FULL DESCRIPTION OF THE SPECTRUM OF A STEKLOV-LIKE EIGENVALUE PROBLEM INVOLVING THE (p, q)-LAPLACIAN*

L. $\mathrm{Barbu}^{\dagger} \quad$ G. Moroşanu ${ }^{\ddagger}$

DOI https://doi.org/10.56082/annalsarscimath.2023.1-2.30

Dedicated to Dr. Dan Tiba on the occasion of his $70^{\text {th }}$ anniversary

Abstract

In this paper we consider in a bounded domain $\Omega \subset \mathbb{R}^{N}$ a Steklovlike eigenvalue problem involving the (p, q)-Laplacian plus some potentials. Under suitable assumptions, using the Nehari manifold method and a variational approach, we are able to determine the full eigenvalue set of this problem as being an open interval $\left(\lambda_{*},+\infty\right)$ with $\lambda_{*}>0$.

MSC: 35J60, 35J92, 35P30
keywords: Eigenvalues, (p, q)-Laplacian, Sobolev spaces, Nehari manifold, variational method.

[^0]
1 Introduction

Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$, be a bounded domain with smooth boundary $\partial \Omega$. Consider the eigenvalue problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u-\Delta_{q} u+\rho_{1}(x)|u|^{p-2} u+\rho_{2}(x)|u|^{q-2} u=0, x \in \Omega, \tag{1}\\
\frac{\partial u}{\partial \nu_{p q}}+\gamma_{1}(x)|u|^{p-2} u+\gamma_{2}(x)|u|^{q-2} u=\lambda|u|^{q-2} u, x \in \partial \Omega .
\end{array}\right.
$$

Recall that, for $\theta \in(1, \infty), \Delta_{\theta}$ denotes the θ-Laplacian, $\Delta_{\theta} u=\operatorname{div}(\mid$ $\left.\left.\nabla u\right|^{\theta-2} \nabla u\right)$. In the above boundary condition we have used the notation

$$
\frac{\partial u}{\partial \nu_{p q}}:=\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right) \frac{\partial u}{\partial \nu},
$$

where ν is the outward unit normal to $\partial \Omega$.
The following hypotheses will be assumed throughout this paper.
$\left(h_{p q}\right) p, q \in(1, \infty), p \neq q$;
$\left(h_{\rho_{1} \gamma_{1}}\right) \quad \rho_{1} \in L^{\infty}(\Omega)$ and $\gamma_{1} \in L^{\infty}(\partial \Omega), \rho_{1}, \gamma_{1}$ are nonnegative functions such that

$$
\begin{equation*}
\int_{\Omega} \rho_{1} d x+\int_{\partial \Omega} \gamma_{1} d \sigma>0 \tag{2}
\end{equation*}
$$

$\left(h_{\rho_{2} \gamma_{2}}\right) \quad \rho_{2} \in L^{\infty}(\Omega), \gamma_{2} \in L^{\infty}(\partial \Omega)$ and ρ_{2} is a nonnegative function.
It is worth pointing out that the potential function γ_{2} is allowed to be sign changing.

The operator $\left(\Delta_{p}+\Delta_{q}\right)$, called (p, q)-Laplacian, occurs in many applications that include models of elementary particles ([3], [7]), elasticity theory ([17]), reaction-diffusion equations ([5]).

The solution u of (1) is understood as an element of the Sobolev space $W:=W^{1, \max \{p, q\}}(\Omega)$ satisfying equation $(1)_{1}$ in the sense of distributions and $(1)_{2}$ in the sense of traces.

Definition 1. A scalar $\lambda \in \mathbb{R}$ is said to be an eigenvalue of the problem (1)
if there exists $u_{\lambda} \in W \backslash\{0\}$ such that for all $w \in W$

$$
\begin{align*}
& \int_{\Omega}\left(\left|\nabla u_{\lambda}\right|^{p-2}+\left|\nabla u_{\lambda}\right|^{q-2}\right) \nabla u_{\lambda} \cdot \nabla w d x \\
& \quad+\int_{\Omega}\left(\rho_{1}\left|u_{\lambda}\right|^{p-2}+\rho_{2}\left|u_{\lambda}\right|^{q-2}\right) u_{\lambda} w d x \tag{3}\\
& \quad+\int_{\partial \Omega}\left(\gamma_{1}\left|u_{\lambda}\right|^{p-2}+\gamma_{2}\left|u_{\lambda}\right|^{q-2}\right) u_{\lambda} w d \sigma=\lambda \int_{\partial \Omega}\left|u_{\lambda}\right|^{q-2} u_{\lambda} w d \sigma .
\end{align*}
$$

This u_{λ} is called an eigenfunction of the problem (1) (corresponding to the eigenvalue λ).

According to a Green type formula (see [4], p. 71), $u \in W \backslash\{0\}$ is a solution of (1) if and only if it satisfies (3).

Now, let us introduce the notations

$$
\begin{align*}
K_{p}(u) & :=\int_{\Omega}\left(|\nabla u|^{p}+\rho_{1}|u|^{p}\right) d x+\int_{\partial \Omega} \gamma_{1}|u|^{p} d \sigma \\
K_{q}(u) & :=\int_{\Omega}\left(|\nabla u|^{q}+\rho_{2}|u|^{q}\right) d x+\int_{\partial \Omega} \gamma_{2}|u|^{q} d \sigma \text { for all } u \in W \tag{4}
\end{align*}
$$

For $\theta>1$, the Lebesgue norms of the spaces $L^{\theta}(\Omega)$ and $L^{\theta}(\partial \Omega)$ will be denoted by $\|\cdot\|_{\theta}$ and $\|\cdot\|_{\partial \Omega, \theta}$, respectively. Also, in the Sobolev space $W^{1, \theta}(\Omega)$ we will consider the norm

$$
\begin{equation*}
\|w\|:=\left(\int_{\Omega}|\nabla w|^{\theta} d x\right)^{1 / \theta}+\left(\int_{\partial \Omega}|w|^{\theta} d \sigma\right)^{1 / \theta} \text { for all } w \in W^{1, \theta}(\Omega) \tag{5}
\end{equation*}
$$

which is equivalent to the usual norm of $W^{1, \theta}(\Omega)$.
In order to state our main results, we define

$$
\begin{equation*}
\Lambda_{q}:=\inf _{w \in W \backslash\{0\}} \frac{K_{q}(w)}{\|w\|_{\partial \Omega, q}^{q}} \tag{6}
\end{equation*}
$$

Let us now state the main result of this paper.
Theorem 1. Assume that $\left(h_{p q}\right),\left(h_{\rho_{i} \gamma_{i}}\right), i=1,2$ are fulfilled. Then, the set of eigenvalues of problem (1) is precisely $\left(\Lambda_{q}, \infty\right)$.

