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Abstract

In this paper, we study multi-valued generalized anonexpansive
mappings in uniformly convex Banach spaces. We introduce a new
multi-valued iterative process and prove some weak and strong con-
vergence results in uniformly convex Banach space. We also study
the stability of this iteration process. Further, we provide a numeri-
cal example of the multi-valued generalized a—nonexpansive mapping.
Finally, the convergence of this iteration process to the fixed point for
multi-valued generalized a—nonexpansive mapping is discussed on this
numerical example.
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1 Introduction and Preliminaries

Some generalizations of single-valued nonexpansive and the study of related
fixed point theorems have been intensively carried out by many authors over
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past decades (see [2], [6], [15], [22]). In 2008, Suzuki [22] defined a class of
generalized nonexpansive mappings on a nonempty subset M of a Banach
space X. Such type of mappings was called the class of mappings satisfying
the Condition (C) (also referred as Suzuki generalized nonexpansive map-
ping), which properly includes the class of nonexpansive mappings. In 2017,
Pant and Shukla [15] introduced the following class of nonexpansive type
mappings and obtained some fixed point results for this class of mappings.

A mapping T : M — M is called a generalized a-nonexpansive mapping
if there exists an a € [0,1) and for each z,y € M,

1
Sl = Tall < e —y|  implies
|72 - Ty|l < alle = Tyl + ally — Tall + (1 - 20)lJe - g

There are many authors studied with some different iteration processes to
find of approximating fixed points of for Suzuki generalized nonexpansive
mapping and generalized a-nonexpansive mappings (see [5], [8], [16], [23],
[24], [26], [27], [29] and so on).

Fixed point theory for multi-valued mappings has many useful applica-
tions in various fields, control theory, convex optimization, game theory and
mathematical economics. Therefore, it is natural to extend the known fixed
point results for single-valued mappings to the setting of multi-valued map-
pings. The theory of multi-valued nonexpansive mappings is more difficult
than the corresponding theory of single-valued nonexpansive mappings. The
convergence of a sequence of fixed points of a convergent sequence of set-
valued contractions was investigated by [12] and [13]. In the recent years,
fixed point theory for multi-valued mappings has been studied by many
authors; see [1],[7], [10], [17], [20], [21], [25], [28] and the references therein.

Firstly we give some basic concepts about the multi-valued mappings.

We assume throughout this paper that (X, ||.||) is a Banach space and M
is a nonempty subset of X. The set M is called proximinal if for each z € X
, there exists some y € M such that d(z,y) = d(z, M), where d(z, M) =
inf{d(x,y) : y € M}. In the sequel, the notations Ppy(M), Pep(M), Pep(M)
and P(M) will denote the families of nonempty proximinal subsets, closed
and bounded subsets, compact subsets and all subsets of M , respectively.
Let H(,) be the Hausdorff distance on P, (M) is defined by

H(A,B) = maz{supgead(z, B), supycpd(y, A),YA,B € Pu(M),x €
AyeB }

Let T : M — P(M) be a multivalued mapping. An element p € M is
said to be a fixed point of T', if p € T'(p). The set of fixed points of T" will
be denoted by F(T). A multivalued mapping T : M — P(M) is said to
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be contraction mapping if there exists an 6 € [0, 1) such that H(Tz,Ty) <
0||x—yl|, for all z,y € M, nonexpansive mapping if H(Tx,Ty) < |z —y||, for
all x,y € M , quasi-nonexpansive mapping if F(T) # () and H(Tx,Tp)) <
|lx — pl|, for all x € M and for all p € F(T). It is well known that if M
is a nonempty closed, bounded and convex subset of a uniformly convex
Banach space X, then a multivalued nonexpansive mapping T : M — P (M)
has a fixed point [11]. Iterative techniques for approximating fixed points
of nonexpansive multi-valued mappings have been investigated by various
authors using the Mann iteration scheme or the Ishikawa iteration scheme
(see [17], [20], [21] and so on ). In 2009, Shahzad and Zegeye [20] presented
the set Pr(x) = {y € Tz : d(x,Tx) = ||z — y||} for a multivalued mapping,
T : M — P(M) and showed that Mann and the Ishikawa iteration processes
for multi-valued mappings are well defined. They proved the convergence
of these iteration processes for multivalued mappings in a uniformly convex
Banach space. In 2011, Abkar and Eslamian [1] extended the notion of
Condition (C') to the case of multi-valued mappings.

