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Abstract

We consider the linearized theory of 6-parameter elastic shells with
general anisotropy. We derive the equilibrium equations from the
virtual power statement and formulate the corresponding variational
problem in the suitable functional framework. Then, using a Korn-type
inequality for the linearized strain measures we prove the existence and
uniqueness of weak solutions. Finally, we show that our general theo-
rem can be applied to obtain existence results in the case of isotropic
elastic shells. We illustrate this procedure by investigating three differ-
ent linear shell models established previously in the literature, namely
the simplified isotropic 6-parameter shell, the Cosserat isotropic model,
and the higher-order 6-parameter Cosserat model.
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1 Introduction

The theory of elastic shells is an important chapter of the mechanics of
solids, since it has many significant applications in mechanical and civil
engineering, in automotive and aerospace engineering etc. In the scientific
literature there exist several linear or nonlinear models designed to describe
the mechanical behaviour of thin elastic shells. This is due to the fact that
any shell theory has an approximate character, since it attempts to describe
a three-dimensional body by means of a two-dimensional model. Thus, a
shell model should be simple enough, on the one hand, to be manageable in
practical engineering problems but, on the other hand, it should be complex
enough to account for significant curvature and three-dimensional effects. To
overcome the limitations of the classical shell theory, the researchers have
developed more refined shell models which can also be applied for shells
made of advanced materials with microstructure.

From a mathematical point of view, one of the main tasks is to prove
that the two-dimensional boundary-value problem for shells is well posed.
This is still an open problem for many nonlinear models, since for instance
the well posedness has not yet been proved for the Koiter or the Reissner–
Mindlin models (see, e.g., [1] for an extensive account). In the linear theory,
the classical models have been justified by means of asymptotic analysis,
and the existence of solutions has been proved by Ciarlet and collaborators
(see, e.g., [2]).

Concerning the refined linear shell models, we mention that the gen-
eralized Naghdi shells have been investigated mathematically by Sprekels
and Tiba in [3]. For the model of Cosserat surfaces (two-dimensional con-
tinua endowed with a single deformable director), the existence theorems for
equilibrium and dynamical equations has been established in [4]. Another
Cosserat approach to linear elastic shells is the theory of simple shells (also
called directed surfaces), which is a Reissner-type approach with 5 parame-
ters. This model for elastic or thermoelastic shells has been studied in the
papers [5, 6], where the existence and uniqueness of solutions have been
proved.

In this paper, we consider the 6-parameter shell model, which is one
of the most general approaches and has been shown to be very effective
in solving complex shell problems. This kinematical model involves two
independent fields: the translation vector field and the rotation tensor field
(six independent variables in total). It was originally proposed by Reissner
and was developed in the books [7, 8]. Subsequently, the nonlinear theory of
6-parameter shells has received considerable attention [9, 10]. The existence
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of minimizers under convexity assumptions has been proved in [11].

Concerning the linear theory of 6-parameter shells there are only few
results available in the literature. Thus, the paper [12] investigates a spe-
cific (simplified) model of isotropic 6-parameter linear shells and shows the
existence of weak solutions in the energy space. Recently, a higher-order
nonlinear model for 6-parameter shells made of isotropic Cosserat mate-
rial has been established and analyzed in [13, 14, 15]. Then, the linearized
model for such isotropic 6-parameter Cosserat shells has been presented in
[16, 17], where the existence and uniqueness of weak solutions is proved. In
the present work, we derive the linearized equations of general (anisotropic)
6-parameter shells and show an existence result.

Outline of the paper. We present first the nonlinear kinematical
model of general 6-parameter shells. Then, we linearize the governing equa-
tions of equilibrium in Section 3. Thus, we present the infinitesimal strain
measures and deduce the equations of equilibrium from the virtual power
statement. Under general assumptions on material symmetry (anisotropy)
we introduce the suitable functional framework and formulate the variational
problem in Section 4. Then, using Poincaré and Korn-type inequalities we
prove a general theorem which states that the weak solution exists and is
unique. In the last section, we show that this general existence theorem can
be applied in the case of isotropic and higher-order 6-parameter shell mod-
els. In this way, we obtain existence results for isotropic linear 6-parameter
shells which improve and complement the available results presented in the
literature [12, 16, 17].

Summary of notations. Let us present some notations and conven-
tions which are employed in this paper. The Latin indices i, j, k, ... range
over the set {1, 2, 3}, while the Greek indices α, β, γ, ... range over the set
{1, 2}. The Einstein summation convention over repeated indices is used.
A subscript comma preceding an index i (or α) designates partial differen-
tiation with respect to the variable xi (or xα , respectively), e.g. f,i = ∂f

∂xi
.

We denote by δji the Kronecker symbol and employ the direct tensor no-
tation. Thus, ⊗ designates the dyadic product, while axl(W) stands for
the axial vector of any skew-symmetric tensor W. Let tr(X) denote the
trace, sym(X) the symmetric part, and skew(X) the skew-symmetric part
of any second order tensor X. The scalar product between any second order
tensors A and B is denoted by A : B = tr(ATB). For any vector v and
second order tensor A we write also vA = ATv . Also, the cross product
between a vector v and a second order tensor is defined by means of the
relation v × (u⊗w) = (v × u)⊗w , for any vectors u and w.
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2 Nonlinear equations of 6-parameter elastic shells

In this section we present briefly the nonlinear governing equations of gen-
eral 6-parameter shells. Let Sc be the deformed (current) configuration of
the shell and let Sξ be its reference configuration. We designate by ωξ the
midsurface of the reference configuration and by y0(x1, x2) the position vec-
tor of the points on ωξ . The map y0 : ω ⊂ IR2 → ωξ ⊂ IR3 is a parametric
representation of the midsurface and the curvilinear coordinates (x1, x2) are
assumed to be convected coordinates on the surface ωξ .

