equations, phenomenological equations, constitutive rela-
tions) have to be taken in ”perturbation” around the same thermodynamical
equilibrium state.

If we assume that the specific entropy s is a constitutive function of the
state space C = C

(
u, εαβ,m

(0),m(1)
)

s = s
(
u, εαβ,m

(0),m(1)
)
, (22)

in equation (19) σ(s) assumes the following form

σ(s) = T−1
(
τ
(vi)
αβ

dεαβ
dt

+ J(q) ·X(q) + J(el) ·E+
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ρB(ir) · dm
(0)

dt
+ ρ(B(1) + B(ir)) · dm

(1)

dt

)
. (23)

It is seen from (23) that if the magnetic field B of Maxwell’s equations
equals the equilibrium magnetic field B(eq), B(ir) vanishes (see equation
(21)2), the specific partial magnetization m(1) only contributes to the
entropy production and changes in m(0) become reversible (see in Section
8 Snoek media). m(0) is an irreversible part of the total magnetization
only when the magnetizable medium is not in a thermodynamic equilibrium
state. Furthermore, if m = m(0), there is no internal variable m(1) and
one obtains for σ(s) the expression derived by De Groot-Mazur (see Section
9). It is seen from (20) that the entropy production is a sum of terms, where
each term is the inner product of two vectors or two second order tensors of
which one is a flux and the other is the thermodynamic force or ” affinity
” conjugate to the flux. Hence, according to the usual procedure of non
equilibrium thermodynamics (see for instance [29]), from (20) we obtain the
following phenomenological equations, in which the irreversible fluxes are
linear functions of the thermodynamic forces

B(ir)
α = ρL

(0,0)
(M)αβ

dmβ

dt
+ L

(0,1)
(M)αβB

(1)
β + L

(0,el)
(M)αβEβ+

L
(0,q)
(M)αβX

(q)
β + L

(0,vi)
(M)αβγ

dεβγ
dt

, (24)

ρ
dm

(1)
α

dt
= ρL

(1,0)
(M)αβ

dmβ

dt
+ L

(1,1)
(M)αβB

(1)
β + L

(1,el)
(M)αβEβ+

L
(1,q)
(M)αβX

(q)
β + L

(1,vi)
(M)αβγ

dεβγ
dt

, (25)

J (el)
α = ρL

(el,0)
(M)αβ

dmβ

dt
+ L

(el,1)
(M)αβB

(1)
β + L

(el,el)
αβ Eβ+

L
(el,q)
αβ X

(q)
β + L

(el,vi)
αβγ

dεβγ
dt

, (26)

J (q)
α = ρL

(q,0)
(M)αβ

dmβ

dt
+ L

(q,1)
(M)αβB

(1)
β + L

(q,el)
αβ Eβ+

L
(q,q)
αβ X

(q)
β + L

(q,vi)
αβγ

dεβγ
dt

, (27)

τ
(vi)
αβ = ρL

(vi,0)
(M)αβγ

dmγ

dt
+ L

(vi,1)
(M)αβγB

(1)
γ + L

(vi,el)
αβγ Eγ+

L
(vi,q)
αβγ X

(q)
γ + L

(vi,vi)
αβγζ

dεγζ
dt

. (28)
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Equations (24) and (25) are the phenomenological equations describing the
irreversible process of magnetic relaxation. Eqs. (26), (27) and (28) rep-
resent the generalizations of Ohm’s law, Fourier’s law and Newton’s law,
respectively. Furthermore, in (24) and (25) (for instance) the third, the
fourth and the fifth terms on the right-hand side describe the cross effects
among electric conduction, heat conduction, mechanical viscosity and mag-

netic relaxation. The quantities L
(0,0)
(M)αβ, L

(0,1)
(M)αβ, etc., which occur in the

above equations, are constant phenomenological tensors (polar or axial).

For instance L
(vi,vi)
αβγζ is the polar viscosity tensor of order four, L

(q,q)
αβ is

the polar tensor of heat conductivity of order two, L
(0,el)
(M)αβ and L

(0,q)
(M)αβ

are axial tensors of order two connected with the influence of the electric
conduction and the heat flux on the magnetic relaxation, respectively. From
experiments (see for instance [41]) it is possible to know the values of these
phenomenological coefficients. By virtue of the symmetry of εαβ from (13)

it follows that also τ
(eq)
αβ is a symmetric tensor. Moreover, if we assume

that the mechanical stress tensor ταβ is symmetric, from (21)1 it follows

that also the viscous stress tensor τ
(vi)
αβ is a symmetric tensor. Therefore,

one gets the following symmetry relations for the phenomenological tensors

L
(0,vi)
(M)αβγ = L

(0,vi)
(M)αγβ, L

(vi,0)
(M)αβγ = L

(vi,0)
(M)βαγ , (29)

L
(1,vi)
(M)αβγ = L

(1,vi)
(M)αγβ, L

(vi,1)
(M)αβγ = L

(vi,1)
(M)βαγ , (30)

L
(el,vi)
αβγ = L

(el,vi)
αγβ , L

(vi,el)
αβγ = L

(vi,el)
βαγ , L

(q,vi)
αβγ = L

(q,vi)
αγβ , L

(vi,q)
αβγ = L

(vi,q)
βαγ ,

(31)