In 2020, Igbal et al.[10] introduced a new modified iteration process
to approximate fixed points of multi-valued generalized a—nonexpansive

mappings as follows: for arbitrary z; = x € M construct a sequence {x,}
by

Unp = (1 - bn)xn + bnTna
Wy € PTUn, (1)
Tnt1 = (1 —ap)kn + anAp, Vn € N|

where {a,},{bn} € (0,1),k, € Pp(wy), 7, € Pr(zy,) and A\, € Pr(ky).

In 2021, Ullah et al.[28] studied convergence results of M-iterative process
for multi-valued generalized a—nonexpansive mappings. M-iterative process
for multi-valued mappings as follows: for arbitrary x1 = x € M construct a
sequence {z,} by

vp = (1 —ap)zy + any,

Wy, = Ty, (2)
1"

Tntl = Ty, ¥ € N,

where {a,} € (0,1), 7, € Pp(xy,), 7, € Pro,,7, € Prw,.
Motivated by above, we introduce a new iteration process for multi-
valued mappings as follows: for arbitrary ;1 € M construct a sequence {x,}
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by

Un = (1 - bn)xn + b,

$n € Pp(vy),

UYn € PT(Sn)’ (3>
wy, = (1 — ap)up + anty

Tpt1 = T, V0 € N,

where {a,} and {b,} € (0,1), 7, € Pr(zy), nm € Pr(wy), tn € Pr(uy),
Un € Pr(yn).

In this paper, we prove some weak and strong convergence results using
(3)-iteration process for multi-valued generalized a—nonexpansive mappings
in uniformly convex Banach spaces. Moreover, we present an illustrative
numerical example of approximating fixed point of multi-valued generalized
a—nonexpansive mappings considering the iteration process presented in
(3).

Now we recall some notations to be used in main results:

A Banach space X is said to satisfy Opial’s condition [14] if, for each
sequence {z,} in X, the condition x,, — = converges weakly as n — oo and
for all y € X with y # x imply that

limsup ||z, — z|| < limsup ||z, — y||.
n—00 n—r00

In the following we shall give some preliminaries on the concepts of
asymptotic radius and asymptotic center which are due to [4].
Let {x,} be a bounded sequence in a Banach space X. Then

(i) The asymptotic radius of {x,} at point x € X is the number

r(w, {2a}) = limsup [, — .
n—oo

(ii) The asymptotic radius of {x,} relative to M is defined by

r(M,{z,}) = inf{r(z, {u,}) : © € M}.

(iii) The asymptotic center of {x,} relative to M is the set
A(M,{zn}) ={x € M:r(z,{z,}) =r(M {z,})}.

It is well known that, in uniformly convex Banach space, A(M, {z,})
consists of exactly one-point.
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Lemma 1. (/18/) Suppose that X is a uniformly conver Banach space and

0<k<t,<m<1forallneN. Let {x,} and {x,} be two sequence of X

such that lim sup ||z, || < ¢, limsup ||y,|| < ¢ and lim sup ||tz +(1—t,)yn|| =
n—00 n—00 n—00

¢ hold for ¢ > 0. Then lim ||z, — yn|| = 0.
n—oo
Definition 1. Let T : M — Pgy(M). A sequence {xy,} in M is called an ap-

prozimate fized point sequence (or a.f.p.s) for T provided that d(x,, Tx,) —
0 asn — oo.

Definition 2. A multivalued mapping T : M — P(M) is called demiclosed
aty € M if for any sequence {x,} in M weakly convergent to x and y, € Tz,
strongly convergent to y, we have y € Tx.

The following is the multi-valued version of Condition (I) of Senter and
Dotson [19].

Definition 3. A multivalued mapping T : M — P(M) is said to satisfy
Condition (I), if there is a nondecreasing function ¢ : [0, 00) — [0, 00) with
©(0) =0 and o(r) > 0 for allr € (0,00) such that d(xz,Tx)| > ¢(d(x, F(T))
forallx e M .

