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Abstract

In this paper, we study and introduce a self adaptive method to-
gether with a Halpern iterative algorithm for approximating solutions
of multiple-sets split monotone variational inclusion problem which in-
cludes the multiple-sets split feasibility problem, split feasibility prob-
lem, split monotone variational inclusion problem and split variational
inclusion problem, to mention a few. Using our iterative algorithm, we
prove a strong convergence result for approximating the solution of the
aforementioned problems. Numerical examples on finite-dimensional
and infinite-dimensional spaces are displayed to illustrate the perfor-
mance of our iterative method. The result discussed in this article
extends and complements many related results in literature.
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1 Introduction

The Multiple-Set Split Feasibility Problem (MSSFP) is known to be a gener-
alization of Convex feasibility problem and two-sets Split Feasibility Problem
(SFP). The MSSFP is to find a point

x ∈ C =
N⋂
i=1

Ci such that Ax ∈ Q =
M⋂
j=1

Qj , (1)

where N and M are positive integers, Ci ⊂ RB, i = 1, 2, · · ·N and Qj ⊂
RK , j = 1, 2, · · ·M are closed convex, A is a B × K real matrix. When
N = M = 1, problem (1) becomes the SFP which is to find

x ∈ C such that Ax ∈ Q. (2)

The MSSFP was introduced by Censor et al. [11] to resolve the intensity
modulated radiation therapy treatment planning [10]. Several numerical al-
gorithms have been developed to solve MSSFP and its generalization, see
[8, 4, 6, 11, 17, 29]. Recently, Kim and Dinh [17] introduced the Multiple-set
Split Equilibrium Problem (MSSEP) which is an extension of the MSSFP
and proposed two new parallel extragradient algorithms for solving MSSEP
when the equilibrium bifunctions are Lipschitz-type continuous and pseu-
domonotone with respect to their solution sets. They proved a weak and a
strong convergence result to a solution of MSSEP.
Very recently, Nghia and Thuy [25] proposed a self adaptive method for solv-
ing the Multiple-set Split Variational inequality problem (MSSVIP) in real
Hilbert spaces. They proved a strong convergence result for approximating
the solution of MSSVIP.
Let H1 and H2 be real Hilbert spaces, f : H1 → H1, g : H2 → H2 be inverse
strongly monotone mappings and A : H1 → 2H1 , B : H2 → 2H2 be maximal
monotone mappings. Let F : H1 → H2 be a bounded linear operator. The
Split Monotone Variational Inclusion Problem (SMVIP) is to find x∗ ∈ H1

such that

0 ∈ f(x∗) +A(x∗) (3)

and

y∗ = Fx∗ ∈ H2 such that 0 ∈ g(y∗) +B(y∗). (4)

Recently, Moudafi [21] introduced the SMVIP which is a generalization of
split feasibility problem, split common fixed point problem, split variational
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inequality and split zero problem to mention a few, see [1, 6, 5, 8, 16, 18, 19,
22, 23] which have been studied extensively by many authors and applied to
solving many real life problems such as modelling of inverse problems arising
from phase retrievals and sensor networks in computerised tomography and
data compression. We denote by ΓA the solution set of (3)-(4).

Remark 1. Suppose f ≡ 0 and g ≡ 0 in (3)-(4), then we obtain the Split
Variational Inclusion Problem (SVIP), which is to find x∗ ∈ H1 such that

0 ∈ A(x∗), (5)

and

y∗ = Fx∗ ∈ H2 such that 0 ∈ B(y∗). (6)

Let Ci, i = 1, 2, · · · , N and Qj , j = 1, 2, · · ·M be nonempty, closed and
convex subsets of H1 and H2 respectively. In this article, we extend the
SMVIP (3)-(4) to Multiple-Sets Split Monotone Variational Inclusion Prob-
lem, which is to

find x∗ ∈ C =

N⋂
i=1

Ci such that (Ai + fi)
−1(0), (7)

for all i = 1, 2, · · ·N, and such that the point

y∗ = Fx∗ ∈ Q =

M⋂
j=1

Qj solves (Bj + gj)
−1(0), for all j = 1, 2, · · ·M. (8)

Remark 2. (i) If M = N = 1, A := A1, f := f1, B := B1 and g := g1,
then MSSMVIP (7)-(8) reduces to SMVIP (3)-(4).
It is well-known that the SMVIP can be applied to solve split minimiza-
tion problem, split saddle-point problem and split equilibrium problem,
to mention a few, see [21].