If $p=q=2, \gamma_{1} \equiv 0$ (hence, according to (2), $\int_{\Omega} \rho_{1} d x>0$), and $\gamma_{2} \equiv 0$, then $(1)_{2}$ is precisely the classic Steklov boundary condition. That is why we call our problem (1) a Steklov-like eigenvalue problem. Even if the case $p=q$ is here excluded, this name still seems apropriate.

Eigenvalue problems for the (p, q)-Laplacian have been extensively investigated in recent years. For the case of the Dirichlet boundary condition we refer to Cherfils-Il'yasov [5], Faria-Miyagaki-Motreanu [8], Marano-Mosconi-Papageorgiou [12], Bobkov-Tanaka [2] and references therein.

The case of the (p, q)-Laplacian (unaccompanied by any potential) with a Robin boundary condition was investigated by Gyulov-Moroşanu [11]. Let us also mention the recent paper by Papageorgiou-Vetro-Vetro [13] concerning the case $\rho_{1} \equiv 0, \gamma_{1} \equiv 0, \gamma_{2} \equiv$ const. >0, with the potential function ρ_{2} being sign changing.

While in the previous papers [11] and [13] only subsets of the corresponding spectra were determined, in this paper the presence of the potential functions ρ_{i}, γ_{i} satisfying assumptions $\left(h_{\rho_{i} \gamma_{i}}\right), i=1,2$, allows the full description of the spectrum.

2 Preliminary results

In this section we state some auxiliary results which will be used in the proofs of our main results.

Let $\theta, r \in(1, \infty)$ and $r<\theta(N-1) /(N-\theta)$ if $\theta<N$. Let $\alpha \in L^{\infty}(\Omega), \beta \in$ $L^{\infty}(\partial \Omega)$ be nonnegative functions such that $\int_{\Omega} \alpha d x+\int_{\partial \Omega} \beta d \sigma>0$ and define

$$
k_{r}(u):=\int_{\Omega} \alpha|u|^{r} d x+\int_{\partial \Omega} \beta|u|^{r} d \sigma \forall u \in W^{1, \theta}(\Omega)
$$

Note that $u \rightarrow\left(k_{r}(u)\right)^{\frac{1}{r}}$ is a seminorm on $W^{1, \theta}(\Omega)$ which satisfies
(i) $\exists d>0$ such that $k_{r}(u)^{\frac{1}{r}} \leq d\|u\|_{W^{1, \theta}(\Omega)} \quad \forall u \in W^{1, \theta}(\Omega)$, and
(ii) if $u=$ constant, then $k_{r}(u)=0$ implies $u \equiv 0$.

Hence, from [6, Proposition 3.9.55] we obtain the following result
Lemma 1. Under the assumptions mentioned above on r, θ, α and β, the norm $\|u\|_{\theta, r}:=\|\nabla u\|_{\theta}+\left(k_{r}(u)\right)^{\frac{1}{r}} \forall u \in W^{1, \theta}(\Omega)$ is equivalent to the usual norm of the Sobolev space $W^{1, \theta}(\Omega)$.

Remark 1. As a consequence of Lemma 1 we obtain that under assumptions $\left(h_{\rho_{1} \gamma_{1}}\right), K_{p}^{1 / p}(\cdot)$ is a norm equivalent to the usual norm of the Sobolev space $W^{1, p}(\Omega)$.

Next, for $\theta>1$, we consider the eigenvalue problem

$$
\left\{\begin{array}{l}
-\Delta_{\theta} u+\rho(x)|u|^{\theta-2} u=0 \text { in } \Omega \tag{7}\\
|\nabla u|^{\theta-2} \frac{\partial u}{\partial \nu}+\gamma(x)|u|^{\theta-2} u=\lambda|u|^{\theta-2} u \text { on } \partial \Omega
\end{array}\right.
$$

where $\rho \in L^{\infty}(\Omega)$ and $\gamma \in L^{\infty}(\partial \Omega)$ are given functions, with $\rho \geq 0$ a.e. on Ω.

As usual, the number $\lambda \in \mathbb{R}$ is said to be an eigenvalue of problem (7) if there exists a function $u_{\lambda} \in W^{1, \theta}(\Omega) \backslash\{0\}$ such that

$$
\begin{align*}
& \int_{\Omega}\left|\nabla u_{\lambda}\right|^{\theta-2} \nabla u_{\lambda} \cdot \nabla w d x+\int_{\Omega} \rho\left|u_{\lambda}\right|^{\theta-2} u_{\lambda} w d x \\
& \quad+\int_{\partial \Omega} \gamma\left|u_{\lambda}\right|^{\theta-2} u_{\lambda} w d \sigma=\lambda \int_{\partial \Omega}\left|u_{\lambda}\right|^{\theta-2} u_{\lambda} w d \sigma \forall w \in W^{1, \theta}(\Omega) \tag{8}
\end{align*}
$$

Define the C^{1} functional

$$
\Theta_{\theta}: W^{1, \theta}(\Omega) \backslash\{0\} \rightarrow \mathbb{R}, \Theta_{\theta}(v):=\frac{K_{\theta}(v)}{\|v\|_{\partial \Omega, \theta}^{\theta}} \forall v \in W^{1, \theta}(\Omega) \backslash\{0\}
$$

where $K_{\theta}(v):=\int_{\Omega}\left(|\nabla v|^{\theta}+\rho|v|^{\theta}\right) d x+\int_{\partial \Omega} \gamma|v|^{\theta} d \sigma$.
Lemma 2. If $\rho \in L^{\infty}(\Omega), \gamma \in L^{\infty}(\partial \Omega)$ and $\rho \geq 0$ a.e. on Ω then, there exists $u_{*} \in W^{1, \theta}(\Omega) \backslash\{0\}$ such that

$$
\Theta_{\theta}\left(u_{*}\right)=\lambda_{\theta}:=\inf _{w \in W^{1, \theta}(\Omega) \backslash\{0\}} \Theta_{\theta}(w)
$$

In addition, λ_{θ} is the smallest eigenvalue of the problem (8) and u_{*} is an eigenfunction corresponding to λ_{θ}.