L
(vi,vi)
αβγζ = L

(vi,vi)
βαγζ = L

(vi,vi)
αβζγ = L

(vi,vi)
βαζγ . (32)

Since B(ir) , B(1), j(el) , J(q) and
dεαβ

dt are odd functions under time

reversal and ρdmdt , ρdm
(1)

dt , E, X(q) and τ
(vi)
αβ are even functions under

time reversal the Onsager-Casimir reciprocity relations read (see [14], [15],
[29], [42], [43])

L
(0,0)
(M)αβ = L

(0,0)
(M)βα, L

(1,1)
(M)αβ = L

(1,1)
(M)βα, (33)

L
(el,el)
αβ = L

(el,el)
βα , L

(q,q)
αβ = L

(q,q)
βα , (34)

L
(vi,vi)
αβγζ = L

(vi,vi)
γζαβ , L

(0,1)
(M)αβ = −L(1,0)

(M)βα, (35)

L
(0,el)
(M)αβ = L

(el,0)
(M)βα, L

(0,q)
(M)αβ = L

(q,0)
(M)βα, L

(1,el)
(M)αβ = −L(el,1)

(M)βα, (36)



128 L. Restuccia

L
(1,vi)
(M)αβγ = L

(vi,1)
(M)βγα, L

(1,q)
(M)αβ = −L(q,1)

(M)βα, (37)

L
(0,vi)
(M)αβγ = −L(vi,0)

(M)βγα, L
(el,q)
αβ = L

(q,el)
βα ,

L
(el,vi)
αβγ = −L(vi,el)

βγα , L
(q,vi)
αβγ = −L(vi,q)

βγα . (38)

Equations (29)-(38) reduce the number of independent components of the
phenomenological tensors. Furthermore, reductions may occur as a con-
sequence of physical properties (as for instance isotropy properties) of the

medium. Now, introducing the expressions (24)-(28) for B(ir), ρdm
(1)

dt , j(el),

J(q), and τ
(vi)
αβ in (20) and by virtue of symmetry and Onsager-Casimir reci-

procity relations, we obtain for the entropy production the following form

σ(s) = T−1
{
ρ2L

(0,0)
(M)αβ

dmα

dt

dmβ

dt
+ L

(1,1)
(M)αβB

(1)
α B

(1)
β + L

(el,el)
αβ EαEβ+

L
(q,q)
αβ X(q)

α X
(q)
β + L

(vi,vi)
αβγζ

dεαβ
dt

dεγζ
dt

+ 2L
(1,vi)
(M)αβγB

(1)
α

dεβγ
dt

+ (39)

2ρL
(0,el)
(M)αβ

dmα

dt
Eβ + 2L

(el,q)
αβ EαX

(q)
β + 2ρL

(0,q)
(M)αβ

dmα

dt
X

(q)
β

}
.

Relation (39) shows that the entropy production is a quadratic form in the
components of the time derivative of the total specific magnetization axial
vector, the components of the thermodynamic force conjugate to the partial
specific magnetization axial vector, B(1), the components of the electric field,
the components of the temperature gradient and the components of the time
derivative of the strain tensor. The entropy production is a positive definite
quadratic form, i.e.

σ(s) ≥ 0. (40)

A medium is in a state of thermodynamic equilibrium if the entropy produc-
tion vanishes. It follows from the positive definite character of this quantity
that it vanishes if (see (39) and (21))

dm

dt
= 0, E = 0, gradT = 0,

dεαβ
dt

= 0, (41)

B(1)
(
T, εαβ,m,m(1)

)
= 0. (42)

It is seen from (42) that at thermodynamic equilibrium the internal variable
m(1) depends on independent variables and it is determined if T, εαβ and
m are given. From the positive definite character of the entropy production
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several inequalities may be derived for the components of the phenomeno-
logical coefficients, resulting from the fact that all the elements of the main
diagonal of the matrix associated to the quadratic form (39) must be non-
negative and all principal minors of this matrix must be non-negative (see
[29], [44], [45] as examples in the case of isotropic magnetizable media and
of three-dimensional isotropic and anisotropic rigid media). For instance,
we have

L
(0,0)
(M)αα ≥ 0, L(el,el)

αα ≥ 0, (43)

L
(1,1)
(M)αα ≥ 0, L(q,q)

αα ≥ 0, L
(vi,vi)
αβαβ ≥ 0.