Lemma 2. ([21]) Let T : M — Ppp(M) and Pr(z) = {y € Tx : d(z,Tz) =
|lx —yl|}. Then the following are equivalent.

(1) « € F(T).

(2) Pr(z) ={z}.

(3) x € F(Pr).
Moreover, F(T) = F(Py),

Now we give the definition of multi-valued generalized a-nonexpansive
mapping:

Definition 4. Let M be a nonempty subset of a Banach space X.A mapping
T : M— Py(M) is called a multi-valued generalized ai-nonexpansive if there
exists an o € [0,1) such that for each x,y € M,

1
§d(:c,T:v) <llz—yl implies
H(Tz,Ty) < ad(y, Tz) + ad(z, Ty) + (1 — 2a)||z — y||.
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It is well known that every multivalued mapping satisfying Condition
(C) is a multivalued generalized 0 nonexpansive mapping. In comparison to
nonexpansive mappingsand mappings satisfying Condition (C), the class of
generalized a—nonexpansive mappings is larger. We now provide an exam-
ple of a multivalued mapping T that neither satisfies Condition (C) nor is
nonexpansive.

Example 1. Let (R2,]|.||) be a normed space with ¢2-norm and M = [0, 6] x
[0,6]. Define T : M — P(M) by

[3:3] x [3.3], ==
Then, we consider the following cases:

Case I: If 2,y # (6,6), then

—_

H(Py(z), Pr(g)) = 0 < 3d(3, Pr(a)) + 5d(z, Pr(z)).

Case II: If & # (6,6) and § = (6,6) then we have
H(Pr(z), Pr(3)) = H({(0,0)}. [;3} . B’?’b _ VB
Thus we have

50, Pr(z)) + 5d(z, Pr(y) > 5VT2 = VIS = H(Pr(2), Pr(p))

Case III: If T,y = (6,6) then we have

H(Pr(z), Pr(p) — H(PT(B,S} . [;3} , B:s] < [;,3]) —0
< (5, Pr()) + 34(z, Pr(3).

Therefore, T is a generalized %-nonezpanswe mapping. Observe that T
is neither nonexpansive nor satisfies Condition (C) as for z = (3.1,3.1) and
gy = (6,6), we have

1 1
id(a’:,PT(i)) = 5\/19.22 <16.82 = 1(3.1,3.1) — (6,6)| = ||z — 7|
which implies that

H(Py(z), Pr()) = VI8 > V16.82 = ||z — g].
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Lemma 3. ([10]) Let M be a nonempty subset of a Banach space and
T : M — P(M). If T is generalized a-nonexpansive, then T is quasi-
nonexrpansive.

Lemma 4. ([10]) Let M be a nonempty subset of a Banach space X and
T : M— Pg(M) be a generalized a-nonexpansive. Then

3+ a
l—«

.7y = (152 ) daTa) + Lo ]

for each x,y € M.

2 Convergence of multi-valued generalized a-non-
expansive mappings

In this section, we prove weak and strong convergence theorems for (3)-
iterative process of multi-valued generalized a-nonexpansive mappings in
uniformly convex Banach space.

Lemma 5. Let M be a nonempty closed conver subset of a uniformly convex
Banach space X. Let T : M — Ppi(M) be a multi-valued mapping such that
F(T) # 0 and Pr is a generalized a—nonexpansive mapping. Let {x,} be a
sequence generated by (3). Then nlLH;O |lzn, — pl| exists for all p € F(T).