Proof. First of all, note that functional Θ_{θ} is positively homogeneous of degree zero. Therefore, we can find a minimizing sequence $\left(u_{n}\right)_{n} \subset W^{1, \theta}(\Omega) \backslash$ $\{0\}$ for

$$
\lambda_{\theta}:=\inf _{w \in W^{1, \theta}(\Omega) \backslash\{0\}} \Theta_{\theta}(w)
$$

such that $\left\|u_{n}\right\|_{\partial \Omega, \theta}=1 \quad \forall n \geq 1$, i. e.,

$$
\begin{equation*}
\Theta_{\theta}\left(u_{n}\right)=K_{\theta}\left(u_{n}\right) \rightarrow \inf _{w \in W^{1, \theta} \backslash\{0\}} \Theta_{\theta}(w)=\lambda_{\theta} \tag{9}
\end{equation*}
$$

In particular, as $\rho \geq 0$ a.e. on Ω, we have that $\lambda_{\theta} \geq-\|\gamma\|_{\partial \Omega, \infty}$ thus, $\lambda_{\theta} \neq-\infty$. Obviously, the sequence $\left(u_{n}\right)_{n}$ is bounded in $W^{1, \theta}(\Omega)$ and so,
we may assume that there exist $u_{*} \in W^{1, \theta}(\Omega)$ and a subsequence of $\left(u_{n}\right)_{n}$, again denoted $\left(u_{n}\right)_{n}$, such that $u_{n} \rightharpoonup u_{*}$ in $W^{1, \theta}(\Omega)$ and $u_{n} \rightarrow u_{*}$ in $L^{\theta}(\Omega)$ as well as in $L^{\theta}(\partial \Omega)$. As $\left\|u_{n}\right\|_{\partial \Omega, \theta}=1 \forall n \geq 1$, we have $\left\|u_{*}\right\|_{\partial \Omega, \theta}=1$, thus $u_{*} \neq 0$.
Also, we have

$$
\begin{aligned}
\left\|\nabla u_{*}\right\|_{\theta}^{\theta} & \leq \liminf _{n \rightarrow \infty}\left\|\nabla u_{n}\right\|_{\theta}^{\theta} \\
\lim _{n \rightarrow \infty} \int_{\Omega} \rho\left|u_{n}\right|^{\theta} d x & =\int_{\Omega} \rho|u|^{\theta} d x \\
\lim _{n \rightarrow \infty} \int_{\partial \Omega} \gamma\left|u_{n}\right|^{\theta} d \sigma & =\int_{\Omega} \gamma\left|u_{*}\right|^{\theta} d \sigma \Rightarrow \\
K_{\theta}\left(u_{*}\right) & \leq \liminf _{n \rightarrow \infty} K_{\theta}\left(u_{n}\right)
\end{aligned}
$$

Consequently, as $\left\|u_{*}\right\|_{\partial \Omega, \theta}=\left\|u_{n}\right\|_{\partial \Omega, \theta}=1 \forall n \geq 1$, it follows that

$$
\begin{equation*}
\Theta_{\theta}\left(u_{*}\right)=K_{\theta}\left(u_{*}\right) \leq \liminf _{n \rightarrow \infty} K_{\theta}\left(u_{n}\right)=\lambda_{\theta} \tag{10}
\end{equation*}
$$

thus, we have $\Theta_{\theta}\left(u_{*}\right)=\lambda_{\theta}$.
We claim that $u_{*} \in W^{1, \theta}(\Omega) \backslash\{0\}$ is an eigenfunction of problem (7) corresponding to the eigenvalue λ_{θ}. Obviously, Θ_{θ} is a C^{1} functional on $W^{1, \theta}(\Omega) \backslash\{0\}$, and for every $w \in W^{1, \theta}(\Omega)$ we have

$$
\begin{align*}
0 & =\left\langle\Theta_{\theta}^{\prime}\left(u_{*}\right), w\right\rangle=\left[\left(\int_{\Omega}\left|\nabla u_{*}\right|^{\theta-2} \nabla u_{*} \cdot \nabla w d x\right.\right. \\
& \left.+\int_{\Omega} \rho\left|u_{*}\right|^{\theta-2} u_{*} w d x+\int_{\partial \Omega} \gamma\left|u_{*}\right|^{\theta-2} u_{*} w d \sigma\right) \tag{11}\\
& \left.-\left(\int_{\partial \Omega}\left|u_{*}\right|^{\theta-2} u_{*} w d \sigma\right) \Theta_{\theta}\left(u_{*}\right)\right] \frac{\theta}{\left\|u_{*}\right\|_{\partial \Omega, \theta}^{\theta}}
\end{align*}
$$

It follows from $\lambda_{\theta}=\Theta_{\theta}\left(u_{*}\right)$ that identity (8) is satisfied. Therefore, u_{*} is indeed an eigenfunction of problem (7) corresponding to the eigenvalue λ_{θ}.

Finally, let us suppose by way of contradiction that there exists another eigenfunction of problem (7), say $u_{\mu} \in W^{1, \theta}(\Omega) \backslash\{0\}$, corresponding to the eigenvalue $\mu, 0<\mu<\lambda_{\theta}$. But then, taking $\lambda=\mu$ and $w=u_{\lambda}=u_{\mu}$ in (8) we obtain that $\mu=\Theta_{\theta}\left(u_{\mu}\right)<\lambda_{\theta}=\Theta_{\theta}\left(u_{*}\right)$. Obviously, this contradicts the definition of λ_{θ}.