Also, from the fifth of the inequalities we obtain by virtue of symmetry and
Onsager-Casimir relations

L
(vi,vi)
αββα ≥ 0, L

(vi,vi)
βααβ ≥ 0, L

(vi,vi)
βαβα ≥ 0. (44)

4 Reference state and thermodynamic
equilibrium state

Let us consider a reference state of the medium, with an arbitrary (but fixed)
uniform temperature T(0), in which the mechanical stress tensor ταβ and

the magnetic field B vanish in the medium. We notice that τ
(eq)
αβ , B(eq)

and B(1) are functions of the temperature T(0), of the strain tensor εαβ
and of the magnetizations m and m(1). We require that in this reference
state (indicated by the symbol ”(0)”) the value ε(0)αβ for the strain tensor

and the values m(0) and m
(1)
(0) for the magnetization axial vectors are such

that

τ
(eq)
αβ

(
T(0), ε(0)αβ,m(0),m

(1)
(0)

)
= 0, (45)

B(eq)
(
T(0), ε(0)αβ,m(0),m

(1)
(0)

)
= 0, (46)

and

B(1)
(
T(0), ε(0)αβ,m(0),m

(1)
(0)

)
= 0. (47)

Being τ
(eq)
αβ a symmetric tensor, equations (45)-(47) form a set of 12

equations for the values of the 6 independent components of the symmetric
strain tensor ε(0)αβ and the values of the 6 components of the vectors

m(0) and m
(1)
(0). All strains will be measured with respect to this state and

we choose the tensor εαβ and the axial vectors m,m(1), so that they vanish



130 L. Restuccia

in the reference state. Then, ε(0)αβ = 0; m(0)α = 0; m
(1)
(0)α = 0, from which

we have
τ
(eq)
αβ = 0, B(eq) = 0, B(1) = 0,

for T = T(0) and ε(0)αβ = m(0)α = m
(1)
(0)α = 0. (48)

A medium is in a state of thermodynamic equilibrium if the entropy pro-
duction vanishes. It follows from (41) and (42) that the reference state is
a state of thermodynamic equilibrium, provided that εαβ and the vectors
m and m(1) (determined by (45)-(47)) are kept constant. Moreover, from
(41) the electric field must be kept vanishing in this state of thermodynamic
equilibrium. We note that in the reference state the medium has the uni-
form temperature T(0) and hence grad T vanishes in this state. Moreover,
from the conditions (41), (42) and the phenomenological equation (28) the

viscous stress tensor τ
(vi)
αβ vanishes in the thermodynamic equilibrium and

by virtue of (21)1 it follows that

ταβ = τ
(eq)
αβ . (49)

Then, the chosen reference state is a state of thermodynamic equilibrium.

5 Linear equations of state for
anisotropic media with magnetic relaxation

Let us define the specific free energy f by f = u − Ts and, by virtue
of the local equilibrium hypothesis, it is assumed that in each point of the
considered medium the reversible thermodynamics is applicable (see [29]-
[37]). Therefore, the following definitions are valid

s = − ∂

∂T
f
(
T, εαβ,m,m(1)

)
, (50)

τ
(eq)
αβ = ρ

∂

∂εαβ
f
(
T, εαβ,m,m(1)

)
, (51)

B(eq) =
∂

∂m
f
(
T, εαβ,m,m(1)

)
, (52)

B(1) = − ∂

∂m(1)
f
(
T, εαβ,m,m(1)

)
. (53)

Furthermore, from f = u−Ts, with the aid of Gibbs relation (17), one gets
the following expression for the differential of f ,

df = −sdT + vτ
(eq)
αβ dεαβ + B(eq) · dm−B(1) · dm(1). (54)
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Now, we assume the following form for the specific free energy f of an
anisotropic medium with magnetic relaxation

f = f (1) + f (2), (55)

where f (1) is some function of the temperature and of the strain tensor and
f (2) is some function of the temperature and of the specific magnetization
axial vectors m and m(1), i.e.

f (1) = f (1)(T, εαβ) and f (2) = f (2)(T,m,m(1)). (56)

Now, we expand the free energy f into Taylor’s series with respect to the
considered reference state and we consider very small deviations with re-
spect to this state. We assume the following form for the expansion of f (1)

(characterizing an anisotropic Kelvin-Voigt medium)

f (1) = v(0)

{
1

2
aαβγζεαβεγζ + (T − T(0))aαβεαβ

}
− ϕ(T ), (57)

where v(0) is the specific volume in the reference state, given by v(0) =
1
ρ(0)

. In the following, we shall replace it by v = 1
ρ , which is supposed to

be a constant. ϕ(T ) is some function of the temperature and aαβγζ and
aαβ do not depend on the temperature and on the strain tensor. They
are determined by the physical properties of the medium in the reference
state and, furthermore, they are constant quantities and satisfy the following
symmetry relations

aαβγζ = aβαγζ = aαβζγ = aβαζγ = aγζαβ = aγζβα = aζγαβ = aζγβα, (58)

aαβ = aβα.

Furthermore, we assume the following form for the expansion of f (2)

f (2) =
1

2
ρ
{
a
(0,0)
(M)αβ mα

(
mβ − 2m

(1)
β

)
+ a

(1,1)
(M)αβ m

(1)
α m

(1)
β

}
+

(T − T(0))
(
a
(0)
(M)α mα − a(1)(M)αm

(1)
α

)
. (59)

In (59) the vectors a
(0)
(M)α and a

(1)
(M)α and the tensors a

(0,0)
(M)αβ, a

(1,1)
(M)αβ are

constant quantities (i.e. they do not depend on the temperature and on the
specific magnetizations). They are determined by the physical properties
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of the medium in the reference state and, furthermore, they satisfy the
following symmetry relations

a
(0,0)
(M)αβ = a

(0,0)
(M)βα, a

(1,1)
(M)αβ = a

(1,1)
(M)βα. (60)

The symmetry relations (58) and (60) are coming from the invariance
properties with respect to the priority of derivation of f (1) and f (2) with re-
spect their own independent variables (see[29] for some detailed calculations
in the case of magnetizable media).

