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Abstract

This paper continues a series of studies providing stability crite-
ria for quasigeostrophic forced zonal flows in in the presence of lateral
diffusion and bottom dissipation of the vertical vorticity. We study
the Lyapunov stability of a stationary and longitude independent ba-
sic flow, obtaining linear and nonlinear stability criteria expressed in
terms of the maximum shear of the basic flow and/or its meridional
derivative, extending some previous results.
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1 Introduction

In dynamic meteorology the large-scale atmospheric motions are character-
ized by many parameters presenting large spatial variations in the vertical
direction. For this reason, we limit our considerations to only a part of
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the turbulent scale, the synoptic-scale, of interest in short-range weather
forecasting, and to a well determined spatial region, taking the rest of the
atmosphere into account by means of initial and boundary conditions.

Consequently, we adopt the quasigeostrophic approximation at the sy-
noptic-scale [1]-[5].

The main parameters governing the flow are the Reynolds number re-
lated to the lateral dissipation and the parameter r related to the bottom
dissipation. The longitude-independent forcing term F includes the wind
stress curl.

We consider flows ideally placed between rigid walls of a constant lat-
itude which isolate the region, i.e. ”channelled flows”, of interest from a
geophysical point of view, as, in a rotating planet, they maintain themselves
without any external forcing.

They are the simplest flow configuration in the presence of longitude-
independent force.

Non steady basic flows Ψ0(y, t), in presence of non stationary forcing,
were studied, for barotropic flows, by Kuo [1] [2], Haidvogel and Holland [7],
Wolanski [8] and Crisciani and Mosetti [9].

Two dimensional basic flow Ψ0(x, y, t), suitable for baroclinic instability
studies in channel geometry (e.g. for Antarctic flows) or in rectangular closed
basins (e.g. for Northern Hemisphere flows ) were studied, for various types
of basin geometries, by Stommel [10], Munk [11], Mc Williams and Chow
[12], Le Provost and Verron [13], Crisciani [14], and Crisciani and Mosetti
[15]- [17]. The linear as well as the non linear cases were considered.

In this paper we study the Lyapunov stability of the stationary and
longitude independent basic flow Ψ0(y), corresponding to the forcing F (y).
In Section 2 we present the mathematical model (equation and boundary
conditions) governing the perturbation.

In Section 3, after introducing a suitable Lyapunov function, we formu-
late the nonlinear stability problem.

In Section 4 we derive some linear and nonlinear stability criteria in
terms of the maximum of local vorticity or its meridional derivative.

In Section 5 the obtained criteria are discussed in physical terms. The
stability domains are enlarged with respect to some stability criteria found
in literature [15]- [17], [21], [22].
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2 Mathematical model:basic state and perturba-
tions

In the quasigeostrophic approximation the mathematical problem governing
the stability of zonal flows, for a barotropic flows with longitude independent
forcing, leads the following vorticity balance [1]-[5] :

∂∆Ψ

∂t
+ J (Ψ,∆Ψ + βy) = F (y, t)− r∆Ψ +A∆∆Ψ. (1)

where Ψ is the stream function (y being latitude and x longitude), ∆Ψ is the
vertical vorticity, i.e. the vertical component of the curl of the geostrophic
current, β is the planetary vorticity gradient due to latitudinal variation of
the Coriolis parameter, F is a forcing term, −r∆Ψ is the bottom dissipation
term and A∆∆Ψ is related to lateral vorticity diffusion [4],[5].

In the following both the constants A and r will be assumed to be greater
than zero.

To the balance equation (1) we add the boundary conditions on Ψ:

Ψx = 0 y = y1 y = y2 (2)

∆Ψ = 0 y = y1 y = y2 (3)

where (2) is the condition of zero mass flux across the wall latitude, and (3)
represents the zero lateral vorticity diffusion. The subscript indicates the
differentiation.