We present first some preliminaries concerning the differential geometry
of the midsurface ωξ . Let aα be the covariant base vectors and aα the
contravariant base vectors in the tangent plane, which are given by

aα =
∂y0

∂xα
, aα · aβ = δαβ (α, β = 1, 2). (1)

We also introduce the vectors a3 = a3 = n0 which coincide to the unit
normal given by n0 = a1 × a2/‖a1 × a2‖. Let the tensor a be the first
fundamental tensor of the midsurface

a = Grads y0 = aα ⊗ aα = aαβa
α ⊗ aβ = aαβaα ⊗ aβ , (2)

and let a denote the determinant a = det(aαβ)2×2 > 0. Here, Grads is the
surface gradient operator defined by Grads f = f ,α⊗aα , for any f . We shall
also employ the surface divergence operator defined by DivsT = T,α a

α, for
any second order tensor T.

We refer the shell to a Cartesian coordinate frame Ox1x2x3 with or-
thonormal base vectors {e1, e2, e3}. The reference configuration is charac-
terized by the position vector y0 and the initial microrotation tensor Q0 as
follows

y0 : ω ⊂ IR2 → ωξ ⊂ IR3, y0 = y0(x1, x2),

Q0 : ω ⊂ IR2 → SO(3), Q0 = d0
i (x1, x2)⊗ ei .

(3)

The domain ω is assumed to be a bounded open connected domain with
Lipschitz boundary ∂ω in the plane Ox1x2 . The vectors {d0

1,d
0
2,d

0
3} des-

ignate the reference directors, which are orthonormal. In our model, the
third director d0

3 is chosen to coincide with the unit normal in the reference
configuration, i.e. d0

3 = n0 . The deformation of the shell is characterized
by two fields: the deformation function m and the microrotation tensor Qe

m : ω → ωc , m = m(x1, x2),

Qe : ω → SO(3), Qe = Qe(x1, x2) = di ⊗ d0
i .

(4)
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We have denoted by ωc the deformed midsurface and by {d1,d2,d3} the
orthonormal triad of directors attached to the deformed configuration.

The nonlinear strain measures commonly used in the 6-parameter elastic
shell models (see, e.g., [7, 8, 10, 11, 18]) are the shell strain tensor

Ee = QT
e Gradsm− a (5)

and the shell bending-curvature tensor

Ke = axl(QT
eQe,α)⊗ aα. (6)

The local equilibrium equations in the nonlinear theory of 6-parameter
elastic shells have the following form (see, e.g., [10, 19])

DivsN + f = 0, DivsM + axl(NFT − FNT ) + l = 0, (7)

where N is the internal surface stress tensor and M the internal surface cou-
ple stress tensor (of the first Piola-Kirchhoff type). In equation (7), F rep-
resents the shell deformation gradient and is expressed by F = Gradsm =
m,α⊗aα. The vectors f and l are the external body forces and body cou-
ples, respectively. We consider the following boundary conditions of mixed
type prescribed on the boundary curve ∂ωξ [9, 11]

m = m∗, Qe = Q∗ along ∂ωd ,

Nν = N∗, Mν = M∗ along ∂ωf ,
(8)

where ∂ωd ∪ ∂ωf = ∂ωξ is a disjoint partition of the boundary curve ∂ωξ .
Here, N∗ and M∗ are, respectively, the external boundary force and couple
force vectors applied along the deformed boundary curve, but measured per
unit length of ∂ωf . The vector ν is the outer unit normal to the deformed
boundary curve, lying in the tangent plane of ωξ .

Under hyperelasticity assumptions, the stress and couple stress tensors
satisfy the following constitutive relations

QT
eN =

∂W
∂Ee

, QT
eM =

∂W
∂Ke

, (9)

where W is the areal strain energy density for 6-parameter shells, which is
given as a function of the strain measures in the form

W =W(Ee,Ke). (10)

In the next section, we shall linearize the equations presented above to
determine the governing equations of the linear theory of 6-parameter elastic
shells.
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3 Linearized equations for the equilibrium of
6-parameter shells

In the linear theory, we consider the displacement vector

u = m− y0 (11)

and we assume that the displacement is infinitesimal, i.e. u is of the order
O(ε), where ε is a small parameter such that all the terms of order O(ε2)
can be neglected.

For the microrotation tensor Qe ∈ SO(3) there exists a skew-symmetric
tensor W such that Qe = exp(W). Let us denote by w the axial vector
of the skew-symmetric tensor W , i.e. W = w × 13 , where 13 is the unit
tensor in the 3-space. The vector w is called the rotation vector and it is
assumed to be infinitesimal, i.e. w = O(ε). Then, neglecting the terms of
order O(ε2) we can write the microrotation tensor in the linear theory as
follows

Qe = exp(W) =
∞∑
k=0

1

k!
(W)k = 13 + W , (12)

i.e.

Qe = 13 + w × 13 . (13)

Let us write next the linearized strain measures. By linearizing the shell
strain tensor (5) we obtain

e =
[
QT
e Gradsm− a

]
lin

=
[
(13 −W)((u,α + aα)⊗ aα)− a

]
lin

=
[
u,α ⊗ aα −Wu,α ⊗ aα −Wa

]
lin

= u,α ⊗ aα −Wa ,
(14)

so the infinitesimal strain tensor e is given by

e = Gradsu−w × a = (u,α −w × aα)⊗ aα . (15)

To obtain the infinitesimal bending-curvature tensor k , we write first
the linearization of the skew-symmetric tensor QT

eQe,α as follows[
QT
eQe,α

]
lin

=
[
(13 −W)(13 + W),α

]
lin

=
[
W,α −WW,α

]
lin

=
[
w,α × 13 − (w × 13)(w,α × 13)

]
lin

=
[
w,α × 13 −w × (w,α × 13)

]
lin

= w,α × 13 ,

(16)
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so the linearization of axl(QT
eQe,α) is the vector w,α . Then, from (6) we

obtain the following expression of the infinitesimal bending-curvature tensor

k = w,α ⊗ aα = Gradsw . (17)

Remark 1 The expressions of the infinitesimal strain measures (15) and
(17) are in accordance with the strain and bending tensors presented in [12,
20]. The apparent difference between these expressions is due to the fact
that the authors in [12, 20] adopt another definition for the surface gradient
(namely, they consider the transpose of Grads defined above).