By virtue of (50) and (55)-(60) we have the following form for the specific
entropy

s = −
(
a
(0)
(M)αmα − a(1)(M)αm

(1)
α

)
− v aαβεαβ +

dϕ

dT
. (61)

From (51) and (55)-(60) we obtain for the equilibrium stress tensor the
expression form

τ
(eq)
αβ = aαβγζεαβ + aαβ(T − T(0)), (62)

where aαβγζ are the elastic constants and aαβ are the thermoelastic con-
stants. Now, we define the fields M(0) and M(1) by

M(0) = ρm(0) and M(1) = ρm(1). (63)

Finally, from (52), (53) and (55)-(60) we have the following equations of
state

B(eq)
α = a

(0,0)
(M)αβ

(
Mβ −M

(1)
β

)
+ a

(0)
(M)α(T − T(0)), (64)

B(1)
α = a

(0,0)
(M)αβMβ − a

(1,1)
(M)αβM

(1)
β + a

(1)
(M)α(T − T(0)). (65)

Because of the mass density ρ is constant equations (24) and (25) for the
irreversible magnetic relaxation phenomena may be written in the form

Bα = B(eq)
α + L

(0,0)
(M)αβ

dMβ

dt
+ L

(0,1)
(M)αβB

(1)
β +

L
(0,el)
(M)αβEβ + L

(0,q)
(M)αβX

(q)
β + L

(0,vi)
(M)αβγ

dεβγ
dt

, (66)

dM
(1)
α

dt
= L

(1,0)
(M)αβ

dMβ

dt
+ L

(1,1)
(M)αβB

(1)
β + L

(1,el)
(M)αβEβ+

L
(1,q)
(M)αβX

(q)
β + L

(1,vi)
(M)αβγ

dεβγ
dt

, (67)

where we have used the expression (21)2. If all cross effects are neglected,
except for possible cross effects among the different types of magnetic re-
laxation phenomena, we obtain the following equations for the irreversible
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magnetic relaxation phenomena, the stress tensor, the electric flux and the
heat flux, respectively,

Bα = B(eq)
α + L

(0,0)
(M)αβ

dMβ

dt
+ L

(0,1)
(M)αβB

(1)
β , (68)

dM
(1)
α

dt
= L

(1,0)
(M)αβ

dMβ

dt
+ L

(1,1)
(M)αβB

(1)
β , (69)

ταβ = aαβγζεαβ + aαβ(T − T(0)) + L
(vi,vi)
αβγζ

dεγζ
dt

, (70)

J (q)
α = L

(q,q)
αβ X

(q)
β , J (el)

α = L
(el,el)
αβ Eβ. (71)

See equations (26)-(28), (62), (66) and (67).

6 Magnetic relaxation equation for
anisotropic media with magnetic relaxation

Taking into account (64) and (65), equations (68) and (69) may be written,
respectively, in the form (see [7]):

c
(1)
αβM

(1)
β = Q

(1)
(0,0)α, (72)

where
c
(1)
αβ = a

(0,0)
(M)αβ + L

(0,1)
(M)αγ

a
(1,1)
(M)γβ, (73)

Q
(1)
(0,0)α =

(
a
(0,0)
(M)αβ + L

(0,1)
(M)αγa

(0,0)
(M)γβ

)
Mβ + L

(0,0)
(M)αβ

dMβ

dt
−Bα

+
(
a
(0)
(M)α + L

(0,1)
(M)αβa

(1)
(M)β

)
(T − T(0)), (74)

and
dM

(1)
β

dt
+ hβγM

(1)
γ = Q(1,0)β, (75)

where
hβγ = L

(1,1)
(M)βηa

(1,1)
(M)ηγ (76)

and

Q(1,0)β = L
(1,1)
(M)βηa

(0,0)
(M)ηγMγ + L

(1,0)
(M)βγ

dMγ

dt
+ L

(1,1)
(M)βγa

(1)
(M)γ(T − T(0)). (77)

Assuming that it is possible to define the inverse matrix (c
(1)
αβ)−1, such that

(c
(1)
αβ)−1c

(1)
βγ = c

(1)
αβ(c

(1)
βγ )−1 = δαγ , (78)
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eliminating the internal magnetic axial field M(1), given by (see (72))

M (1)
α = (c

(1)
αβ)−1Q

(1)
(0,0)β, (79)

one gets the following magnetic relaxation equation (derived in [7])

χ
(0)
(BM)αβBβ +

dBα
dt

= χ
(0)
(MB)αβMβ + χ

(1)
(MB)αβ

dMβ

dt

+χ
(2)
(MB)αβ

d2Mβ

dt2
+ χ

(0)
(T )α(T − T0) + χ

(1)
(T )α

dT

dt
, (80)

where
χ
(0)
(BM)αβ = c(1)αγhγζ(c

(1)
ζβ )−1, (81)