We conclude this section by recalling a result which is known as the Lagrange multiplier rule (see, e.g., [9, Theorem 5.5.26, p. 701])

Lemma 3. Let X, Y be real Banach spaces and let $f: D \rightarrow \mathbb{R}$ be Fréchet differentiable, $g \in C^{1}(D, Y)$, where $D \subseteq X$ is a nonempty open set. If v_{0} is a local minimizer of the constraint problem

$$
\min f(v), \quad g(v)=0
$$

and $\mathcal{R}\left(g^{\prime}\left(v_{0}\right)\right)$ (the range of $\left.g^{\prime}\left(v_{0}\right)\right)$ is closed, then there exist $\lambda^{*} \in \mathbb{R}, y^{*} \in$ Y^{*} not both equal to zero such that $\lambda^{*} f^{\prime}\left(v_{0}\right)+y^{*} \circ g^{\prime}\left(v_{0}\right)=0$, where Y^{*} stands for the dual of Y.

3 Proof of Theorem 1

Throughout this section we assume that the hypotheses $\left(h_{p q}\right)$ and $\left(h_{\rho_{i} \gamma_{i}}\right), i=$ 1,2 , are fulfilled and will be used without mentioning them in the statements below.
Now, for $\lambda \in \mathbb{R}$ define the C^{1} energy functional for problem (1),

$$
\begin{equation*}
\mathcal{J}_{\lambda}: W \rightarrow \mathbb{R}, \mathcal{J}_{\lambda}(u)=\frac{1}{p} K_{p}(u)+\frac{1}{q} K_{q}(u)-\frac{\lambda}{q}\|u\|_{\partial \Omega, q}^{q} \tag{12}
\end{equation*}
$$

Its derivative is given by

$$
\begin{align*}
& \left\langle\mathcal{J}_{\lambda}^{\prime}(u), v\right\rangle=\int_{\Omega}\left(|\nabla u|^{p-2}|\nabla u|^{q-2}\right) \nabla u \cdot \nabla v d x \\
& +\int_{\Omega}\left(\rho_{1}|u|^{p-2}+\rho_{2}|u|^{q-2}\right) u v d x+\int_{\partial \Omega}\left(\gamma_{1}\left|u_{\lambda}\right|^{q-2}+\gamma_{2}\left|u_{\lambda}\right|^{q-2}\right) u v d \sigma \\
& -\lambda \int_{\partial \Omega}|u|^{q-2} u v d \sigma \quad \forall u, v \in W . \tag{13}
\end{align*}
$$

So, according to Definition $1, \lambda$ is an eigenvalue of problem (1) if and only if there exists a critical point $u_{\lambda} \in W \backslash\{0\}$ of \mathcal{J}_{λ}, i. e. $\mathcal{J}_{\lambda}^{\prime}\left(u_{\lambda}\right)=0$.

The proof of Theorem 1 is based on some lemmas, as follows.
Lemma 4. There is no eigenvalue of problem (1) inside the interval $\left(-\infty, \Lambda_{q}\right]$. Moreover, we have the equality

$$
\begin{equation*}
\widetilde{\lambda}_{q}:=\inf _{w \in W \backslash\{0\}} \frac{\frac{1}{q} K_{q}(w)+\frac{1}{p} K_{p}(w)}{\frac{1}{q}\|w\|_{\partial \Omega, q}^{q}}=\Lambda_{q} . \tag{14}
\end{equation*}
$$

Proof. First, we deduce from Lemma 2 with $\theta=q$ that $\Lambda_{q} \geq \Theta_{q}\left(u^{*}\right)$. More exactly, if $q>p$ we have $\Lambda_{q}=\lambda_{q}$. Otherwise, if $q<p$ then $\Lambda_{q} \geq \lambda_{q}$, as $W=W^{1, p}(\Omega) \subset W^{1, q}(\Omega)$. In particular, Λ_{q} is a finite real number.

Now, let us check that there is no eigenvalue of problem (1) in $\left(-\infty, \Lambda_{q}\right]$. Assume the contrary, that there is an eigenpair $\left(\lambda, u_{\lambda}\right) \in\left(-\infty, \Lambda_{q}\right] \times(W \backslash$ $\{0\})$. Then (3) with $w=u_{\lambda}$ will imply

$$
\begin{equation*}
\lambda=\frac{K_{q}\left(u_{\lambda}\right)+K_{p}\left(u_{\lambda}\right)}{\left\|u_{\lambda}\right\|_{\partial \Omega, q}^{q}} \leq \Lambda_{q} \tag{15}
\end{equation*}
$$

If $\lambda<\Lambda_{q}$, we have a contradiction with the definition of Λ_{q}. On the other hand, if $\lambda=\Lambda_{q}$ we have $K_{p}\left(u_{\lambda}\right)=0$ which implies $u_{\lambda} \equiv 0$ (see Remark 1). This is impossible since u_{λ} was assumed to be an eigenfunction.

Finally, let us check the equality (14). Note that the infimum on $W \backslash\{0\}$ of the Rayleigh-type quotient associated to the eigenvalue problem (1) is given by $\widetilde{\lambda}_{q}$. The estimate $\Lambda_{q} \leq \widetilde{\lambda}_{q}$ is obvious. On the other hand, for each $v \in W \backslash\{0\}$ and $t>0$, we have

$$
\tilde{\lambda}_{q}=\inf _{w \in W \backslash\{0\}} \frac{K_{q}(w)+\frac{q}{p} K_{p}(w)}{\|w\|_{\partial \Omega, q}^{q}} \leq \frac{K_{q}(v)}{\|v\|_{\partial \Omega, q}^{q}}+t^{p-q} \frac{q K_{p}(v)}{p\|v\|_{\partial \Omega, q}^{q}}
$$

Now letting $t \rightarrow \infty$ if $p<q$ and $t \rightarrow 0_{+}$if $p>q$, then passing to infimum over all $v \in W \backslash\{0\}$, we get $\tilde{\lambda}_{q} \leq \Lambda_{q}$, which concludes the proof.

In what follows we shall prove that every $\lambda \in\left(\Lambda_{q}, \infty\right)$ is an eigenvalue of problem (1). We distinguish two cases which are complementary to each other.

3.1 Case 1: $q<p$

In this case we have $W=W^{1, p}(\Omega)$.
The following lemma shows, essentially, that the functional defined in (12) is coercive for $q<p$.