In what follows, we deduce the linearized equations of equilibrium from
the virtual power statement: Equilibrium states are assumed to satisfy the
relation

Ė = P , where E =

∫
ωξ

W(e,k) da , (18)

whereW(e,k) is the areal strain energy density (assumed to be quadratic), E
is the total strain energy and P is the virtual power of external loading given
by (26). Here, superposed dots represent variational derivatives. These are
induced by the derivatives with respect to the parameter ε , of the one-
parameter displacement and rotation fields u(xα; ε) and w(xα; ε) (evaluated
at ε = 0), where u(xα) = u(xα; 0) and w(xα) = w(xα; 0) are equilibrium
fields.

For linear elastic shells, the surface stress tensor N and the surface couple
stress tensor M are given by

N =
∂W
∂e

, M =
∂W
∂k

, so Ẇ(e,k) = N : ė + M : k̇ . (19)

In view of relations (15) and (17) we have

ė = Gradsu̇− ẇ × a and k̇ = Gradsẇ . (20)

Then, from (19) and (20) we have

Ẇ = N : (Gradsu̇− ẇ × a) + M : Gradsẇ . (21)

Further, we employ relations of the type

A : Gradsv = Divs(A
Tv)− v ·DivsA , (22)
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which holds for any second order tensor field A and vector field v. Indeed,
to prove the last relation we write

A : Gradsv + v ·DivsA = A : (v,α ⊗ aα) + v · (A,αa
α)

= tr[AT (v,α ⊗ aα)] + (AT
,αv) · aα = (ATv,α) · aα + (AT

,αv) · aα

= (ATv),α · aα = Divs(A
Tv),

so equation (22) holds true. For the term N : (ẇ×a) which appears in (21)
we make the following transformations

N : (ẇ × a) = N : [ẇ × (a + n0 ⊗ n0)] = N : (ẇ × 13)

= skew(N) : (ẇ × 13) = 2 axl(skewN) · axl(ẇ × 13)

= 2 ẇ · axl(skewN).

(23)

Here we have used that Nn0 = 0 (cf. (43)) and the relation

S : T = 2 axl(S) · axl(T),

which holds for any skew-symmetric tensors S,T. Using the relations (23)
and (22) into (21), we get

Ẇ = Divs(N
T u̇)− u̇ ·DivsN−2ẇ ·axl(skewN)+Divs(M

T ẇ)−ẇ ·DivsM.
(24)

If we integrate this relation over the surface ωξ and use the divergence the-
orem (see, e.g., [21, Ch. 2]), we obtain∫

ωξ

Ẇ da =

∫
∂ωξ

(u̇ ·Nν + ẇ ·Mν) dl

−
∫
ωξ

(
u̇ ·DivsN + ẇ · [DivsM + 2 axl(skewN)]

)
da .

(25)

According to the virtual power statement (18), we have to equate this with
the virtual power of external loads P, which is given by

P =

∫
ωξ

(f · u̇ + l · ẇ) da+

∫
∂ωξ

(t∗ · u̇ + c∗ · ẇ) dl . (26)

Here, f and l are densities of force and couple acting in the surface, while
t∗ and c∗ are densities of force and couple acting on the boundary curve.
Thus, we obtain the relation∫

∂ωξ

(u̇ ·Nν + ẇ ·Mν) dl −
∫
ωξ

(
u̇ ·DivsN + ẇ · [DivsM

+ 2 axl(skewN)]
)
da =

∫
ωξ

(f · u̇ + l · ẇ) da+

∫
∂ωξ

(t∗ · u̇ + c∗ · ẇ) dl,

(27)
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which must hold for any variations u̇ , ẇ. Applying the fundamental lemma,
we deduce the local form of the equilibrium equations for linear shells

DivsN + f = 0 and DivsM + 2 axl(skewN) + l = 0 , (28)

together with the natural boundary conditions

u = u∗, w = w∗ along ∂ωd ,

Nν = t∗, Mν = c∗ along ∂ωf .
(29)

Here, the portion ∂ωf is a subset of ∂ωξ where displacement and rotation
are not assigned. We assume displacement and rotation to be assigned on
the portion ∂ωd (hence, we have u̇ = 0, ẇ = 0 on ∂ωd).

Remark 2 Notice that the term 2 axl(skewN) from the equilibrium equa-
tions can be written in an alternative form using the vector invariant (also
called the Gibbsian cross) of the tensor N. For any second order tensor
T =

∑3
i=1 x(i) ⊗ y(i) , the vector invariant or Gibbsian cross is defined by

T× =
( 3∑
i=1

x(i) ⊗ y(i)

)
×

=
3∑
i=1

x(i) × y(i) . (30)

Then, the following relation holds

T× = −2 axl(skewT) . (31)

In particular, for rank-one tensors of the form T = x ⊗ y this equation
reduce to the well-known formula

x× y = axl(y ⊗ x− x⊗ y) .

In order to prove the relation (31), we consider a fixed orthonormal vector
basis {e1, e2, e3} and decompose any second order tensor as T = Tijei⊗ ej .
Then, using the formula axl(S) = −1

2 εijkSijek (where S = Sijei ⊗ ej is a
skew-symmetric tensor and εijk is the permutation tensor), we can write

−2 axl(skewT) = axl[(Tji − Tij)ei ⊗ ej ] = −1
2 εijk(Tji − Tij)ek

= Tijεijkek = Tijei × ej = (Tijei ⊗ ej)× = T× ,

so the relation (31) is proved. Hence, we can put the equilibrium equation
(28)2 in the form

DivsM−N× + l = 0 . (32)

This form is in accordance with the equilibrium equation presented in [8, 22,
23, 12], whereas the sign change is due to the transpose.
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Let us present next the geometrical equations (15) and (17) written with
the help of tensor components. Denote the components of the displacement
vector u, rotation vector w and strain measures e , k as follows

u = ui a
i, w = wi a

i, e = eiβ a
i ⊗ aβ, k = kiβ a

i ⊗ aβ. (33)

Using relations of the type (for any vector v = vi a
i )

v = (vα|β − v3bαβ)aα + (v3,β + vαb
α
β)n0

with vα|β = vα,β − Γλαβvλ ,
(34)

we obtain from the geometrical equations (15) and (17) the alternative forms

e = (uα|β − u3bαβ − w3εαβ)aα ⊗ aβ + (u3,β + uαb
α
β + wαa

αγεγβ)n0 ⊗ aβ,

k = (wα|β − w3bαβ)aα ⊗ aβ + (w3,β + wαb
α
β)n0 ⊗ aβ.