χ
(0)
(MB)αβ = c(1)αγ

{
hγζ(c

(1)
ζη )−1

(
a
(0,0)
(M)ηβ + L

(0,1)
(M)ηµa

(0,0)
(M)µβ

)
− L(1,1)

(M)γµ
a
(0,0)
(M)µβ

}
,

(82)

χ
(1)
(MB)αβ = c(1)αγ

{
hγζ(c

(1)
ζη )−1L

(0,0)
(M)ηβ − L

(1,0)
(M)γβ

}
+ a

(0,0)
(M)αβ + L

(0,1)
(M)αηa

(0,0)
(M)ηβ,

(83)

χ
(2)
(MB)αβ = L

(0,0)
(M)αβ, (84)

χ
(0)
(T )α = c(1)αγ

{
hγζ(c

(1)
ζη )−1

(
a
(0)
(M)η + L

(0,1)
(M)ηβa

(1)
(M)β

)
− L(1,1)

(M)γβa
(1)
(M)β

}
, (85)

χ
(1)
(T )α = a

(0)
(M)α + L

(0,1)
(M)αβa

(1)
(M)β. (86)

Hence, it is seen that the linearization of the theory leads to a relaxation
equation for anisotropic magnetizable media which has the form of a linear
relation among the temperature, the magnetic field, the total magnetization
field, the time derivative of the temperature, the first derivatives with respect
to time of the of magnetic field and of the total magnetization field and the
second derivative with respect to time of this last axial vector.

In [3], in the linear approximation, Kluitenberg derived, magnetizable
media, isotropic with respect to all the rotations and inversions of the frame
of axes, and having the total magnetization M composed of two irreversible
parts, i. e. M = M(0) + M(1), the following magnetic relaxation equation,
by eliminating the internal variable,

χ
(0)
(BM)B +

dB

dt
= χ

(0)
(MB)M + χ

(1)
(MB)

dM

dt
+ χ

(2)
(MB)

d2M

dt2
, (87)

where χ
(0)
(BM) and χ

(k)
(MB) (k = 0, 1, 2) are constant quantities, algebraic

functions of the coefficients occurring in the phenomenological equations
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and in the equations of state. From (87), we see that in the isotropic case
in the magnetic relaxation equation there is no the contribution due to the
temperature field. Using (73), (74), (79), (84) and (86), equation (65) may
be written in the form

B(1)
α = (c

(1)
βγ )−1

[
a
(0,0)
(M)αβ

(
a
(0,0)
(M)γζ + L

(0,1)
(M)γξa

(1,1)
(M)ξζ

)
−a(1,1)(M)αβ

(
a
(0,0)
(M)γζ + L

(0,1)
(M)γξa

(0,0)
(M)ξζ

)]
Mζ−(c

(1)
βγ )−1

[
a
(1,1)
(M)αβL

(0,0)
(M)γζ

dMζ

dt
(88)

+a
(1,1)
(M)αβ

(
a
(0)
(M)γ + L

(0,1)
(M)γζa

(1)
(M)ζ

)
(T − T0)− a(1,1)(M)αβBγ

]
+ a

(1)
(M)α(T − T0),

where
c
(1)
βγ = a

(0,0)
(M)βγ + L

(0,1)
(M)βηa

(1,1)
(M)ηγ . (89)

Hence, using (84) one obtains

B(1)
α = D

(1)
(M)αβMβ +D

(2)
(M)αβ

dMβ

dt
+D

(3)
(M)αβBβ +D

(4)
(M)α(T − T0), (90)

where

D
(1)
(M)αβ = (c

(1)
ζγ )−1

[
a
(0,0)
(M)αζc

(1)
γβ − a

(1,1)
(M)αζ

(
a
(0,0)
(M)γβ + L

(0,1)
(M)γξa

(0,0)
(M)ξβ

)]
, (91)

D
(2)
(M)αβ = −(c

(1)
ζγ )−1a

(1,1)
(M)αζL

(0,0)
(M)γβ, (92)

D
(3)
(M)αβ = −(c

(1)
γβ )−1a

(1,1)
(M)αγ , (93)

D
(4)
(M)α = −(c

(1)
βγ )−1a

(1,1)
(M)αβ

(
a
(0,0)
(M)γ + L

(0,1)
(M)γξa

(1)
(M)ξ

)
+ a

(1)
(M)α. (94)

From (90) B(1) may be expressed as a linear function of the temperature,
the magnetic field, the total magnetization field and the time derivative of
this last axial vector field.

7 The heat dissipation function for
anisotropic media with magnetic relaxation

Using (68)-(71), we obtain from (19) and (20) the following balance equation
for the specific entropy s

ρ
ds

dt
=

∂

∂xα

(
T−2L

(q,q)
αβ

∂T

∂xβ

)
+ T−1

{
T−2L

(q,q)
αβ

∂T

∂xα

∂T

∂xβ

}
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+T−1
{
L
(0,0)
(M)αβ

dMα

dt

dMβ

dt
+ L

(1,1)
(M)αβB

(1)
α B

(1)
β + L

(el,el)
αβ EαEβ+ (95)

+L
(vi,vi)
αβγζ

dεαβ
dt

dεγζ
dt

}
.