Lemma 5. If $q<p$ then, the functional \mathcal{J}_{λ} is coercive on W, i.e.,

$$
\lim _{\|u\|_{W} \rightarrow \infty} \mathcal{J}_{\lambda}(u)=\infty
$$

Proof. Assume by way of contradiction that functional \mathcal{J}_{λ} is not coercive. So, there exist a positive constant C and a sequence $\left(u_{n}\right)_{n} \subset W$ such that $\left\|u_{n}\right\| \rightarrow \infty$ as $n \rightarrow \infty$ and $\mathcal{J}_{\lambda}\left(u_{n}\right) \leq C$. Therefore

$$
\begin{equation*}
\frac{1}{p} K_{p}\left(u_{n}\right)+\frac{1}{q} K_{q}\left(u_{n}\right)-\frac{\lambda}{q}\left\|u_{n}\right\|_{\partial \Omega, q}^{q} \leq C \quad \forall n \geq 1 \tag{16}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
0 \leq \frac{1}{p} K_{p}\left(u_{n}\right) \leq \frac{\lambda}{q}\left\|u_{n}\right\|_{\partial \Omega, q}^{q}+\left\|\gamma_{2}\right\|_{\partial \Omega, \infty}\left\|u_{n}\right\|_{\partial \Omega, q}^{q}+C \forall n \geq 1 . \tag{17}
\end{equation*}
$$

It follows from estimate (17) and Lemma 1 with $\theta=p, r=q, \alpha \equiv 0, \beta \equiv 1$ that $\left\|u_{n}\right\|_{\partial \Omega, q} \rightarrow \infty$ as $n \rightarrow \infty$.
Define $v_{n}:=u_{n} /\left\|u_{n}\right\|_{\partial \Omega, q} \forall n \geq 1$ and divide inequality (17) by $\left\|u_{n}\right\|_{\partial \Omega, q}^{p}$. As $q<p$, we obtain that $K_{p}\left(v_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence, $v_{n} \rightarrow 0$ in W (see Remark 1) as well as in $L^{q}(\partial \Omega)$. In particular, $\left\|v_{n}\right\|_{\partial \Omega, q} \rightarrow 0$, as $n \rightarrow \infty$, but this contradicts the fact that $\left\|v_{n}\right\|_{\partial \Omega, q}=1$ for all $n \geq 1$. So, \mathcal{J}_{λ} is coercive on W.

Lemma 6. If $q<p$ then, every $\lambda>\Lambda_{q}$ is an eigenvalue of problem (1).
Proof. Let $\lambda>\Lambda_{q}$ be fixed. Taking into account Lemma 5, the functional \mathcal{J}_{λ} is coercive. Since in a Banach space the norm functionals are weakly lower semicontinuous, using a similar reasoning as in the proof of Lemma 2 we obtain that \mathcal{J}_{λ} is also weakly lower semicontinuous on W. So there exists a global minimizer $u_{*} \in W$ for \mathcal{J}_{λ}, i.e., $\mathcal{J}_{\lambda}\left(u_{*}\right)=\min _{W} \mathcal{J}_{\lambda}$ (see, e.g., [15, Theorem 1.2]).

On the other hand, from Lemma 4 we have $\Lambda_{q}=\widetilde{\lambda}_{q}$ hence, as $\lambda>\Lambda_{q}$, there is some $u_{0 \lambda} \in W \backslash\{0\}$ such that $\mathcal{J}_{\lambda}\left(u_{0 \lambda}\right)<0$.

We note that $\mathcal{J}_{\lambda}\left(u_{*}\right) \leq \mathcal{J}_{\lambda}\left(u_{0 \lambda}\right)<0$, which implies $u_{*} \neq 0$. In addition, $\mathcal{J}_{\lambda}^{\prime}\left(u_{*}\right)=0$. Consequently, u_{*} is an eigenfunction of problem (1) corresponding to the eigenvalue λ.

3.2 Case 2: $q>p$

In this case, $W=W^{1, q}(\Omega)$. If $q>p$ we cannot expect coercivity on W of the functional \mathcal{J}_{λ}. So, we need to use another approach. Consider the Nehari type manifold (see [16]) defined by

$$
\begin{gathered}
\mathcal{N}_{\lambda}=\left\{v \in W \backslash\{0\} ;\left\langle\mathcal{J}_{\lambda}^{\prime}(v), v\right\rangle=0\right\} \\
=\left\{v \in W \backslash\{0\} ; K_{p}(v)+K_{q}(v)=\lambda\|v\|_{\partial \Omega, q}^{q}\right\} .
\end{gathered}
$$

We shall consider the restriction of \mathcal{J}_{λ} to \mathcal{N}_{λ} since any possible eigenfunction corresponding to λ belongs to \mathcal{N}_{λ}. Note that on \mathcal{N}_{λ} functional \mathcal{J}_{λ} has the form

$$
\begin{equation*}
\mathcal{J}_{\lambda}(u)=\frac{q-p}{q p} K_{p}(u)>0 \forall u \in \mathcal{N}_{\lambda} . \tag{18}
\end{equation*}
$$

In what follows, $\lambda>\Lambda_{q}$ will be a fixed real number.

Lemma 7. If $q>p$, then there exists a point $u_{*} \in \mathcal{N}_{\lambda}$ where \mathcal{J}_{λ} attains its minimal value, $m_{\lambda}:=\inf _{w \in \mathcal{N}_{\lambda}} \mathcal{J}_{\lambda}(w)>0$.

Proof. We shall follow an argument similar to that used in Barbu-Moroşanu [1, Case 2, Steps 1-4], so, we split the proof into four steps.

Step 1. $\mathcal{N}_{\lambda} \neq \emptyset$.
In fact, from $\lambda>\Lambda_{q}$ and the definition of Λ_{q} (see (6)) there exists $v_{0} \in W \backslash\{0\}$ such that $K_{q}\left(v_{0}\right)<\lambda\left\|v_{0}\right\|_{\partial \Omega, q}^{q}$. In addition, taking into account Remark 1 we have $K_{p}\left(v_{0}\right)>0$.