(35)
Here, εαβ is the two-dimensional permutation tensor given by

εαβ =
√
a εαβ , εαβ =

1√
a
εαβ , (36)

and εαβ is the two-dimensional alternator (ε12 = −ε21 = 1 , ε11 = ε22 = 0).
Thus, the components of the strain tensor e and bending-curvature ten-

sor k are given by the following geometrical equations

eαβ = uα|β − u3bαβ − w3εαβ , e3β = u3,β + uαb
α
β + wαa

αγεγβ ,

kαβ = wα|β − w3bαβ , k3β = w3,β + wαb
α
β .

(37)

In the linear theory, the areal strain energy densityW is assumed to be a
quadratic function of the strain measures e and k. We consider the general
(quadratic) form

W(e,k) =
1

2
e : A : e + e : C : k +

1

2
k : B : k , (38)

where A,B,C are the fourth order tensors of the elastic moduli, which in
the case of shells can depend on the curvature of the reference. In view of
(33)3,4 , we see that these tensors have the following structure

A = Aiαjβai ⊗ aα ⊗ aj ⊗ aβ , B = Biαjβai ⊗ aα ⊗ aj ⊗ aβ

C = Ciαjβai ⊗ aα ⊗ aj ⊗ aβ ,
(39)
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and satisfy the major symmetries

Aiαjβ = Ajβiα , Biαjβ = Bjβiα . (40)

Then, the strain energy density (38) can be written as

W(e,k) =
1

2
Aiαjβeiαejβ + Ciαjβeiαkjβ +

1

2
Biαjβkiαkjβ . (41)

Taking into account (19)1,2 and (38), we get the constitutive equations
in the linear theory

N =
∂W(e,k)

∂e
= A : e+C : k, M =

∂W(e,k)

∂k
= e : C+B : k. (42)

These relations can be written with the help of tensor components in the
form

N = N iαai ⊗ aα = (Aiαjβejβ + Ciαjβkjβ)ai ⊗ aα ,

M = M iαai ⊗ aα = (Ckγiαekγ +Biαjβkjβ)ai ⊗ aα .
(43)

In this paper, we assume that the strain energy density W(e,k) is coer-
cive, in the sense that there exists a positive constant C0 > 0 such that

W(e,k) ≥ C0( ‖e‖2 + ‖k‖2 ). (44)

To avoid constants and norms carrying units, we suppose that all quantities
and equations have been put in dimensionless form. The norm of any second
order tensor X is given by ‖X‖2 = tr(XTX).

Remark 3 We mention that the equilibrium equations (28) can also be ob-
tained by linearization of the nonlinear equations of equilibrium (7). To
show this, we have to prove that the tensor (NFT −FNT ) reduces upon lin-
earization to 2 skewN . In view of (11), we have F = Gradsu+a and using
(42)1 we get

NFT − FNT = N[(Gradsu)T + a]− (Gradsu + a)NT

= Na− aNT +O(ε2) = (N−NT ) +O(ε2) = 2 skewN +O(ε2).

Hence, it follows that[
axl(NFT − FNT )

]
lin

= 2 axl(skewN) . (45)
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Finally, let us write the equilibrium equations (28) using tensor compo-
nents. For any tensor of the form T = T iαai⊗aα we can express the surface
divergence as follows (see, e.g., [21, Ch. 2])

DivsT = (Tαβ |β − bαβT 3β)aα + (T 3β
|β + bαβT

αβ)n0 , where

Tαβ |γ = Tαβ,γ + ΓαγλT
λβ + ΓβγλT

αλ , T 3β
|γ = T 3β

,γ + ΓβγλT
3λ .

(46)

On the other hand, from the relation (31) we deduce

2 axl(skewN) = −N× = −(N iαai ⊗ aα)× = −N iαai × aα

= Nβαaα × aβ +N3αaα × n0 = εαβN
βαn0 + εβαN

3αaβ ,

so we have
2 axl(skewN) = aαβεβγN

3γaα + εαβN
βαn0 . (47)

Substituting (46)1 and (47) into (28), we obtain the equilibrium equations
written with tensor components:

Nαβ
|β − bαβN3β + fα = 0, N3β

|β + bαβN
αβ + f3 = 0,

Mαβ
|β − bαβM3β + aαβεβγN

3γ + lα = 0,

M3β
|β + bαβM

αβ − εαβNαβ + l3 = 0.

(48)

Notice that we can replace

aαβεβγ = εαβaβγ (49)

in the geometrical relations (37) and the equilibrium equations (48).

4 Existence and uniqueness of weak solutions

Let (u,w) be a classical solution of the boundary-value problem for linearly
elastic 6-parameter shells, which consists in the equilibrium equations (28),
the boundary conditions (29), the geometrical relations (15), (17), and the
constitutive equations (42).