From the expression u = f + Ts and equations (55)-(61) we obtain the
following form for the specific internal energy

u =
1

2
ρ
{
a
(0,0)
(M)αβ mα

(
mβ − 2m

(1)
β

)
+ a

(1,1)
(M)αβ m

(1)
α m

(1)
β

}
−T(0)

(
a
(0)
(M)α mα − a(1)(M)αm

(1)
α

)
(96)

+v

{
1

2
aαβγζεαβεγζ − T(0)aαβεαβ

}
+ T

dϕ

dT
− ϕ(T ).

The specific heat at constant deformation c(ε) may be defined by

c(ε) =
∂

∂T
u
(
T, εαβ,m,m(1)

)
. (97)

Hence, we obtain

c(ε) = T
d2ϕ

dT 2
, (98)

and, if c(ε) is constant, we have

ϕ = c(ε)T log
T

T(0)
+ s(0)T − c(ε)(T − T(0))− u(0), (99)

where s(0) and u(0) are integration constants and represent the specific en-
tropy and the specific internal energy in the reference state, respectively.
Then, the first law of thermodynamics (9) becomes

1

2
a
(0,0)
(M)αβ

d

dt

{
Mα

(
Mβ − 2M

(1)
β

)}
+ a

(1,1)
(M)αβ M

(1)
α

d

dt
M

(1)
β

−T(0)
(
a
(0)
(M)α

d

dt
Mα − a(1)(M)α

d

dt
M (1)
α

)
+

1

2
aαβγζ

d

dt
(εαβεγζ)− T(0)aαβ

d

dt
εαβ + ρc(ε)

d

dt
T = (100)

−divJ(q) + ταβ
dεαβ
dt

+ J (el)
α Eα +Bα

dMα

dt
,

where we have supposed that J
(el)
α , J

(q)
α , τ

(eq)
αβ are given by (70) and (71).



On the heat dissipation function 137

From (61) and (98) it follows that

ρ
ds

dt
= −a(0)(M)α

dMα

dt
+ a

(1)
(M)α

dM
(1)
α

dt
− aαβ

dεαβ
dt

+ ρc(ε)T
−1dT

dt
. (101)

By virtue of (95) and (101) we obtain the following equation for the heat
conduction

ρc(ε)
dT

dt
= T

{
a
(0)
(M)α

dMα

dt
− a(1)(M)α

dM
(1)
α

dt
+ aαβ

dεαβ
dt

}

+
∂

∂xα

(
T−1L

(q,q)
αβ

∂T

∂xβ

)
+ σ(h), (102)

where M(1) is given by (see (79))

M (1)
α =

(
a
(0,0)
(M)αβ + L

(0,1)
(M)αγa

(1,1)
(M)γβ

)−1
Q

(1)
(0,0)β (103)

and σ(h) has the following form

σ(h) = σ(M) + σ(E) + σ(R), (104)

with

σ(M) = L
(0,0)
(M)αβ

dMα

dt

dMβ

dt
+ L

(1,1)
(M)αβB

(1)
α B

(1)
β , (105)

σ(E) = L
(el,el)
αβ EαEβ, (106)

σ(R) = L
(vi,vi)
αβγζ

dεαβ
dt

dεγζ
dt

. (107)

The physical quantity σ(h) is called heat dissipation function and σ(M), σ(E),
and σ(R) represent the heat dissipated per unit of volume and per unit of
time by the magnetic relaxation, electric conduction, viscous and magnetic
irreversible phenomena, respectively. σ(R) is a generalized Rayleigh dissi-
pation function. When σ(M) vanishes, no magnetic phenomena are present
and σ(h) reduces to σ(E) + σ(R).

Substituting in (105) the expression (90) of B(1) conjugate to the internal
variable, we eliminate the internal variable, obtaining the following form for
σ(M) :

σ(M) = L
(0,0)
(M)αβ

dMα

dt

dMβ

dt
+L

(1,1)
(M)αβ

[
D

(1)
(M)αζMζ +D

(2)
(M)αζ

dMζ

dt
+D

(3)
(M)αζBζ+
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D
(4)
(M)α(T −T0)

]
·

[
D

(1)
(M)βηMη +D

(2)
(M)βη

dMη

dt
+D

(3)
(M)βηBη +D

(4)
(M)β(T −T0)

]
,

(108)
i.e.,

σ(M) = G
(1)
αβ

dMα

dt

dMβ

dt
+G

(2)
αβMαMβ +G

(3)
αβMα

dMβ

dt
+G

(4)
αβ

dMα

dt
Mβ+

G
(5)
αβBβ

dMα

dt
+G

(6)
αβBαBβ +G(7)