If we specify the forcing term F (y), the problem (1)-(2)-(3) has the
zonal solution Ψ0(y) [8]. The basic flow, characterized by the local vorticity
∆Ψ0 = q0, is the unique solution of the two-point problem

q0(y1) = q0(y2) = 0

for the ordinary differential equation

Aq0yy − rq0 + F (y) = 0.

Therefore the perturbation φ(x, y, t) = Ψ − Ψ0, induced by the pertur-
bation of the initial condition , satisfies the following equation [8] :

∆φt + Φx∆φy − Φy∆φx + Ψ0x∆φy −Ψ0y∆φx + (∆Ψ0y + β)φx − Φy∆Ψ0x+
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r∆φ−A∆∆φ = 0, (4)

the boundary conditions

φx = 0, ∆φ = 0 at y = y1 and y = y2, (5)

on the rigid walls at constant latitude, and some initial conditions φ = φ0

for t = 0 .

3 Stability problem

Let us introduce the Lyapunov function

K(t) =
1

2

∫
Ω

(∆φ)2dΩ. (6)

where Ω is a closed basin we specify later.

The Lyapunov function K(t) can be written also as

K(t) =
1

2

∫
Ω

(vx − uy)2dΩ, (7)

where (u, v) are the horizontal components of the velocity field v , namely
the ratio of the vertical velocity to the horizontal velocity, at the synoptic
scale, is of the order 10−3, [4], [5], and the geostrophic vorticity ζg ≡ (vx−uy)
can be expressed as ζg ≡ vx − uy = ∆Φ.

This equation can be solved to determine ζg from a field Φ and, alterna-
tively, to determine Φ from ζg. This invertibility allows us to choice, from a
physical point of view [5], the Lyapunov function ( 6).

From now on we shall assume that the closed basin Ω is a periodicity

cell [23], Ω = V × [0, L], where L = y2 − y1, V =
[
0, 2π

kx

]
and kx is the wave

number.

The basic flow Ψ0 is asimptotically stable if it is stable and limt→∞K(t) =
0.

In order to deduce criteria for asymptotic stability, we need inequalities of
the form

dK

dt
+ aK ≤ 0, (8)

where a > 0 is a constant. For stability criteria it is enough that:

dK(t)

dt
≤ 0. (9)
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Multiplying the equation (4) by ∆Φ and integrating over Ω we obtain:

dK(t)

dt
= (10)

−
∫

Ω
Φx∆Φ∆Ψ0ydΩ +

∫
Ω

Φy∆Φ∆Ψ0xdΩ− r
∫

Ω
(∆Φ)2dΩ−A

∫
Ω

(∇∆Φ)2dΩ.

In the energy relation (10) all nonlinear terms disappear, namely∫
Ω

Φx∆Φ∆ΦydΩ−
∫

Ω
Φy∆Φ∆ΦxdΩ =

∫
Ω
∇Φ · ∇ ×

((∆Φ)2

2
k
)
dΩ = (11)

−
∫

Ω
∇ ·

[
∇Φ×

((∆Φ)2

2
k
]
dΩ +

∫
Ω

(∆Φ)2

2
k · ∇ ×∇ΦdΩ =

−
∫
∂Ω
∇Φ×

((∆Φ)2

2
k
)
· nedΣ = 0,

with ne external normal to the boundary ∂Ω.
In a similar way we obtain:∫

Ω
Ψ0x∆Φ∆ΦydΩ−

∫
Ω

Ψ0y∆Φ∆ΦxdΩ = 0,

∫
Ω

Φx∆ΦdΩ = 0. (12)

If we assume the local vorticity ∆Ψ0 = ∆Ψ0(y), from the energy relation
(10) we have:

dK(t)

dt
= −

∫
Ω

Φx∆Φ∆Ψ0ydΩ− r
∫

Ω
(∆Φ)2dΩ−A

∫
Ω

(∇∆Φ)2dΩ. (13)