Proof. Let p € F(T). By Lemma 2, Pr(p) = {p} and F(T) = F(Pr). Since
Pr is a generalized a—nonexpansive mapping, by Lemma 3, then Pr is a
quasi-nonexpansive mapping. Now, for any p € F(T'), we have

(Pr(ma), Pr(p)) < |7 —»pl, H(Pr(vy), Pr(p)) < |lvn —pll,
(Pr(sn), Pr(p)) < llsn—0pll, H(Pr(yn), Pr(p)) < llyn — pll,
H(Pr(wn), Pr(p)) < |wn—pl, H(Pr(un), Pr(p)) < |lun —pl,
H(Pr(t,), Pr(p)) < |[ltn—»pl, H(Pr(nn), Pr(p)) < [lnn — pl|-
Next by (3), we have
|7 —pll < d(mw, Pr(p)) < H(Pr(zn), Pr(p)) (4)
<z =l
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By (4), we have

lon =pl = 1L = ba)en + bar — p
< (1= bw)llen —pll + ballr — |
< (1 =bn)llzn — pll + bud(7s, Pr(p))
< (1 =by)l|wn — pl| + b H(Pr(xy), Pr(p))
< (1 =bp)l|zn = pll + bollzn — pl = [|zn — D
and also we have
llsn — pl| d(sn, Pr(p)) < H(Pr(vn), Pr(p))

<
< lon = pll-

By (4), (5) and (6), we have

lyn =2l < d(yn, Pr(p)) < H(Pr(sy), Pr(p))

By (4)-(7), we have

[wn = pll

By (8), we have

AN VAN VAN VAN VAN VANS VANRN VAN VAR VAN

< lsn —pll-

(1 = an)un + anty, — p|
1 — an)|jun — p|| + anl/tn — p||
d(unv PT(p)) + and(tna PT(p))

)
)
Myn = pll + anllun — pll
)Nsn = pll + and(un, Pr(p))
1 —ap)||sn — pll + anH(Pr(yn), Pr(p))
)Nsn = pll 4 anllyn — pl|
1 — an)||on = pl| 4 anllsn — pl|
Nan = pll + anllon — pll

Nan = pll 4+ anllzn — pll = [[zn — pl|-

|Znt1 —pll = |9n —pll < d(nn, Pr(p))

H(Pr(wn), Pr(p)) < [lwn = pl|
[#n — p-

VARVAN

H(Pr(yn), Pr(p)) + anH (Pr(uy), Pr(p))

961

(5)

(8)

(9)

This implies that {||z, —pl||} is bounded and non-increasing for all p € F(T).
It follows that lim ||z, — p|| exists.
n—oo

O
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Theorem 1. Let M be a nonempty closed convexr subset of a uniformly
convex Banach space X. Let T : M — Pp,(M) be a multi-valued map-
ping and Pr is a generalized a—nonexpansive mapping. Let {x,} be a se-
quence generated by (3). Then F(T) # 0 if and only if {z,} is bounded and

lim ||z, — 7| = 0.
n—oo

Proof. Suppose F(T) # () and let p € F(T). By Lemma 5, h_)m |lzn — pl|
n—oo

exists and {z,} is bounded. Put
Tim Jlan — pll = c. (10)
From (5)-(8), we have

lim sup [[v, — pl| < limsup [, — pl| < c,
n—oo n—oo

limsup |7, — p| < limsup ||z, — p| < c. (11)
n—oo n—oo
Also

limsup |15, — p < limsup [ — pl| < c,
n—0o0 n—00

limsup ||y, — p|| < limsup ||z, — p|| < ¢,
n—00 n—r00

lim sup ||wy, — p|| < limsup ||z, —p| < c. (12)
n—oo

n—o0

Further, we have the following inequalities

lun = pll < H(Pr(yn), Pr(p)) < llyn — pll

and
[tn — pll < H(Pr(un), Pr(p)) < [lun — pl-

On taking lim sup on both sides of the all above inequalities, we obtain

n—oo
that
lim sup ||u, — p|| < ¢, (13)
n—oo
limsup |t — pl] < c (14)

n—oo
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Next

[en1 = pll = lnn —pll = H(Pr(wn), Pr(p))
< wn = pl

Making n — oo above inequality, we get

¢ = limsup ||zp4+1 — p|| < limsup ||w, — p||.
n—o0 n—oo

Thus by from (12) we have limsup ||w,, — p|| = ¢. So
n—oo

¢ = limsup|w, — p||
n—oo
= limsup [|[(1 — an)(un — p) + an(tn — p)|
n—oo

By Lemma 1, we have

limsup ||t, — uy|| = 0. (15)

n—oo

Now

|wn = pll = [[((1 = an)un + antn — pl|
= [[(un — p) + an(un — t,)||
< lun = pll + anllun — tal|-