We claim that for a convenient $\tau>0, \tau v_{0} \in \mathcal{N}_{\lambda}$. Indeed, the condition $\tau v_{0} \in \mathcal{N}_{\lambda}, \tau>0$, reads $\tau^{p} K_{p}\left(v_{0}\right)+\tau^{q} K_{q}\left(v_{0}\right)=\lambda \tau^{q}\left\|v_{0}\right\|_{\partial \Omega, q}^{q}$, and this equation can be solved for τ, more exactly,

$$
\tau=\left(\frac{K_{p}\left(v_{0}\right)}{\lambda\left\|v_{0}\right\|_{\partial \Omega, q}^{q}-K_{q}\left(v_{0}\right)}\right)^{\frac{1}{q-p}}
$$

and hence, for this τ we have $\tau v_{0} \in \mathcal{N}_{\lambda}$.
Step 2. Every minimizing sequence $\left(u_{n}\right)_{n} \subset \mathcal{N}_{\lambda}$ for \mathcal{J}_{λ} restricted to \mathcal{N}_{λ} is bounded in W.

Let $\left(u_{n}\right)_{n} \subset \mathcal{N}_{\lambda}$ be such a minimizing sequence for \mathcal{J}_{λ}. Assume by contradiction that $\left(u_{n}\right)_{n}$ is unbounded in W hence, on a subsequence, again denoted $\left(u_{n}\right)_{n}$, we have $\left\|u_{n}\right\| \rightarrow \infty$. Since $\left(u_{n}\right)_{n} \subset \mathcal{N}_{\lambda}$, we have (see equality (18))

$$
\begin{equation*}
\mathcal{J}_{\lambda}\left(u_{n}\right)=\frac{q-p}{q p} K_{p}\left(u_{n}\right) \rightarrow m_{\lambda} \geq 0 \text { as } n \rightarrow \infty \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq K_{p}\left(u_{n}\right)=\lambda\left\|u_{n}\right\|_{\partial \Omega, q}^{q}-K_{q}\left(u_{n}\right) \forall n \geq 1 \tag{20}
\end{equation*}
$$

Set $v_{n}=u_{n} /\left\|u_{n}\right\|, n \geq 1$ (where $\|\cdot\|$ is that defined by (5) with $\theta=q$). Obviously, $\left\|v_{n}\right\|=1 \forall n \geq 1$, so $\left(v_{n}\right)_{n}$ is bounded in W. Therefore, there exists $v_{0} \in W$ such that $v_{n} \rightharpoonup v_{0}$ in W (hence also in $W^{1, p}(\Omega)$ to the same $\left.v_{0}\right)$ and $v_{n} \rightarrow v_{0}$ in $L^{q}(\Omega)$ as well as in $L^{q}(\partial \Omega)$. In addition, we also have $\left\|v_{0}\right\|=1$.

Now, dividing (19) by $\left\|u_{n}\right\|^{p}$ and making use of $\left\|u_{n}\right\| \rightarrow \infty$ in W, we deduce $K_{p}\left(v_{n}\right) \rightarrow 0$, and so $v_{0} \equiv 0$ (see Remark 1). This contradicts the fact that $\left\|v_{0}\right\|=1$. Therefore, $\left(u_{n}\right)_{n}$ is bounded in W.

Step 3. $m_{\lambda}:=\inf _{w \in \mathcal{N}_{\lambda}} \mathcal{J}_{\lambda}(w)>0$.
Suppose the contrary, that $m_{\lambda}=0$ and let $\left(u_{n}\right)_{n} \subset \mathcal{N}_{\lambda}$ be a minimizing sequence for \mathcal{J}_{λ}. By Step $2,\left(u_{n}\right)_{n}$ is bounded in W, so for some $u_{0} \in W$,
$u_{n} \rightharpoonup u_{0}$ (on a subsequence) in W (and also weakly in $W^{1, p}(\Omega)$ to the same u_{0}), and $u_{n} \rightarrow u_{0}$ in both $L^{q}(\Omega)$ and $L^{q}(\partial \Omega)$. We have (see (19)) $K_{p}\left(u_{n}\right) \rightarrow 0$, hence $u_{0} \equiv 0$ (see Remark 1).

Define $w_{n}=u_{n} /\left\|u_{n}\right\|_{\partial \Omega, q}, n \geq 1$. Next, we are going to check that $\left(w_{n}\right)_{n}$ is bounded in W.

Indeed, let $u \in W^{1, q}(\Omega)$ be fixed. Clearly, we have

$$
\begin{equation*}
\int_{\partial \Omega} \gamma_{2}|u|^{q} d \sigma \leq\left\|\gamma_{2}\right\|_{\partial \Omega, \infty}\|u\|_{\partial \Omega, q}^{q} \tag{21}
\end{equation*}
$$

Now, taking into account (21), we have for every $\varepsilon>0$

$$
\begin{aligned}
& \|u\|^{q}-\int_{\partial \Omega} \gamma_{2}|u|^{q} d \sigma=\|u\|_{\partial \Omega, q}^{q}+\|\nabla u\|_{q}^{q}-\int_{\partial \Omega} \gamma_{2}|u|^{q} d \sigma \\
& \quad \leq\|u\|_{\partial \Omega, q}^{q}+\|\nabla u\|_{q}^{q}+\varepsilon\left\|\gamma_{2}\right\|_{\partial \Omega, \infty}\|u\|^{q}+\left\|\gamma_{2}\right\|_{\partial \Omega, \infty}\|u\|_{\partial \Omega, q}^{q},
\end{aligned}
$$

which implies

$$
\begin{align*}
& \left(1-\varepsilon\left\|\gamma_{2}\right\|_{\partial \Omega, \infty}\right)\|u\|^{q} \\
& \quad \leq\|\nabla u\|_{q}^{q}+\int_{\partial \Omega} \gamma_{2}|u|^{q} d \sigma+\left(\left\|\gamma_{2}\right\|_{\partial \Omega, \infty}+1\right)\|u\|_{\partial \Omega, q}^{q} \tag{22}\\
& \quad \leq K_{q}(u)+\left(\left\|\gamma_{2}\right\|_{\partial \Omega, \infty}+1\right)\|u\|_{\partial \Omega, q}^{q},
\end{align*}
$$

where we have used the assumption $\rho_{2} \geq 0$ a.e. on Ω.
Consequently, choosing $\varepsilon<1 /\left\|\gamma_{2}\right\|_{\partial \Omega, \infty}$ we obtain

$$
\begin{equation*}
\|u\|^{q} \leq C_{1} K_{q}(u)+C_{2}\|u\|_{\partial \Omega, q}^{q}, \tag{23}
\end{equation*}
$$

where $C_{1}=\left(1-\varepsilon\left\|\gamma_{2}\right\|_{\partial \Omega, \infty}\right)^{-1}, C_{2}=C_{1}\left(1+\left\|\gamma_{2}\right\|_{\partial \Omega, \infty}\right)$ are positive constants independent of u.