α (T − T0)Mα +G(8)
α (T − T0)

dMα

dt
+

G(9)
α (T − T0)Bα +G(10)(T − T0)2, (109)

where
G

(1)
αβ = L

(0,0)
(M)αβ + L

(1,1)
(M)γξD

(2)
(M)γαD

(2)
(M)ξβ,

G
(2)
αβ = L

(1,1)
(M)γξD

(1)
(M)γαD

(1)
(M)ξβ,

G
(3)
αβ = L

(1,1)
(M)γξ

(
D

(1)
(M)γαD

(2)
(M)ξβ +D

(1)
(M)γβD

(2)
(M)ξα

)
,

G
(4)
αβ = L

(1,1)
(M)γξ

(
D

(1)
(M)γαD

(3)
(M)ξβ +D

(1)
(M)γβD

(3)
(M)ξα

)
,

G
(5)
αβ = L

(1,1)
(M)γξ

(
D

(2)
(M)γαD

(3)
(M)ξβ +D

(2)
(M)ξαD

(3)
(M)γβ

)
,

G
(6)
αβ = L

(1,1)
(M)γξD

(3)
(M)γαD

(3)
(M)ξβ,

G
(7)
α = L

(1,1)
(M)γξ

(
D

(1)
(M)γαD

(4)
(M)ξ +D

(1)
(M)ξαD

(4)
(M)γ

)
,

G
(8)
α = L

(1,1)
(M)γξD

(2)
(M)γαD

(4)
(M)ξ,

G
(9)
α = L

(1,1)
(M)γξ

(
D

(3)
(M)γαD

(4)
(M)ξ +D

(4)
(M)γD

(3)
(M)ξα

)
,

G(10) = L
(1,1)
(M)αβD

(4)
(M)αD

(4)
(M)β.

In (108) the coefficients D
(i)
(M)αβ (i = 1, 2, 3, 4) are given by (91)-(94).

From (106), (107) and (109) it is seen that the heat dissipation function
σ(h) has the form of a quadratic function of the components of the strain
tensor, the components of the electric field, the components of the total
magnetization field, the components of the time derivatives of this last axial
vector, the magnetic field and of the temperature.

8 Heat dissipation function for anisotropic Snoek
media, where m(0) is reversible

In the case where B = B(eq), B(ir) vanishes (see (21)2) and from (68) and
(69) one gets

L
(0,0)
(M)αβ = 0, and L

(0,1)
(M)αβ = −L(1,0)

(M)βα = 0. (110)
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Also from (23) it is seen that in Snoek media the specific partial magne-
tization m(0) becomes a reversible part of the specific total magnetization
m.

Hence, the magnetic relaxation equation (80) becomes

χ
(0)
(BM)αβBβ+

dBα
dt

= χ
(0)
(MB)αβMβ+χ

(1)
(MB)αβ

dMβ

dt
+χ

(0)
(T )α(T−T0)+χ

(1)
(T )α

dT

dt
,

(111)
where

χ
(0)
(BM)αβ = a

(0,0)
(M)αγL

(1,1)
(M)γηa

(1,1)
(M)ηζ

(
a
(0,0)
(M)ζβ

)−1
, (112)

χ
(0)
(MB)αβ = a

(0,0)
(M)αηL

(1,1)
(M)ηγ

(
a
(1,1)
(M)γβ − a

(0,0)
(M)γβ

)
, (113)

χ
(1)
MB)αβ = a

(0,0)
(M)αβ, (114)

χ
(0)
(T )α = a

(0,0)
(M)αβL

(1,1)
(M)βγ

{
a
(1,1)
(M)γη

(
a
(0,0)
(M)ηζ

)−1
a
(0)
(M)ζ − a

(1)
(M)γ

}
, (115)

χ
(1)
(T )α = a

(0)
(M)α. (116)

For the derivation of equation (111) see [7]. Taking into account (90)-(94)
one gets

B(1)
α = D

(1)
(M)αβMβ +D

(3)
(M)αβBβ +D

(4)
(M)α(T − T0), (117)

where

D
(1)
(M)αβ = (a

(0,0)
(M)ζγ)−1a

(0,0)
(M)γβ

(
a
(0,0)
(M)αζ − a

(1,1)
(M)αζ

)
, (118)

D
(3)
(M)αβ = −(a

(0,0)
(M)γβ)−1a

(1,1)
(M)αγ , (119)

D
(4)
(M)α = −(a

(0,0)
(M)βγ)−1a

(1,1)
(M)αβa

(0)
(M)γ + a

(1)
(M)α, (120)

being D
(2)
(M)αβ = 0.

Thus, we obtain the heat conduction equation (102), where the heat
dissipation function σ(h) has the form (104), σ(h) = σ(M) +σ(E) +σ(R), with

σ(E) and σ(R) holding the same expressions σ(E) = L
(el,el)
αβ EαEβ,

σ(R) = L
(vi,vi)
αβγζ

dεαβ

dt
dεγζ
dt .