In order to formulate the variational problem and to define the weak
solution, let us prove first the following relation∫

ωξ

(
N(u,w) : e(ũ, w̃) + M(u,w) : Gradsw̃

)
da

=

∫
ωξ

(f · ũ + l · w̃) da+

∫
∂ωξ

(
N(u,w)ν · ũ + M(u,w)ν · w̃

)
dl,

(50)
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where (ũ, w̃) is an arbitrary continuously differentiable displacement and
rotation field. The relation (50) expresses the principle of virtual work for
linear 6-parameter shells. To prove the equation (50), we use successively the
geometrical relation (15), the formulas (22), (23), the equilibrium equations
(28), and the divergence theorem to write∫
ωξ

(
N(u,w) : (Gradsũ− w̃ × a) + M(u,w) : Gradsw̃

)
da

=

∫
ωξ

[
Divs

(
NT (u,w)ũ

)
− ũ ·DivsN(u,w)− 2w̃ · axl

(
skewN(u,w)

)
+Divs

(
MT (u,w)w̃

)
− w̃ ·DivsM(u,w)

]
da

=

∫
ωξ

(f · ũ + l · w̃) da+

∫
∂ωξ

(
NT (u,w)ũ · ν + MT (u,w)w̃ · ν

)
dl,

so the relation (50) holds true. Next, using the constitutive equations (42)
we can put the relation (50) in the alternative form∫

ωξ

(
e(u,w) : A : e(ũ, w̃) + e(ũ, w̃) : C : Gradsw

+ e(u,w) : C : Gradsw̃ + Gradsw : B : Gradsw̃
)

da

=

∫
ωξ

(f · ũ + l · w̃) da+

∫
∂ωξ

(
N(u,w)ν · ũ + M(u,w)ν · w̃

)
dl.

(51)

For the sake of simplicity, we consider the equilibrium problem with ho-
mogeneous boundary conditions, i.e. the solution must satisfy the boundary
conditions

u = 0, w = 0 for (x1, x2) ∈ ∂ωu ,
Nν = 0, Mν = 0 for (x1, x2) ∈ ∂ωt ,

(52)

where ∂ωu ∪ ∂ωt = ∂ω is a disjoint partition (with length(∂ωu) > 0) of the
boundary curve of the parameter domain ω ⊂ IR2.

Let us introduce the functional framework for the weak formulation of
the problem. Consider the Banach spaces (L2(ω, IR3) × L2(ω, IR3), ‖ · ‖L2)
and (H1(ω, IR3)×H1(ω, IR3), ‖ · ‖H1) equiped with the usual norms

‖(u,w)‖2L2 =

∫
ω
(u · u + w ·w) dx1dx2 ,

‖(u,w)‖2H1 =

∫
ω
(u · u + w ·w + u,α · u,α + w,α ·w,α) dx1dx2 ,

(53)
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and define the admissible set V (ω) by

V (ω) =
{

(u,w) ∈ H1(ω, IR3)×H1(ω, IR3)
∣∣∣ u = 0,w = 0 on ∂ωu

}
. (54)

In view of (51) and (52) we deduce that any solution (u,w) satisfies∫
ω

(
e(u,w) : A : e(ũ, w̃) + e(ũ, w̃) : C : Gradsw

+ e(u,w) : C : Gradsw̃ + Gradsw : B : Gradsw̃
)√

a dx1dx2

=

∫
ω
(f · ũ + l · w̃)

√
adx1dx2 ,

(55)

for any admissible field (ũ, w̃) ∈ V (ω). We assume that the body forces are
such that

f , l ∈ L2(ω, IR3). (56)

Suggested by relation (55) we introduce the bilinear form B : V (ω)×V (ω)→
IR and the linear functional F : V (ω)→ IR given by

B((u,w), (ũ, w̃)) =

∫
ω

(
e(u,w) : A : e(ũ, w̃) + e(ũ, w̃) : C : Gradsw

+ e(u,w) : C : Gradsw̃ + Gradsw : B : Gradsw̃
)√

adx1dx2 ,

F (u,w) =

∫
ω
(f · u + l ·w)

√
a dx1dx2 .

(57)
Then, the displacement and rotation field (u,w) ∈ V (ω) is called a weak so-
lution of the equilibrium boundary-value problem with boundary conditions
(52), if (u,w) satisfies

B((u,w), (ũ, w̃)) = F (ũ, w̃) for any (ũ, w̃) ∈ V (ω). (58)

Let us state the general existence result for this variational problem.

Theorem 1 Assume that the reference midsurface of the shell satisfies the
regularity conditions

y0 ∈ H1(ω, IR3), aα = y0,α ∈ L∞(ω, IR3) (59)

and there exists a positive constant a0 such that

det (aαβ(x1, x2))2×2 ≥ a0 > 0 for any (x1, x2) ∈ ω. (60)
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Further, assume that the body forces f , l fulfill the conditions (56), and the
strain energy density W(e,k) is coercive, i.e. the inequality (44) holds.

Then, the equilibrium boundary-value problem for linearly elastic 6-para-
meter shells admits an unique weak solution (u,w) ∈ V (ω). This solution
can be characterized as the minimizer on the space V (ω) of the functional

J(u,w) =

∫
ω
W(e,k)

√
a dx1dx2 −

∫
ω
(f · u + l ·w)

√
adx1dx2 , (61)

where the tensors e and k are expressed in terms of (u,w) by the geometrical
relations (15), (17).

Proof. Taking into account the definitions (57) and the hypotheses, we see
that the bilinear form B(·, ·) is symmetric and continuous, while F (·) is
continuous. With a view toward applying the Lax-Milgram lemma for the
problem (58) we need to prove that B(·, ·) is also coercive on V (ω), i.e. there
exists a constant C1 > 0 such that

B((u,w), (u,w)) ≥ C1‖(u,w)‖2H1 for any (u,w) ∈ V (ω). (62)

Using the relations (38), (44) and (60), we deduce that

B((u,w), (u,w)) =

∫
ω

2W(e,k)
√
a dx1dx2

≥ C2

∫
ω
( ‖e‖2 + ‖k‖2 ) dx1dx2 ,

(63)

where C2 > 0 is some constant. Then, in order to prove (62) we still have
to show that the following inequality of Korn-type holds∫

ω
( ‖e‖2 + ‖k‖2 ) dx1dx2

≥ C3

∫
ω
(u · u + w ·w + u,α · u,α + w,α ·w,α) dx1dx2 ,

(64)

for some positive constant C3 . To prove this inequality, let us estimate
the norms ‖e‖ and ‖k‖ appearing in the left-hand side. By virtue of the
hypotheses (59) and (60), it follows that the matrix (aαβ)2×2 and its inverse

(aαβ)2×2 = (aαβ)−12×2 satisfy the relations

(aαβ) ∈ L∞(ω, IR2×2) and (aαβ) ∈ L∞(ω, IR2×2).