Dividing (20) by $\left\|u_{n}\right\|_{\partial \Omega, q}^{q}$ we get

$$
\begin{equation*}
K_{q}\left(w_{n}\right) \leq \lambda \text { for all } n \geq 1 \tag{24}
\end{equation*}
$$

Now, from (24) and (23), taking into account that $\left\|w_{n}\right\|_{\partial \Omega, q}=1$ for all $n \geq 1$, it follows that

$$
\begin{equation*}
\left\|w_{n}\right\|^{q} \leq C_{1} \lambda+C_{2} \text { for all } n \geq 1 . \tag{25}
\end{equation*}
$$

Hence, the sequence $\left(w_{n}\right)_{n}$ is bounded in W and therefore, on a subsequence, $w_{n} \rightharpoonup w_{0}$ in W for some $w_{0} \in W$ and strongly in both $L^{q}(\Omega)$ and $L^{q}(\partial \Omega)$, to the same w_{0}. and respectively to the trace of w_{0} on $\partial \Omega$.

Now, we divide (20) by $\left\|u_{n}\right\|_{\partial \Omega, q}^{p}$ and taking into account (24), (25) and $u_{n} \rightarrow 0$ in both $L^{q}(\Omega)$ and $L^{q}(\partial \Omega)$, we get

$$
\begin{equation*}
K_{p}\left(w_{n}\right)=\left\|u_{n}\right\|_{\partial \Omega, q}^{q-p}\left[\lambda-K_{q}\left(w_{n}\right)\right] \rightarrow 0 \tag{26}
\end{equation*}
$$

This implies $w_{n} \rightarrow 0$ in $W^{1, p}(\Omega)$, thus $w_{0} \equiv 0$. In particular, $w_{n} \rightarrow 0$ in $L^{q}(\partial \Omega)$ which contradicts the fact that $\left\|w_{n}\right\|_{\partial \Omega, q}=1$ for all $n \geq 1$. This contradiction shows that $m_{\lambda}>0$.

Step 4. There exists $u_{*} \in \mathcal{N}_{\lambda}$ such that $\mathcal{J}_{\lambda}\left(u_{*}\right)=m_{\lambda}$.
Let $\left(u_{n}\right)_{n} \subset \mathcal{N}_{\lambda}$ be a minimizing sequence, i.e., $\mathcal{J}_{\lambda}\left(u_{n}\right) \rightarrow m_{\lambda}$. In particular, the sequence $\left(u_{n}\right)_{n}$ satisfies (20) and is bounded in W (by Step 2) thus, on a subsequence, $u_{n} \rightharpoonup u_{*} \in W$ and strongly in $L^{q}(\Omega)$ and $L^{q}(\partial \Omega)$ (to the same u_{*}).

We claim that, $u_{*} \not \equiv 0$. First, (20) and (23) imply that

$$
\left\|u_{n}\right\|^{q} \leq C_{1} K_{q}\left(u_{n}\right)+C_{2}\left\|u_{n}\right\|_{\partial \Omega, q}^{q} \leq \lambda C_{1}\left\|u_{n}\right\|_{\partial \Omega, q}^{q}+C_{2}\left\|u_{n}\right\|_{\partial \Omega, q}^{q}
$$

thus,

$$
\begin{equation*}
0 \leq\left\|u_{n}\right\|^{q} \leq\left(C_{1}+\lambda C_{2}\right)\left\|u_{n}\right\|_{\partial \Omega, q}^{q} \quad \text { for all } n \geq 1 \tag{27}
\end{equation*}
$$

If $u_{*} \equiv 0$, we get from (27) that $\left\|u_{n}\right\| \rightarrow 0$ in W and also in $W^{1, p}(\Omega)$. Hence, (19) will give $m_{\lambda}=0$ thus, contradicting the statement of Step 3.
Using a reasoning similar to one used in the proof of Lemma 2, by passing to limit as $n \rightarrow \infty$ in (20), we find

$$
\begin{equation*}
K_{p}\left(u_{*}\right)+K_{q}\left(u_{*}\right) \leq \lambda\left\|u_{*}\right\|_{\partial \Omega, q}^{q} \tag{28}
\end{equation*}
$$

If we have equality in (28) then $u_{*} \in \mathcal{N}_{\lambda}$ and the proof is complete since in this case $\mathcal{J}_{\lambda}\left(u_{*}\right)=m_{\lambda}$. In what follows we show that the strict inequality

$$
\begin{equation*}
K_{p}\left(u_{*}\right)+K_{q}\left(u_{*}\right)<\lambda\left\|u_{*}\right\|_{\partial \Omega, q}^{q} \tag{29}
\end{equation*}
$$

is impossible. Let us assume by contradiction that (29) holds true. Let us check that there exists $\tau \in(0,1)$ such that $\tau u_{*} \in \mathcal{N}_{\lambda}$. For this purpose, we consider the function

$$
f:(0, \infty) \rightarrow \mathbb{R}, f(t):=t^{p-q} K_{p}\left(u_{*}\right)+K_{q}\left(u_{*}\right)-\lambda\left\|u_{*}\right\|_{\partial \Omega, q}^{q}
$$

As $K_{p}\left(u_{*}\right)>0$, we have $f(t) \rightarrow \infty$ as $t \rightarrow 0_{+}$. Since $f(1)<0$ (see (29)), there exists $\tau \in(0,1)$ such that $f(\tau)=0$ which implies $\tau u_{*} \in \mathcal{N}_{\lambda}$. But then,

$$
0<m_{\lambda} \leq \mathcal{J}_{\lambda}\left(\tau u_{*}\right)=\tau^{p} \frac{q-p}{q p} K_{p}\left(u_{*}\right) \leq \tau^{p} \lim _{n \rightarrow \infty} \mathcal{J}_{\lambda}\left(u_{n}\right)=\tau^{p} m_{\lambda}<m_{\lambda}
$$

which is impossible.

Lemma 8. If $p<q$ then, every $\lambda \in\left(\Lambda_{q}, \infty\right)$ is an eigenvalue of problem (1).