From the boundary conditions (5) it follows:∫
Ω

Φx∆Φ∆Ψ0ydΩ =

∫
Ω

Φx(Φxx + Φyy)∆Ψ0ydΩ =

∫
Ω

(
∆Ψ0yΦ

2
x

2
)xdΩ+

∫
Ω

ΦxΦyy∆Ψ0ydΩ =

∫
Ω
∇ · (∆Ψ0yΦ

2
x

2
i)dΩ +

∫
Ω

ΦxΦyy∆Ψ0ydΩ =

∫
∂Ω

∆Ψ0yΦ
2
x

2
i · nedσ +

∫
Ω

ΦxΦyy∆Ψ0ydΩ =

∫
Ω

ΦxΦyy∆Ψ0ydΩ, (14)

with i unit vector in x-direction. The energy relation (13) becomes:

dK(t)

dt
= −

∫
Ω

ΦxΦyy∆Ψ0ydΩ− r
∫

Ω
(∆Φ)2dΩ−A

∫
Ω

(∇∆Φ)2dΩ. (15)

We observe that the energy relation (15) is a starting point to study linear
Lyapunov stability too, because all nonlinear terms vanish.
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4 Energy inequality and stability criteria

In this section we shall derive some stability criteria in terms of the maximum
of the local vorticity µ2 and of its meridional derivative µ3

µ2 = maxy∈[0,1]|q0| µ3 = maxy∈[0,1]|q0y|

In order to derive stability criteria in terms of µ3 we evaluate the first
term on the right hand side of ( 13) taking into account the Schwarz and
Hölder generalized inequalities [18], [19].

−
∫

Ω
ΦxΦyy∆Ψ0ydΩ ≤ µ3

∫
Ω
|Φx||Φyy|dΩ ≤ µ2

3

2ε

∫
Ω

Φ2
xdΩ+

ε

2

∫
Ω

Φ2
yydΩ (16)

where ε > 0.
From the boundary conditions (3) it follows [19],[20] and [22]∫

Ω
Φ2
xdΩ ≤ 1

α

∫
Ω
∇2ΦxdΩ, (17)

where
1

α
=
L2

π2
. (18)

It is also easily to show [18], taking into account the boundary conditions
(3), that ∫

Ω
∇2ΦxdΩ ≤

∫
Ω

(∆Φ)2dΩ. (19)

Substituting (17) in ( 16),using (19) and differentiating with respect to ε, it
follows

−
∫

Ω
ΦxΦyy∆Ψ0ydΩ ≤ µ3

2
√
α

∫
Ω

(∆Φ)2dΩ, (20)

with ε =
µ3√
α
.

From the energy relation (15) we obtain the inequality:

dK(t)

dt
≤
( µ3

2
√
α
− r −Aα

) ∫
Ω

(∆Φ)2dΩ, (21)

since, due to the boundary conditions (3), it follows [22]∫
Ω

(∆Φ)2dΩ ≤ 1

α

∫
Ω

(∇∆Φ)2dΩ. (22)

We observe that, taking into account (22), the energy inequality can be
written equivalently as:
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dK(t)

dt
≤
( µ3

2
√
α
− r −Aα

)
2K(t). (23)

The inequality
µ3

2
√
α
− r −Aα < 0 (24)

is a sufficient conditions of nonlinear global asymptotical Lyapunov stability
of the basic motion. We proved the following

Theorem 1 The basic motion q0 is linearly and nonlinearly globally asymp-
totically stable if:

µ3 < 2(r +Aα)
√
α. (25)

Let us reconsider, in order to derive stability criteria in terms of µ2, the first
term on the right-hand side of ( 15),∫

Ω
ΦxΦyy∆Ψ0ydΩ = −

∫
Ω

(ΦxΦyyy + ΦxyΦyy)∆Ψ0dΩ ≤

µ2
2

2ε1

∫
Ω

Φ2
xydΩ +

ε1
2

∫
Ω

Φ2
yydΩ +

µ2
2

2ε2

∫
Ω

Φ2
xdΩ +

ε2
2

∫
Ω

Φ2
yyydΩ. (26)