Making n — oo above inequality and from (15) we get
¢ = limsup ||w, — p|| < limsup ||u, — p||-
So by (13) we have
lim sup ||u, — p|| = c.
n—o0o

Then
un — pll < lJun — tall + Itn — pll-

Making n — oo and from (15), we get

¢ < limsup [|t, — pl|.

n—oo
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Hence together with (14) we have

c= lim ||t, — p|l.
n—oo

Thus
¢ = lim |[t, —p| < lim H(Pr(uy), Pr(p))
n—oo n—oo
< dim fJun —pll < lim H(Pr(ya), Pr(p))
n o n—oo
< lim ||y, —pll < lim H(Pr(sy), Pr(p))
— 00 n—oo
< lim ||sp —p|| < lim H(Pr(vy), Pr(p)) < lim |jv, — p||
n o n—oo n—oo
< lim H(l *bn)onLbnTn *pH
n—oo
< lim (1 = by)||zn — pl| + bnllmn — pl| < c.
n—oo
Consequently
lim [|(1 = by)(zn — p) + bp(10 — p)|| = ¢ (16)
n—oo

Thus from (10), (11), (16) and by Lemma 1 we have n11_>1r010\|xn —7n] =0
which implies that nh_}rgo d(zp, Pr(xz,)) = 0.

Conversely, suppose that {z,} is bounded and nh_{go d(xn, Pr(xz,)) = 0.
Let p € A(K,{z,}). By Lemma 4, we have

3+«
l—«

d(n, Pr(p)) — ( ) A, Pr(en)) + ll2n — 1]

Using the definition of asymptotic center we have

r(Tp,{zn}) = limsupd(z,, Pr(p))

n—oo
3

T limsup d(Pr(zn), 25)) + limsup |2n — p|
1« n—o0 n—o0

= limsup ||z, — p|| = r(p, {zn}).

n—oQ

< (

This implies that for Tp = p € A(K,{x,}). Since X is uniformly Banach
space, A(K,{x,}) is consists of a unique element. Thus, we have Tp = p.
Hence F(T) # 0.

]

In the next result, we prove our strong convergence theorems as follows.
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Theorem 2. Let M be a nonempty compact convexr subset of a uniformly
convex Banach space X. Let T : M — Ppp(M) be a multi-valued mapping
such that F(T) # 0 and Pr is a generalized a—nonexpansive mapping. Let
{zn} be a sequence generated by (3). Then {x,} converges strongly to a fized
point of T.

Proof. F(T) # (), so by Theorem 1, we have li_>m d(xy, Pr(z,)) = 0. Since
n—0o0

M is compact, there exists a subsequence {xy, } of {z,} such that z,, — ¢
as k — oo for some ¢ € M. Because Pr is a generalized a—nonexpansive

mapping, one can find some real constant p = (‘%*_‘—g) > 1, such that

d(xnkv PT(q)) < pd(xnlw PT(x”k) + |’$nk - QH

As F(T) = F(Pr), on taking limit as k — oo, we get ¢ € Pr(q) i.e. ¢ €
F(T). So {x,} converges strongly to a fixed point of T'. O

The proof of the following result is elementary and hence omitted.

Theorem 3. Let M be a nonempty closed convex subset of a uniformly con-
vex Banach space X. Let T : M — Py, (M) be a multi-valued mapping such
that Pr is a generalized a—nonexpansive mapping. {x,} be a sequence gen-
erated by (3). If F(T) # () and nlg]go d(xn, F(T)) = 0, then {x,} converges

strongly to a fized point of T'.

Theorem 4. Let M be a nonempty closed convexr subset of a uniformly
convex Banach space X. Let T : M — Ppp(M) be a multi-valued mapping
satisfying Condition (I) such that F(T) # 0. {x,} be a sequence generated
by (3). If Pr is a generalized a—nonexpansive mapping, then {x,} converges
strongly to a fixed point of T.