Then, the smallest eigenvalue (over ω) of the positive definite symmetric
matrix (aαβ(x1, x2))2×2 is greater than a positive constant λ0 > 0. Hence,

aαβ(x1, x2) vαvβ ≥ λ0 vγ vγ , ∀ (x1, x2) ∈ ω, ∀ v1, v2 ∈ IR. (65)
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By a straightforward argument we can extend this inequality for the case of
two arbitrary constant vectors v1 , v2 , i.e. it holds

aαβ(x1, x2)vα · vβ ≥ λ0 vγ · vγ , ∀ (x1, x2) ∈ ω, ∀v1,v2 ∈ IR3. (66)

Now, using the relation (66) we can write

‖e‖2 = tr
[(

(u,α −w × aα)⊗ aα
)(

aβ ⊗ (u,β −w × aβ)
)]

= aαβ(u,α −w × aα) · (u,β −w × aβ)

≥ λ0 (u,γ −w × aγ) · (u,γ −w × aγ)

= λ0 [u,γ · u,γ − 2u,γ · (w × aγ) + (w × aγ) · (w × aγ)].

(67)

For the scalar product u,γ · (w × aγ) we have the inequality

2u,γ · (w × aγ) ≤ εu,γ · u,γ +
1

ε
(w × aγ) · (w × aγ), (68)

which holds for any ε > 0. The choice of the constant ε will be made explicit
later in (77). Then, from (67) and (68) we obtain

‖e‖2 ≥ λ0
[
(1− ε)u,γ · u,γ +

(
1− 1

ε

)
(w × aγ) · (w × aγ)

]
. (69)

In the same way, we can estimate

‖k‖2 = tr
[(
w,α ⊗ aα

)(
aβ ⊗w,β

)]
= aαβ w,α ·w,β ≥ λ0w,γ ·w,γ . (70)

Since w ∈ H1(ω, IR3) and w = 0 on the boundary portion ∂ωu , we
deduce from the Poincaré inequality that∫

ω
w,γ ·w,γ dx1dx2 ≥ cp

∫
ω
w ·w dx1dx2 = cp ‖w‖2L2 , (71)

for some positive constant cp > 0. On the other side, using the Lagrange
identity for vector products, we can write

(w×aγ)·(w×aγ) = (w·w)(aγ ·aγ)−(aγ ·w)(aγ ·w) ≤ (aγ ·aγ) ‖w‖2. (72)

In view of the assumption aα ∈ L∞(ω, IR3) we infer the existence of a
positive constant M such that

aγ · aγ ≤ M , for any (x1, x2) ∈ ω. (73)
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From the inequalities (72) and (73) we get

(w × aγ) · (w × aγ) ≤ M ‖w‖2 . (74)

Then, making use of (71) and (74) we derive that∫
ω
w,γ ·w,γ dx1dx2 ≥

cp
M

∫
ω
(w × aγ) · (w × aγ) dx1dx2 . (75)

By virtue of the inequalities (69), (70) and (75), we can estimate the sum
‖e‖2 + ‖k‖2 as follows∫

ω
( ‖e‖2 + ‖k‖2 ) dx1dx2 ≥

∫
ω
λ0
[
(1− ε)u,γ · u,γ

+
(
1− 1

ε

)
(w × aγ) · (w × aγ) +

(1

2
+

1

2

)
w,γ ·w,γ

]
dx1dx2

≥ λ0

∫
ω

[
(1− ε)u,γ · u,γ +

(
1− 1

ε
+

cp
2M

)
(w × aγ) · (w × aγ)

+
1

2
w,γ ·w,γ

]
dx1dx2 .

(76)

Now, we can choose the scalar ε > 0 such that all the coefficients in (76) be
positive, i.e.

1− ε > 0 and 1− 1

ε
+

cp
2M

> 0,

which means (
1 +

cp
2M

)−1
< ε < 1. (77)

Hence, from (76) we deduce that there exists a constant c1 > 0 such that∫
ω
( ‖e‖2 + ‖k‖2 ) dx1dx2 ≥ c1

∫
ω

(u,γ · u,γ + w,γ ·w,γ) dx1dx2 . (78)

Finally, on the basis of the Poincaré inequality, we have∫
ω
(u,γ · u,γ + w,γ ·w,γ) dx1dx2

≥ c2

∫
ω
(u · u + w ·w + u,γ · u,γ + w,γ ·w,γ) dx1dx2 ,

(79)

for some positive constant c2 . Using the inequalities (78) and (79) we derive
that ∫

ω
( ‖e‖2 + ‖k‖2 ) dx1dx2 ≥ C3‖(u,w)‖2H1 , (80)
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for some positive constant C3 , which means that the Korn-type inequality
(64) holds true.

From the relations (63) and (80) we obtain that the bilinear form B(·, ·)
is also coercive on V (ω), i.e. the inequality (62) holds. Thus, all the hy-
potheses of the Lax-Milgram lemma are fulfilled (see, e.g. [24, Corollary
V.8]). Applying the Lax-Milgram lemma for the variational problem (58)
we deduce the existence and uniqueness of the weak solution (u,w) ∈ V (ω).