Taking into account (17) we have:∫
Ω

ΦxΦyy∆Ψ0ydΩ ≤

( µ2
2

2ε1
+

µ2
2

2ε2α

) ∫
Ω

Φ2
xydΩ +

ε2
2

∫
Ω

Φ2
yyydΩ +

ε1
2

∫
Ω

Φ2
yydΩ +

µ2
2

2ε2α

∫
Ω

Φ2
xxdΩ.

(27)
From the boundary conditions (3) it follows that∫

Ω
(∇∆Φ)2dΩ =

∫
Ω

(∇Φxx)2∆dΩ + 2

∫
Ω

(∇Φxy)
2dΩ +

∫
Ω

(∇Φyy)
2dΩ. (28)

Since ∫
Ω

ΦxydΩ = 0 and Φxyy = 0, on y = y1, y = y2,

it follows that ∫
Ω

(Φxy)
2dΩ ≤ c1

∫
Ω

(∇Φxy)
2dΩ, (29)

where c1 = max{L
2

π2
, k−2
x } [22].
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From the boundary conditions (3) follows the Poincaré inequality:∫
Ω

(Φxx)2dΩ ≤ 1

α

∫
Ω

(∇Φxx)2dΩ. (30)

The energy relation (15), using (27) and (28), becomes:

dK(t)

dt
≤
( µ2

2

2ε1
+

µ2
2

2ε2α
−2r

) ∫
Ω

Φ2
xydΩ+

ε2
2

∫
Ω

Φ2
yyydΩ+

(ε1
2
−r
) ∫

Ω
Φ2
yydΩ+

(31)( µ2
2

2ε2α
−r
) ∫

Ω
Φ2
xxdΩ−A

( ∫
Ω

(∇Φxx)2∆dΩ+2

∫
Ω

(∇Φxy)
2dΩ+

∫
Ω

(∇Φyy)
2dΩ

)
.

Using (29) and (30) from (31) it follows:

dK(t)

dt
≤
( µ2

2

2ε1
+

µ2
2

2ε2α
− 2r − 2A

c1

) ∫
Ω

Φ2
xydΩ +

(ε1
2
− r

) ∫
Ω

Φ2
yydΩ+ (32)

(ε2
2
−A

) ∫
Ω
∇2ΦyydΩ +

( µ2
2

2ε2α
− r −Aα

) ∫
Ω

Φ2
xxdΩ.

If ε1 satisfies the inequality
ε1
2
− r ≤ 0, from (32) we consider the following

term: (ε1
2
− r

) ∫
Ω

Φ2
yydΩ +

(ε2
2
−A

) ∫
Ω
∇2ΦyydΩ, (33)

to determine ε1, and ε2 such that(ε1
2
− r

) ∫
Ω

Φ2
yydΩ +

(ε2
2
−A

) ∫
Ω
∇2ΦyydΩ ≤ 0,

or ∫
Ω
∇2ΦyydΩ ≤ 2r − ε1

ε2 − 2A

∫
Ω

Φ2
yydΩ, (34)

if ε2/2−A > 0.

Considering the Poincaré inequality∫
Ω

(Φyy)
2dΩ ≤ 1

α

∫
Ω

(∇Φyy)
2dΩ, (35)

from (34) and 35) we obtain∫
Ω
∇2ΦyydΩ ≤ 2r − ε1

(ε2 − 2A)α

∫
Ω
∇2ΦyydΩ, (36)
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it follows
2r − ε1
ε2 − 2A

= α. (37)

The energy inequality (32), if ε1 and ε2 satisfy (37), becomes:

dK(t)

dt
≤
( µ2

2

2ε1
+

µ2
2

2ε2α
− 2r − 2A

c1

) ∫
Ω

Φ2
xydΩ +

( µ2
2

2ε2α
− r −Aα

) ∫
Ω

Φ2
xxdΩ.