Proof. By Lemma 5, we have lim ||z, — p|| exists and for all p € F(T). Put
n—oo
c¢= lim ||z, — p|| for some ¢ > 0. If ¢ = 0 then the result follows. Suppose
n—oo
that ¢ > 0. Then

lim |lzp41 —p| < lim [z, — pl|.
n—00 n—r00
It follows that

lim d(xpy1, F(T)) < lim d(z,, F(T)).

n—oo n—oo

lim d(x,, F(T)) exists. We show that it follows li_>m d(xn, F(T)) = 0. From

n—oo

Theorem 1, li_)m d(xy, Pr(xz,)) =0. As F(T) = F(Pr), by Theorem 1 and
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Condition (I) we have 0 < le o(d(zn, F(T))) < li_}m d(xy, Pr(z,)) = 0.
That is, h_)m o(d(zn, F(T))) = 0. Since ¢ : [0,00) — [0,00) is a nonde-

creasing function satisfying ¢(0) = 0 and ¢(r) > 0 for all » € (0,00), we
have lim d(x,, F(T)) = 0. All the conditions of Theorem 3 are satisfied,
n—oo

therefore by its conclusion {z,} converges strongly to a fixed point of 7'
The proof is completed. O

Finally, we prove the weak convergence of the iterative process (3) for
multi-valued generalized a—nonexpansive mapping in a uniformly convex
Banach space satisfying Opial’s condition.

Theorem 5. Let X be a real uniformly convexr Banach space satisfying
Opial’s condition and M be a nonempty closed convex subset of X. Let
T : M — Pp(M) be a multi-valued mapping such that F(T) # 0. Suppose
Pr is a generalized a—mnonexpansive mapping and I — Pp is demi-closed with
respect to zero. Then {x,} defined by (3) converges weakly to a fized point
of T.

Proof. Let p € F(T') = F(Pr). By Lemma 5, the sequence {z,} is bounded
and lim ||z, — p|| exists for all p € F(T). Since X is uniformly convex, X
n—oo

is reflexive. By the reflexiveness of X , there exists a subsequence {z,,} of
{7y} such that {x,;} converges weakly to some o1 € M. Since I — Pr is
demi-closed with respect to zero, oy € F(Pr) = F(T). We prove that oy is
the unique weak limit of {x,,}. Let one can find another weakly convergent
subsequence {z, } of {x,} with weak limit say oo € M and o9 # 0;. Again
o1 € F(Pr) = F(T). From the Opial’s property and Lemma 5, we obtain

lim |z, —o1]| = lm ||z, — o1 < lim |z, — 02l = lim ||z, — 02|
n—00 Jj—00 J—00 n—00
= lim ||zp, — 02| < lim ||a,, — o1 = lim ||z, —o1],
k—o00 k—o0 n—0o0

which is a contradiction. So, o1 = 03. Therefore {z,,} converges weakly to
a fixed point of T'. This completes the proof. O

3 Stability for new iterative process

In this section, we analyze the stability of the (3)-iteration process with
respect to multivalued contraction mapping. Also we prove that the (3)-
iteration process is stable with respect to T

In what follows, we shall make use of the following well-known lemma.



Multi-valued generalized anonexpansive mappings 567

Lemma 6. [30] Let {e,}2°, and {d,}>2, be nonnegative real sequences
satisfying the inequality

dpy1 < (1 - Mn)dn + €n, (17)
where py, € (0,1), forn =0,1,2...; Y%, = 00 and lim <= = 0, then
n—oo0 Hn
lim d, = 0.
n—oo

Let T : M — P(M) be a multi-valued mapping. Harder and Hicks [9]
introduced the following concept of (T')-stability (see also [3]). Define a fixed
point iteration process by x,+1 = f(T,x,), for n=0,1,2,... such that z,
converges to fixed point p of T'. Let {v,}22, be an arbitrary sequence in M
and set €, = ||vp+1 — (T, v,)| for n =0,1,2,.... We shall say that the fixed
point iteration process is T-stable or stable with respect to T if and only if
lim ¢, =0« lim v, = p.

n—oo n—oo

Theorem 6. Let M be a nonempty closed convexr subset of a uniformly
convex Banach space X. Let T : M — Ppp(M) be a multi-valued mapping
and Pr is multi-valued contraction mapping with 0 € (0,1). Let {x,} be
a sequence generated by (8), where {an},{bn} € (0,1) and Y .7 pn = 00.
Then nh_)rgo |xn — p|| exists for all p € F(T). Then iteration process (3) is
(T )-stable.