Substituting in (105) the expression (117) of B(1) conjugate to the in-
ternal variable, we eliminate the internal variable, obtaining the following
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form for σ(M) σ(M) = L
(1,1)
(M)αβ

[
D

(1)
(M)αζMζ + D

(3)
(M)αζBζ + D

(4)
(M)α(T − T0)

]
·[

D
(1)
(M)βηMη +D

(3)
(M)βηBη +D

(4)
(M)β(T − T0)

]
,

σ(M) = G
(2)
αβMαMβ +G

(4)
αβ

dMα

dt
Mβ +G

(6)
αβBαBβ +G(7)

α (T − T0)Mα+

G(9)
α (T − T0)Bα +G(10)(T − T0)2, (121)

where
G

(2)
αβ = L

(1,1)
(M)γξD

(1)
(M)γαD

(1)
(M)ξβ,

G
(4)
αβ = L

(1,1)
(M)γξ

(
D

(1)
(M)γαD

(3)
(M)ξβ +D

(1)
(M)γβD

(3)
(M)ξα

)
,

G
(6)
αβ = L

(1,1)
(M)γξD

(3)
(M)γαD

(3)
(M)ξβ,

G
(7)
α = L

(1,1)
(M)γξ

(
D

(1)
(M)γαD

(4)
(M)ξ +D

(1)
(M)ξαD

(4)
(M)γ

)
,

G
(9)
α = L

(1,1)
(M)γξ

(
D

(3)
(M)γαD

(4)
(M)ξ +D

(4)
(M)γD

(3)
(M)ξα

)
,

G(10) = L
(1,1)
(M)αβD

(4)
(M)αD

(4)
(M)β.

Furthermore, M(1) has the form (see (103))

M (1)
α =

(
a
(0,0)
(M)αβ

)−1 (
a
(0,0)
(M)αβMβ −Bα + a

(0)
(M)α(T − T0)

)
. (122)

If the coefficients L
(1,1)
(M)αβ vanish the relaxation equation (111) becomes

Bβ = a
(0,0)
(M)αβMβ + a

(0)
(M)αT, (123)

where we have continued to call T the quantity T −T0. In this case changes
in the magnetic field B are associated with changes in the magnetic axial
vector M and in the temperature T . This result is well-known for media
without magnetic relaxation [7].

9 Heat dissipation function for magnetizable ani-
sotropic De Groot-Mazur media, where there is
no m(1)

In the special case where

L
(1,1)
(M)αβ = 0, and L

(1,0)
(M)αβ = −L(0,1)

(M)αβ = 0, (124)
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equations (68) and (69) become

B(ir)
α = L

(0,0)
(M)αβ

dMβ

dt
(125)

and
dM

(1)
α

dt
= 0. (126)

From (126) it is seen that M(1) is constant and it can be supposed that
M(1) = 0, i.e., there is no internal variable and from (23) m = m(0). Equa-
tion (80) reduces to magnetic relaxation equation for De Groot-Mazur media
(see [7] and [1]-[3])

Bα = χ
(1)
(MB)αβMβ + χ

(2)
(MB)αβ

dMβ

dt
+ χ

(1)
(T )αT, (127)

where we have continued to call T the quantity T − T0.

χ
(1)
(MB)αβ = a

(0,0)
(M)αβ, (128)

χ
(2)
(MB)αβ = L

(0,0)
(M)αβ, (129)

χ
(1)
T )α = a

(0)
(M)α, (130)

and in the heat conduction equation (102) the heat dissipation function
σ(M) (105) reduces to the heat dissipation function for De Groot-Mazur
media given by

σ(M) = L
(0,0)
(M)αβ

dMα

dt

dMβ

dt
, (131)

and σ(E) and σ(R) take the expressions (106) and (107), respectively.

10 Conclusions

The paper deals with the study of the heat dissipation function in anisotropic
magnetizable media, where different types of irreversible microscopic phe-
nomena give rise to magnetic relaxation. The obtained results can be applied
in several physical situations, in nuclear magnetic resonance in medicine and
biology and other different fields of applied sciences, where complex media
are used. A model for these magnetizable media was given by Maugin, that
used a multimagnetic-sublattice approach. In this paper the standard proce-
dures of irreversible thermodynamics with internal variables were used and,
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following a Kluitenberg theory, it was assumed that it is possible to describe
the microscopic phenomena, giving rise the magnetic relaxation, splitting the
total specific magnetization in two irreversible parts and introducing one of
these partial specific magnetizations as internal variable in the thermody-
namic state space. Linearizing the theory, the heat conduction equation and
the heat dissipation function for these magnetizable anisotropic media were
derived. It was seen that this last function is due to electric conduction,
magnetic relaxation, viscous, and magnetic irreversible phenomena. The
obtained results are applied to the special cases of anisotropic Snoek media,
where the specific magnetization m(0) becomes reversible part of m and De
Groot-Mazur media, where there is no internal variable and m = m(0).

The author and Kluitenberg also studied the case of anisotropic pola-
rizable media with relaxation, in which the total polarization vector is due
to different microscopic irreversible dielectric phenomena and the total po-
larization vector is split in two irreversible parts (see [46]), and the case of
anisotropic mechanical media with relaxation, in which the inelastic strain
is due to different microscopic phenomena and the total small deformation
tensor is split in two irreversible contributions (see [47]).

Dedication

I would like to dedicate this paper to Professor Dan Tiba, my dear friend,
great teacher and eminent scientist, corresponding member of ”Accademia
Peloritana dei Pericolanti” di Messina, on the occasion of his seventieth
birthday.
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