Proof. We claim that the minimizer $u_{*} \in \mathcal{N}_{\lambda}$ from Lemma 7 is an eigenfunction of problem (1) with corresponding eigenvalue λ.

Clearly, u_{*} is a solution of the constraint minimization problem

$$
\min _{v \in W \backslash\{0\}} \mathcal{J}_{\lambda}(v), \quad g_{q}(v):=K_{p}(v)+K_{q}(v)-\lambda\|v\|_{\partial \Omega, q}^{q}=0 .
$$

We can use Lemma 3, with $X=W, D=W \backslash\{0\}, Y=\mathbb{R}, f=\mathcal{J}_{\lambda}$. Note that all the assumptions of Lemma 3 are satisfied in our case, including the surjectivity of $g_{q}^{\prime}\left(u_{*}\right)$, i.e. for all $\xi \in \mathbb{R}$ there exists a $w \in W \backslash\{0\}$ such that $\left\langle g_{q}^{\prime}\left(u_{*}\right), w\right\rangle=\xi$. Indeed, if we choose in the above equations w of the form $w=\chi u_{*}, \chi \in \mathbb{R}$, and use $u_{*} \in \mathcal{N}_{\lambda}$, we obtain

$$
\chi\left(p K_{p}\left(u_{*}\right)+q\left(K_{q}\left(u_{*}\right)-\lambda\left\|u_{*}\right\|_{\partial \Omega, q}^{q}\right)\right)=\xi \Leftrightarrow \chi K_{p}\left(u_{*}\right)(p-q)=\xi
$$

which has a unique solution χ (by Remark 1). Thus $g_{q}^{\prime}\left(u_{*}\right)$ is indeed surjective and so Lemma 3 is applicable to the above constraint minimization problem. Therefore there exist $\lambda^{*}, \mu \in \mathbb{R}$, not both equal to zero, such that

$$
\lambda^{*}\left\langle\mathcal{J}_{\lambda}^{\prime}\left(u_{*}\right), v\right\rangle+\mu\left\langle g_{q}^{\prime}\left(u_{*}\right), v\right\rangle=0, \quad \forall v \in W .
$$

Testing with $v=u_{*}$ and using the fact that $u_{*} \in \mathcal{N}_{\lambda}$, we derive

$$
\mu(p-q) K_{p}\left(u_{*}\right)=0,
$$

which implies $\mu=0$. Therefore, $\lambda^{*} \neq 0$, hence

$$
\left\langle\mathcal{J}_{\lambda}^{\prime}\left(u_{*}\right), v\right\rangle=0 \forall v \in W,
$$

i. e. λ is an eigenvalue of problem (1).

Finally, we can see that Theorem 1 follows from Lemmas 6 and 8 above.

References

[1] L. Barbu, G. Moroşanu, Eigenvalues of the negative (p, q)-Laplacian under a Steklov-like boundary condition, Complex Var. Elliptic Equ. 64 (4) (2019), 685-700.
[2] Bobkov, V., Tanaka, M., On the Fredholm-type theorems and sign properties of solutions for (p, q) - Laplace equations with two parameters, Ann. Mat. Pura Appl. 4 (198) (2019), no. 5, 1651-1673.
[3] Bonheure, D., Colasuonno, F. and Fldes, J., On the Born-Infeld equation for electrostatic fields with a superposition of point charges, Ann. Mat. Pura Appl., 198(3) (2019), 749-772.
[4] Casas, E. and Fernández, L.A., A Green's formula for quasilinear elliptic operators, J. Math. Anal. Appl., 142 (1989), 62-73.
[5] L. Cherfils, Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with $p \& q-$ Laplacian, Commun. Pure Appl. Anal. 4 (2005), 9-22.
[6] Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Theory, Springer, New York, 2003.
[7] G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys. 5 (1964), 1252-1254.
[8] L.F.O. Faria, O.H. Miyagaki, D. Motreanu, D, Comparison and positive solutions for problems with (p, q)-Laplacian and convection term, Proc. Edinb. Math. Soc. 57 (2) (2014), 687-698.
[9] Gasinski, L., Papageorgiou, N.S., Nonlinear Analysis, Series in Mathematical Analysis and Applications, 9, Chapman \& Hall/CRC, Boca Raton, FL, 2005.
[10] Gibbons, G.W., Bern-Infeld particles and Dirichlet p-branes, Nuclear Phys. B 514 (1998), 603-639.
[11] T. Gyulov, G. Moroşanu, Eigenvalues of $-\left(\Delta_{p}+\Delta_{q}\right)$ under a Robin-like boundary condition, Ann. Acad. Rom. Sci. Ser. Math. Appl. 8 (2) (2016), 114-131.
[12] S. Marano, S. Mosconi, N.S. Papageorgiou, On a (p, q)-Laplacian problem with parametric concave term and asymmetric perturbation, Rend. Lincei Mat. Appl. 29 (2018), 109-125.
[13] N.S. Papageorgiou, C. Vetro, F. Vetro, Continuous spectrum for a two phase eigenvalue problem with an indefinite and unbounded potential, Differ. Equ. 268 (8) (2020), 4102-4118.
[14] N.S. Papageorgiou, P. Winkert, Applied Nonlinear Functional Analysis, Walter de Gruyter GmbH \& Co., Berlin, 2018.
[15] Struwe, M., Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, 1996.
[16] Szulkin, A., Weth, T., The Method of Nehary Manifold, Handbook of Nonconvex Analysis and Applications, Int. Press, Somerville, MA, 597632, 2010.
[17] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Mat. 50 (1986), 675-710; English translation in Math. USSR-Izv. 29 (1987), 33-66.

[^0]: *Accepted for publication on November 4-th, 2022
 ${ }^{\dagger}$ lbarbu@univ-ovidius.ro Ovidius University, Faculty of Mathematics and Informatics, 124 Mamaia Blvd., 900527 Constanţa, Romania;
 ${ }^{\ddagger}$ morosanu@math.ubbcluj.ro Babeş-Bolyai University, Faculty of Mathematics and Computer Science, 1 Mihail Kogǎlniceanu Str., 400084 Cluj-Napoca, Romania and Academy of Romanian Scientists, 3 Ilfov Str., Sector 5, Bucharest