(ii) If Aix = fix = 0 for all x ∈ Ci, i = 1, 2, · · · , N and Bjy = gjy = 0 for
all y ∈ Qj , j = 1, 2, · · · ,M, then MSSMVIP (7)-(8) reduces to MSSFP
(1).

(iii) It can be seen from (1) and (ii) above that MSSMVIP (7)-(8) can be
reduced to (2).

Remark 3. We state our contributions as follows:
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1. We considered approximating the solution of MSSMVIP (7)-(8) in real
Hilbert spaces which is more general than the results of [1, 8, 5, 18,
19, 21, 24].

2. Our method uses self-adaptive stepsizes and the implementation of our
method does not require the prior knowledge of the norm of the bounded
linear operator F , (see [17]).

3. The sequences generated by our proposed method converges strongly
to the solution of the problem (7)-(8) which is desirable to the weak
convergence result obtained in [17].

Motivated by the results of [17], [21] and [25], we introduced the multiple-set
split monotone variational inclusion problem which includes the multiple-set
split feasibility problem, split feasibilty problem and split monotone varia-
tional inclusion problem as special cases. Using a Halpern iterative iterative
algorithm together with a self adaptive method, we prove a strong conver-
gence result for solving the aforementioned problems. We displayed some
numerical examples to illustrate the performance of our method. The result
discussed in this article extends and complements many related results on
SFP, SMVIP and MSSFP in literature.

2 Preliminaries

We state some known and useful results which will be needed in the proof
of our main theorem. In the sequel, we denote strong and weak convergence
by ”→” and ”⇀” respectively.
Let C be a nonempty closed and convex subset of a real Hilbert space H.
Recall that a mapping T : H → H is said to be

1. nonexpansive, if

||Tx− Ty|| ≤ ||x− y||, ∀ x, y ∈ H,

2. quasi-nonexpansive, if Fix(T ) 6= ∅ and

||Tx− q|| ≤ ||x− q||, ∀ x ∈ H, q ∈ Fix(T ),

where Fix(T ) = {x ∈ C : Tx = x}.
A mapping M : C → C is said to be
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(i) monotone, if
〈Mx−My, x− y〉 ≥ 0, ∀ x, y ∈ C,

(ii) α− inverse strongly monotone (ism), if there exists a constant α > 0
such that

〈Mx−My, x− y〉 ≥ α‖Mx−My‖2, ∀ x, y ∈ C,

(iii) firmly nonexpansive, if

〈Mx−My, x− y〉 ≥ ‖Mx−My‖2, ∀ x, y ∈ C,

.

If M is a multi-valued mapping, i.e M : H → 2H , then M is called monotone,
if

〈x− y, u− v〉 ≥ 0 ∀ x, y ∈ H,u ∈M(x), v ∈M(y)

and M is maximal monotone, if the graph G(M) of M defined by

G(M) =: {(x, y) ∈ H ×H : y ∈M(x)}

is not properly contained in the graph of any other monotone mapping. It
is generally known that M is maximal if and only if for (x, u) ∈ H×H, 〈x−
y, u− v〉 ≥ 0 for all (y, v) ∈ G(M) implies u ∈ M(x). It is well-known that
I + λM is onto, and the resolvent operator JMλ associated with M and λ is
the mapping JMλ : H → H defined by

JMλ (x) := (I + λM)−1x, x ∈ H,λ > 0. (9)

It is well known that the resolvent operator JMλ is single valued, nonexpan-
sive and 1-inverse strongly monotone and the solution of (3) is equivalent to
fixed point of JMλ (I − λf), ∀ λ > 0, see [7].
The metric projection PC is a map defined on H onto C which assign to
each x ∈ H, the unique point in C, denoted by PCx such that

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.
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It is well known that PCx is characterized by the inequality 〈x − PCx, z −
PCx〉 ≤ 0, ∀ z ∈ C and PC is a firmly nonexpansive mapping. For more
information on metric projections, (see [14]) and the references therein.