Proof. The existence of the fixed point of Pr is guaranteed by Nadlers gen-
eralization of Banach contraction principle [13]. Now, we show that {z,}
converges to some fixed point p (say). It follows from (3), we have,

[(1 = bn)zn + bumy — D

(1 = bp)l|wn — pll + bpllTn — Pl

(1 =bn)l|zn — pll + bnd(7n, Pr(p))

(1= bn)llzn — pll + bn H(Pr(zn), Pr(p))

O[(1 = bn)l|lzn — pl| + bnb|lzn — pll]

= [1=bu(1 = 0)][|zn —pl], (18)

v — |

IAIA A IA

Isa—pll < d(su, Pr(p) < H(Pr(va), Pr(p))
< Ollon - pll (19)

and also we have

Hyn - p” < d(yna PT(p)) < H(PT(Sn)’ PT(p))
< Blisn —pll- (20)
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From the inequalities (18), (19) and (20), since 1—b,(1—0) < 1, {b,} € (0,1)
and 6 € (0,1) then we get

lwn —pll = [I[(1 = an)un + antn — p|
< (1= an)l|un — pl| + anlltn — pl|
< (1= an)d(un, Pr(p)) + and(tn, Pr(p))
< (1= an)H(Pp(yn), Pr(p)) + anH(Pr(us), Pr(p))
< (1= an)0llyn — pll + anf|lun — pl|
< (1= an)0?||sn — pll + anfd(un, Pr(p))
< (1 —an)0?|sn — pll + anbH(Pr(yn), Pr(p))
< (1- an)92”5n —pll+ an92”yn =7l
< (1= an)0|[vn — pll + an’|lsn — p|
< (1= an)0®[1 = bu(1 = 0)]||n — pl| + anb*|vn — pl|
< (1= an)f®[1 = bu(L = 0)][lz — pll + and*[1 — by (1L = 0)][|y — p
< P —by(1=0)][1 —an(1—0)]|zn —p|
< 0°[1 = an(1 = 0)]zn — pl| (21)

From (3) and (21) , we get

[nt1 =pl = llnn = pll < d(nn, Pr(p))
H(Pr(wn), Pr(p)) < 0ljwn — pl|

<
< 04[1 _an(l_a)”‘xn_p”' (22)

By repeating the above process (22), we get,

|zns1 = ol < 61— an(l —O)]]lzn —pl

lzr —pll < 61 —ao(1 —0)]]lzo — p.

Therefore, we obtain

|z —pll < 'V ]I — ai(1 = 0)]lzo —pll
k=0

0<land1l—6<1so(l—0)>0andar<1fork=0,12, .. Then we
have [1 —ag(1—0)] <1 for k=0,1,2,.... So, we know that 1 —z < e~ for
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all x € [0, 1]. Hence we have
|1 = pl| < 01V em =0 Xiolond g — ). (23)

We can see that {z,,} converges to a fixed point of Pr . Since p € F(Pr),
by Lemma 2, we have p € F(T) and hence x,, — p € F(T).

Now we prove that the new iteration defined by (3) is stable with respect
to (T).

Let {v,} be any arbitrary sequence in M. Assume that the sequence
generated by (3) is vp+1 = f(T,vy,) converging to a fixed point of T'. Define
€n = ||Un+1 — f(T,vy,)| for n =10,1,2,.

We have to prove that h_)m €n = () & hm Up = D.

Suppose hm €, = 0. By using (3) and (23) we get

[vns1 = F(L o) || + 1 F(T0n) — p| (24)
€n + 94[(1 —an(1 = 0)]||v, — pl|.