(38)
The inequalities

µ2
2

2ε1
+

µ2
2

2ε2α
− 2r − 2A

c1
< 0

µ2
2

2ε2α
− r −Aα < 0, (39)

with ε1, ε2 satisfing (37), imply linear and nonlinear global stability of the
basic motion.

Deriving ε1 from (37), i.e. ε1 = 2(r + Aα) − αε2 and substituting in in
(39), if 2(r +Aα)− αε2 > 0 we have:

µ2
2 < 2ε2α(r +Aα) µ2

2 < 2(r +Ac−1
1 )
(
2ε2α−

(αε2)2

r +Aα

)
. (40)

To enlarge the stability domain we differentiate the function on right
hand side of (40)2 respect to αε2 obtaining αε2 = r+Aα, and, substituting
in (37), ε1 = r + Aα. We observe that the inequalities ε2/2 − A > 0 and
ε1/2− r < 0 become

2Aα < r +Aα < 2r,

or:

Aα < r. (41)

The inequality (41) is satisfied in physical terms, as we shall see in the
next Section. From the inequalities (40), substituting ε1 = r + Aα = αε2,
we obtain:

µ2
2 < 2(r +Aα)2 µ2

2 < 2(r +Ac−1
1 )(r +Aα). (42)

We proved the following

Theorem 2 The basic motion q0 is linearly and nonlinearly globally stable
if:

µ2 < min

{
(r +Aα)

√
2,
√

2(r +Aα)(r +Ac−1
1 )

}
. (43)
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5 Discussion and Concluding remarks

We shall summarize our main results in mathematical and physical terms.
In this paper we obtained some stability criteria, in terms of the maximum
shear of the basic flow.

Let us assume a typical interval for the oceanic values (in S.I. units) of
lateral vorticity diffusion

102 ≤ A ≤ 104, (44)

for bottom dissipation r the value

r = 10−7 (45)

and for L the value
L = 106. (46)

Therefore, for the dimensionless variable
r

Aα
, considering (18), (44), (45)

and (46), we have:
10

π2
≤ r

Aα
≤ 103

π2
. (47)

Because of (47) it can be easily shown that, if
r

Aα
> r2, where r2 is the

largest positive rooth of the equation :

(
r

Aα
)2 +

r

Aα
((αc1)−1 − 3) + (αc1)−1 = 0,

(from the definition of c1 it follows that c1 >
1
α , namely (αc1)−1 < 1), the

stability domain (43) enlarges the previous one obtained in [23], i.e.

µ2 < 2
√

2rAα (48)

that represents, among the criteria

µ2 < 2
√

(2− ε)rAα ∀ε > 0, (49)

the best criterion of linear asymptotic stability, improving the stability cri-
terion of Crisciani and Mosetti [9] µ2 ≤ 2

√
rA.

The stability criterion (25 ), expressed in terms of µ3 only ,

µ3 < 2(r +Aα)
√
α (50)

cannot be compared with some previous results, because in [22] some other
linear asymptotic stability regions are defined in terms of the maximum
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shear of the basic flow and of the maximum of its meridional derivative,
in the (µ3, α

−1µ2)-plane, leading to considerable improvement of the linear
stability domain for cases where functional inequalities at hand are very
weak.

However all considerations in [22] were limited by the fact that the terms
in the second meridional derivative of basic flow was disregarded, see (13)
of [22].

Between those in [22] the largest domain of asymptotic stability is bounded,
in the (µ3, α

−1µ2)-plane, by the curve Q0P0 and the straightline OP0, with:

Q0P0 : α−1µ2 =
2A

r
µ3 +

r2

µ3
0 ≤ µ3 ≤

r√
2

√
r

A

OP0 :: α−1µ2 = 2
√

2rA µ3 >
r√
2

√
r

A
.
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