Lemma 1. [12] Let H be a real Hilbert space, then ∀ x, y ∈ H and α ∈ (0, 1),
we have

(i) 2〈x, y〉 = ||x||2 + ||y||2 − ||x− y||2 = ||x+ y||2 − ||x||2 − ||y||2,

(ii) ||αx+ (1− α)y||2 = α||x||2 + (1− α)||y||2 − α(1− α)||x− y||2,

(iii) ||x+ y||2 ≤ ||x||2 + 2〈y, x+ y〉

Lemma 2. [21] Let Ai, i = 1, 2 be maximal monotone mappings and fi, i =
1, 2 be ηi-inverse strongly monotone mappings. Suppose constants ρi > 0, i =
1, 2 and ρi ∈ (0, 2ηi), then

x solves (3)− (4)⇔ x = JA1
ρ1 (1− ρ1f1)x and Fx = JA2

ρ2 (I − ρ2f2)Fx.

where F is a bounded linear operator.

Lemma 3. [13] Let H be a real Hilbert space. Let {xi, i = 1, · · ·m} ⊂ H.

For αi ∈ (0, 1), i = 1, · · ·m such that
m∑
i=1

αi = 1, the following identity holds:

||
m∑
i=1

αixi||2 =

m∑
i=1

αi||xi||2 −
m∑

i,j=1,i 6=j
αiαj ||xi − xj ||2.

Definition 1. Let H be a real Hilbert space and T : H → H be a mapping.
Then, T is said to be demiclosed at 0 if for any sequence {xn} ⊂ H with
xn ⇀ x∗, and ||xn − T (xn)|| → 0, we have x∗ = Tx∗.

Lemma 4. [15] Assume that T is a nonexpansive mapping of a closed and
convex subset C of a Hilbert space H into H. Then the mapping IH − T is
demiclosed on C, that is, whenever {xn} is a sequence in C which weakly
converges to some point x∗ ∈ C and the sequence {(IH − T )xn} strongly to
some y, it follows that (IH − T )x∗ = y.

Lemma 5. [26] Let {an} be a sequence of positive real numbers, {αn} be

a sequence of real numbers in (0, 1) such that
∞∑
n=1

αn = ∞ and {dn} be a

sequence of real numbers. Suppose that

an+1 ≤ (1− αn)an + αndn, n ≥ 1.
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If lim sup
k→∞

dnk
≤ 0 for all subsequences {ank

} of {an} satisfying the condition

lim inf
k→∞

{ank+1 − ank
} ≥ 0,

then, lim
n→∞

an = 0.

3 Main Results

In this section, we introduce a Halpern iterative algorithm for approximating
a solution of multiple-sets split monotone variational inclusion problem and
prove its strong convergence in the framework of real Hilbert spaces. We
state the following assumptions that are needed in our result.

Assumption 1. 1. Let C and Q be nonempty closed convex subsets of
H1 and H2, respectively. Suppose fi : H1 → H1, i = 1, 2, · · · , N and
gj : H2 → H2, j = 1, 2, · · ·M are σfi and σgj− inverse strongly mono-
tone mappings respectively.

2. Let F : H1 → H2 be a bounded linear operator with adjoint F ∗. Let
Ai : H1 → 2H1 , i = 1, 2, · · ·N and Bj : H2 → 2H2 , j = 1, 2, · · ·M be
multi-valued maximal monotone mappings respectively.