Let us justify that the solution (u,w) minimizes the functional (61) on
V (ω). In view of (63), the functional (61) can be rewriten in the form

J(u,w) =
1

2
B((u,w), (u,w))− F (u,w). (81)

Then, we obtain the relation

J(ũ, w̃) =
1

2
B((ũ−u, w̃−w), (ũ−u, w̃−w)) + J(u,w) ≥ J(u,w), (82)

which holds for any displacement and rotation field (ũ, w̃) ∈ V (ω). Indeed,
using the equation (58) we deduce immediately

1
2 B((ũ− u, w̃ −w), (ũ− u, w̃ −w)) + J(u,w) = 1

2 B((ũ, w̃), (ũ, w̃))

−B((u,w), (ũ, w̃)) + 1
2B((u,w), (u,w)) + 1

2B((u,w), (u,w))− F (u,w)

= 1
2 B((ũ, w̃), (ũ, w̃))− F (ũ, w̃) = J(ũ, w̃).

Hence, the inequality (82) holds, which shows that the weak solution (u,w)
is the unique minimizer of the functional over V (ω). The proof is complete.

In the next section, we apply this general existence theorem to the special
case of isotropic Cosserat 6-parameter shells.

5 Applications to isotropic linear Cosserat shells

In order to use the 6-parameter shell model in practice, one needs to know
the specific expression of the strain energy densityW(e,k) of the form (38).

In this section, we present three different specific isotropic shell models
which are available in the literature and investigate whether the existence
result stated by Theorem 1 is applicable for these models.
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5.1 Classical linear model for 6-parameter shells

In [10, 12, 20] the following quadratic strain energy density for 6-parameter
shells made of a Cauchy continuum is considered

2 Ŵ(e,k) = α1[tr(ae)]2 + α2tr[(ae)2] + α3‖ae‖2 + α4‖n0e‖2

+β1[tr(ak)]2 + β2tr[(ak)2] + β3‖ak‖2 + β4‖n0k‖2,
(83)

where ae = eαβ a
α⊗aβ, n0e = e3β a

β, ak = kαβ a
α⊗aβ, and n0k = k3β a

β.
In the above relation, αk and βk (k = 1, 2, 3, 4) are constant constitutive
coefficients (elastic moduli). In view of the relation tr(X2) = ‖sym(X)‖2 −
‖skew(X)‖2, we can put (83) in the equivalent form

2 Ŵ(e,k) = (α2 + α3)‖sym(ae)‖2 + (α3 − α2)‖skew(ae)‖2

+α1[tr(ae)]2 + α4‖n0e‖2 + (β2 + β3)‖sym(ae)‖2

+(β3 − β2)‖skew(ae)‖2 + β1[tr(ae)]2 + β4‖n0e‖2.

(84)

It was shown that this strain energy function satisfies the coercivity condi-
tion (44) provided that the elastic moduli verify the inequalities

2α1 + α2 + α3 > 0, α2 + α3 > 0, α3 − α2 > 0, α4 > 0,
2β1 + β2 + β3 > 0, β2 + β3 > 0, β3 − β2 > 0, β4 > 0.

(85)

Under these conditions, we can apply the Theorem 1 and obtain the following
result concerning existence and uniqueness of weak solutions.

Corollary 1 Assume that the hypotheses (56), (59), (60) of Theorem 1 are
satisfied. Consider that the strain energy density is a quadratic function
of the form (83) (or equivalently (84)) and the elastic moduli satisfy the
inequalities (85).

Then, the variational problem (58) associated to the equilibrium of lin-
early elastic 6-parameter shells admits an unique solution (u,w) in the ad-
missible set V (ω). This solution (u,w) is the minimizer on the space V (ω)
of the functional

Ĵ(u,w) =

∫
ω
Ŵ(e,k)

√
a dx1dx2 −

∫
ω
(f · u + l ·w)

√
adx1dx2 . (86)

Remark 4 Using a different functional framework and another method,
Eremeyev and Lebedev have proved previously in [12] the existence and unique-
ness of weak solutions in the energy space associated to linear 6-parameter
shells.
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5.2 Linear Cosserat shell model of order h3

Starting from an isotropic three-dimensional Cosserat parent model and
using a method suggested by the classical shell theory [21], we have derived
in [19] a 6-parameter Cosserat shell model of order O(h3).

In order to present the linearized version of this Cosserat shell model we
denote by b the second fundamental tensor given by

b = −Grads n0 = −n0,α ⊗ aα = bαβ a
α ⊗ aβ = bαβ aα ⊗ aβ. (87)

We also introduce the so-called alternator tensor c of the midsurface ωξ by
the relation

c = εαβ aα ⊗ aβ = εαβ a
α ⊗ aβ , (88)

where εαβ and εαβ are defined in (36). Let H = 1
2trb = 1

2b
α
α be the mean

curvature and K = detb = det(bαβ)2×2 be the Gauß curvature of the surface
ωξ . In view of the relation b(2Ha− b) = Ka , we introduce the tensor

b∗ = 2Ha− b, (89)

which can be regarded as the cofactor of b in the tangent plane. We also
denote by κ1 , κ2 the principal curvatures of the reference midsurface and
we assume as usual that |καh| < 1 (α = 1, 2), where h is the thickness of the
shell. Let κ be the maximum of the absolute value of principal curvatures
|κα| on the midsurface ωξ , i.e. κ = max

ωξ

{|κ1| , |κ2|} .

The explicit form of the areal strain energy density of order h3 has been
obtained in [19] as a quadratic function of the strain measures, in which
the coefficients are expressed in terms of the three-dimensional material
constants and depend also on the curvature of the reference midsurface.
This explicit form for linear shells is (cf. [19, f. (68)])

W(3)(e,k) =
(
h−K h3

12

)[
WCoss(e) +Wcurv(k)

]
+
h3

12

[
WCoss(eb + ck)− 2WCoss(e, ckb

∗) +Wcurv(kb)
]
.