[vns1 —pll <
<

We can easily seen that all conditions of Lemma 6 are fulfilled by above
inequality (24). Hence by Lemma 6 we get lim v, = p.
n—oo

Conversely, let lim v, = p, we have
n—oo

€n = an—i-l - f(Tv tn)”
< Nongr =2l + 1 £(Tsvn) — pll
< onar = pll + 0*[(1 = an(1 = 0)][lvn — p|I-

This implies that li_>m en, = 0. Hence (3) is stable with respect to (7). O
n—oo

4 Example

In this section, we provide an example of multi-valued mapping for which
best approximate operator Pr is a generalized aa—nonexpansive mapping.
Also, using this example, we compare various iterative processes such as
(1)-iteration and (2)-iteration processes with our (3)-iteration process to
show the numerical efficiency of our results.

Example 2. Let M = [0,00) C R endowed with usual norm in R and
T : M— P(M) be defined by
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If v € [0,3), then Pr(z) = {0}. For x € [$,00), then Pp(z) = {3}.
We show that Pr is generalized i—nonexpansz’ve mapping with F(T). We
consider the following cases:

Case I: Let z € [0,%) and y € [0, 5). We have
1 1 1
H(Pr(z), Pr(y)) =0 < -d(y, Pr(z))+ d(z, Pr(y)) + 1 = 2())llz —y|
< lel+ 7l + 3o =y
< el gyl gle =yl

Case II: Let z € [0,%) and y € [5,00). We have

1, Pr(a)) + (e, Pr(y) + (1= 2()lz — ]
1 3x 1 3y 1
:Z’Z/—7\+1\$—7|+5|$—y|
> },MHE‘%M
—4 7 2

1 1 3
> 5!36 -yl + 5!% —yl=lz -yl > ;Ix —y| = H(Pr(z), Pr(y))

Case III:Let x € [§,00) and y € [0, 3). One has

Hence for all z,y € M = [0,00) C R, we have
H(Pr(a), Pr(y)) = 0 < Ld(y, Pr(z)) + Ld(z, Pr(y)) + (1 - 2(1) = y].
Thus, Pr is generalized %—nonezpansive mapping with p = 0 fized point.
Finally, let us prove that T does not satisfy Condition (C). Indeed, if
we take x = 0.75,v = 0.43 then

3x0.75

7 | =0.214285 < 0.32 = |z — y|.

d(z, Pr(z)) = %|0.75 -

3x0.75
7

Thus Pr does not satisfy Condition (C).

H(Pr(z), Pr(y)) = | — 0] = 0.321428 > 0.320000 = |z — y|.
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Let a, = b, = 0.75 for all n € N. Assume x1 = 200. We compute that
the sequence {z,} generated by (1), (2) and (3) iterative processes converge
to a fixed point 0 of the multi-valued generalized a—nonexpansive mapping
defined in Example 2 which is shown by the Table 1. Also we compute
that the sequence {x,} generated by (3)-iterative process converges to fixed
point 0 of the multi-valued generalized a—nonexpansive mapping defined in
Example 2 which is shown by the Table 1 and Figure 1.

Table 1: Sequences generated by (1)-iteration, (2)-iteration and (3)-iteration
for the multi-valued generalized a—nonexpansive mapping defined in Exam-

ple 2.
(1)-iteration (2)-iteration (3)-iteration
T1 200 200 200
z9 | 11.995002082465639 | 20.991253644314867 | 2.203163647799812
zs | 0.719400374791775 | 2.203163647799811 0
T4 0 0.231235834754499 0
T5 0 0 0
200
(1)-iteration
180 - (2)-iteration | 7
(3)-iteration |

160 -

140 -

Iteration Value
= =
oy (o2} ] o N
o o o o o
| |

N
o
T

o

1 2 3 4
Iteration Number

Figure 1: Convergences of (1)-iteration, (2)-iteration and (3)-iteration to
the fixed point 0 of the multi-valued generalized a—nonexpansive mapping
defined in Example 2.
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5 Conclusion

We study the convergence of (3)-iteration process to fixed for the multi-
valued generalized a—nonexpansive mapping in uniformly convex Banach
space. Moreover, we give an illustrative numerical example that is multi-
valued generalized a—nonexpansive mapping but is not Suzuki generalized
nonexpansive mapping, as in Example 2 of this paper. From Table 1 and
Figure 1, we see that (3)-iteration process converges faster than (1)-iteration
and (2)-iteration processes.
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