3. Assume that the solution set of MSSMVIP (7) denoted Ω 6= ∅.

4. The sequence {αn,i}, {βn,j}, {γn,i}, {µn}, {ηn} and {φn} are sequences
in (0, 1) and the parameter λ satisfies the following conditions:

(i) lim
n→∞

φn = 0,
∞∑
n=1

φn =∞;

(ii) {αn,i}, {βn,j} ⊂ [ρ, ρ], with 0 < ρ ≤ ρ ≤ 1 and
N∑
i=1

αn,i =

M∑
j=1

βn,j = 1,

(iii) {ηn} ∈ (0, k) for k > 0,

(iv) 0 < λ ≤ 2 min{σfi , σgj : i = 1, 2, · · ·N, j = 1, 2, · · ·M},
(v) 0 < lim inf

n→∞
γn,i ≤ lim sup

n→∞
γn,i < 1.



542 H.A. Abass

Algorithm 1. Halpern Iterative Method for Solving Multiple-Sets
Split Monotone Variational Inclusion Problem.
Define a sequence {xn}∞n=0 generated iteratively by chosen u, x1 ∈ H1, such
that
Step 1: Compute

un,i = γn,ixn + (1− γn,i)JAi
λ (IH1 − λfi)xn, i = 1, 2, · · · , N.

Step 2: Set

un =

N∑
i=1

αn,iun,i.

Step 3: Compute

zn,j = J
Bj

λ (IH2 − λgj)Fun, j = 1, 2, · · ·M.

Step 4: Set

zn =

m∑
j=1

βn,jzn,j .

Step 5: Take

tn = un + ξnF
∗(zn − Fun),

where the step size ξn is denoted by

ξn = µn
||zn − Fun||2

||F ∗(zn − Fun)||2 + ηn
. (10)

Step 6: Compute

xn+1 = φnu+ (1− φn)tn, set n := n+ 1 and go to step1.

Lemma 6. Suppose that Assumptions 1 holds, then {xn} is bounded.

Proof Let p ∈ Ω, then using the nonexpansive property of JAi
λ (IH1 −

λfi), we have from Lemma 1 (ii) that∥∥un,i − p∥∥2
=

∥∥γn,ixn + (1− γn,i)
[
JAi
λ (IH1 − λfi)xn − p

]∥∥2

≤ γn,i||xn − p||2 + (1− γn,i)‖JAi
λ (IH1 − λfi)xn − p‖2

− γn,i(1− γn,i)‖xn − JAi
λ (IH1 − λfi)xn‖2

= ‖xn − p‖2 − γn,i(1− γn,i)‖xn − JAi
λ (IH1 − λfi)xn‖2(11)

≤ ‖xn − p‖2. (12)
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By applying step 2 of (1) and Lemma (3), we get

‖un − p||2 = ‖
N∑
i=1

αniun,i − p‖2 = ‖
N∑
i=1

αn,i(un,i − p)‖2

=

N∑
i=1

αn,i‖un,i − p‖2 −
N∑

i,j=1,i 6=j
αn,iαn,j‖un,i − un,j‖2

≤ ‖xn − p‖2 −
N∑
i=1

αn,iγn,i(1− γn,i)‖xn − JAi
λ (IH1 − λfi)xn‖2

≤ ||xn − p||2. (13)

From step 3, step 4 and Lemma 3, one has

‖zn − Fp‖2 = ‖
M∑
j=1

βn,j(zn,j − Fp)‖2

=

M∑
j=1

βn,j‖zn,j − Fp‖2 −
M∑

j,k=1,j 6=k
βn,jβn,k‖zn,j − zn,k‖2

≤
M∑
j=1

βn,j‖J
Bj

λ (IH2 − λgj)Fun − Fp‖2. (14)