(90)

Here, the bilinear form WCoss(· , ·) and the quadratic form WCoss(·) are de-
fined for any tensors X = Xiαa

i ⊗ aα, Y = Yiαa
i ⊗ aα by

WCoss(X,Y) = µ sym(aX) : sym(aY) + µc skew(aX) : skew(aY)

+
λµ

λ+ 2µ
tr(aX) tr(aY) +

2µµc
µ+ µc

(n0X) · (n0Y),
(91)
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and, respectively,

WCoss(X) = µ ‖sym(aX)‖2 + µc‖skew(aX)‖2 +
λµ

λ+ 2µ
[tr(aX)]2

+
2µµc
µ+ µc

‖n0X‖2,
(92)

where λ, µ and µc represent the Lamé constants and the Cosserat cou-
ple modulus of the three-dimensional isotropic Cosserat material. Also the
quadratic form Wcurv(·) is defined by

Wcurv(X) = µL2
c

[
b1 ‖ symX‖2 + b2 ‖ skewX‖2 + (b3−

b1
3

)(trX)2
]
, (93)

where the coefficients b1 , b2 , b3 are dimensionless constitutive coefficients
and the parameter Lc > 0 introduces an internal length (characteristic for
the Cosserat material, see details in [13, 14]).

For this linear Cosserat shell model, we state the following result con-
cerning existence and uniqueness of weak solutions.

Corollary 2 Assume that the reference midsurface satisfies the regularity
y0 ∈ H2(ω, IR3), together with the conditions (59)2 and (60), while the body
forces verify the requirements (56). Further, assume that the constitutive
coefficients fulfill the inequalities

µ > 0, 3λ+ 2µ > 0, µc > 0, bi > 0, (94)

and the product κh satisfies the following condition

κh < min

{
1

2
,

(
47

32
· min{λ+2µ , 3λ+2µ}

λ+ µ

)1/2

,

(
47

8
· min{µ, µc}

µ+ µc

)1/2
}
.

(95)
Then, the equilibrium boundary-value problem for linear Cosserat 6-parame-
ter shells (with strain energy density W(3) given by (90)) admits an unique
weak solution (u,w) ∈ V (ω). The weak solution (u,w) is the minimizer on
the space V (ω) of the functional

J (3)(u,w) =

∫
ω
W(3)(e,k)

√
a dx1dx2 −

∫
ω
(f · u + l ·w)

√
adx1dx2 . (96)

Proof. In view of y0 ∈ H2(ω, IR3) and the definition (87), we see that
the tensor b is of class L2(ω). In a recent paper, we have proved that the
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strain energy density W(3) is coercive provided that the conditions (94) and
(95) are satisfied (see [25, Th. 1]). Hence, it holds

W(3)(e,k) ≥ C0( ‖e‖2 + ‖k‖2 ) (97)

and from Theorem 1 we deduce the existence and uniqueness of the weak
solution, as well as the minimization property.

Remark 5 The statement of Corollary 2 remains valid if we replace the
condition (95) with the alternative condition

κh < min

{√
12 min{λ+2µ , 3λ+2µ}

8(λ+µ) + min{λ+2µ , 3λ+2µ}
,

√
12 min{µ, µc}

2(µ+µc) + min{µ, µc}

}
.

(98)
Indeed, according to the result in [25, Th. 1] the conditions (94) and (98)
insure the coercivity of the strain energy densityW(3), so we can apply again
the general Theorem 1 established in the previous section to prove the exis-
tence and uniqueness of weak solutions.

Remark 6 The existence of weak solutions for a related linear Cosserat
shell model of order O(h3) has been established previously in [17]. Notice that
Corollary 2 is an improvement of the existence theorem presented in [17],
in the sense that the hypotheses on the coefficients (94) are less restrictive
and the conditions (95) have been optimized.

5.3 Higher order Cosserat shell model

In [18] we have derived a refined Cosserat shell model of order O(h5) by
a dimensional descent from the three-dimensional nonlinear Cosserat elas-
ticity. This 6-parameter model is able to describe isotropic shells made of
Cosserat materials.

In what follows we consider the corresponding linearized 6-parameter
shell model of order O(h5) and establish the existence of weak solutions.
The quadratic strain energy density derived in [18, f. (119)] has the form

W(5)(e,k) =
(
h−Kh3

12

)[
WCoss(e) +Wcurv(k)

]
− h3

6
WCoss(e, ckb

∗)

+
(h3

12
−K h5

80

)[
WCoss(eb + ck) +Wcurv(kb)

]
+
h5

80

[
WCoss((eb + ck)b) +Wcurv(kb2)

]
.

(99)
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Under certain conditions on the constitutive coefficients, the coercivity of
this strain energy function has been proved in [25, Theorem 3]. Then, we
can formulate the following existence and uniqueness result.

Corollary 3 Assume that the reference midsurface fulfill the regularity y0 ∈
H2(ω, IR3), together with the conditions (59)2 and (60), while the body forces
verify the requirements (56). Further, assume that κh < 1

2 and the consti-
tutive coefficients satisfy the inequalities (94).

Then, the equilibrium boundary-value problem for linear Cosserat 6-
parameter shells (with higher-order strain energy densityW(5) given by (99))
admits an unique weak solution (u,w) in the admissible space V (ω). This
weak solution is the minimizer on the space V (ω) of the functional

J (5)(u,w) =

∫
ω
W(5)(e,k)

√
a dx1dx2 −

∫
ω
(f · u + l ·w)

√
a dx1dx2 . (100)

Proof. Since the constitutive coefficients verify the conditions (94) and
κh < 1

2 we can use the Theorem 3 in [25], which affirms that the areal strain

energy density W(5) is coercive. Therefore, all the hypotheses of Theorem
1 are satisfied. According to the statement of Theorem 1, the variational
problem (58) admits an unique solution (u,w) ∈ V (ω), which is also the
minimizer of the functional (100). This completes the proof.

Remark 7 The first Cosserat 6-parameter shell model of order O(h5) has
been established in [13, 14]. For this related Cosserat shell model, the exis-
tence of weak solutions in the linearized theory has been proved similarly in
[16, 17]. A detailed comparison between the two 6-parameter Cosserat shell
models of order O(h5) has been presented in [18, Sect. 5.3].

In conclusion, we have shown in this section that the general existence
result Theorem 1 established in Section 4 is applicable for the mathemati-
cal study of various 6-parameter models existing in the literature on linear
elastic shells.
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