By definition of tn in step 5 of (1) and (14), we have

‖tn − p‖2 = ‖un + ξnF
∗(zn − Fun)− p‖2

= ‖un − p‖2 + ξ2
n‖F ∗(zn − Fun)‖2 + 2ξn〈un − p, F ∗(zn − Fun)〉

= ‖un − p‖2 + ξ2
n‖F ∗(zn − Fun)‖2 + 2ξn〈Fun − Fp, (zn − Fun)〉

= ||un − p||2 + ξ2
n‖F ∗(zn − Fun)‖2 + ξn

[ M∑
j=1

βn,j
(
‖JBj

λ (IH2 − λgj)Fun

− JBj

λ (IH2 − λgj)Fp‖2
)
− ‖Fun − Fp‖2 − ‖zn − Fun‖2

]
(15)
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≤ ‖un − p‖2 + ξ2
n‖F ∗(zn − Fun)‖2

+ ξn

(
‖Fun − Fp‖2 − ‖Fun − Fp‖2 − ‖zn − Fun‖2

)
= ‖un − p‖2 + ξ2

n‖F ∗(zn − Fun)‖2 − ξn||zn − Fun‖2

≤ ‖un − p‖2 + µ2
n

‖zn − Fun‖4

(‖F ∗(zn − Fun‖2 + ηn)2
× ((‖F ∗(zn − Fun‖2 + ηn))

− µn
‖zn − Fun‖4

‖F ∗(zn − Fun‖2 + ηn)

= ‖un − p‖2 − µn(1− µn)
‖zn − Fun‖4

‖F ∗(zn − Fun‖2 + ηn)
≤ ‖un − p‖2.

Applying step 6 of (1), (13) and (15), we obtain that

‖xn+1 − p‖ = ‖φnu+ (1− φn)tn − p‖
≤ φn‖un − p‖+ (1− φn)‖tn − p‖
≤ φn‖un − p‖+ (1− φn)‖un − p‖
≤ φn‖un − p‖+ (1− φn)‖xn − p‖
≤ max{‖u− p‖, ‖x1 − p‖}
...

≤ max{‖u− p‖, ‖xn − p‖}.

Hence, the sequence {xn} is bounded. Consequently, it follows from (11)-
(15) that {un}, {tn} and {zn} are also bounded.

Theorem 1. Suppose that Assumption 1 holds, then the sequence {xn}
generated by (1) converges strongly to z = PΩu, where PΩ is the metric
projection of H1 onto Ω.

Proof From Algorithm 1, we obtain

‖xn+1 − p‖2 = 〈φnu+ (1− φn)tn − p, xn+1 − p〉
= (1− φn)〈tn − p, xn+1 − p〉+ φn〈u− p, xn+1 − p〉

≤ (1− φn)

2

(
‖xn+1 − p‖2 + ‖tn − p‖2

)
+ φn〈u− p, xn+1 − p〉.
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This implies from (11) and (15) that

‖xn+1 − p‖2 ≤ (1− φn)‖un − p‖2 − µn(1− µn)
‖zn − Fun‖4

‖F ∗(zn − Fun‖2 + ηn)

+ 2φn〈u− p, xn+1 − p〉

≤ (1− φn)‖xn − p‖2 − (1− φn)

N∑
i=1

αn,iγn,i(1− γn,i)

· ‖xn − JAi
λ (IH1 − λfi)xn‖2

− µn(1− µn)
‖zn − Fun‖4

‖F ∗(zn − Fun‖2 + ηn)
+ 2φn〈u− p, xn+1 − p〉

≤ (1− φn)‖xn − p‖2 + φn
(
2〈u− p, xn+1 − p〉

)
= (1− φn)‖xn − p‖2 + φndn, (16)

where dn = 2〈u−p, xn+1−p〉. According to Lemma 5, to conclude our proof.
It sufficies to show that lim sup

k→∞
dnk
≤ 0 for every subsequence {‖xnk

− p‖}

satisfies the condition

lim inf
k→∞

(
‖xnk+1

− p‖ − ‖xnk
− p‖

)
≥ 0. (17)

To prove this, suppose that {||xnk
− x∗||} is a subsequence of {||xn − x∗||}

such that (17) holds. Then

lim inf
k→∞

(
||xnk+1 − x∗||2 − ||xnk

− x∗||2
)

= lim inf
k→∞

(
(||xnk+1 − x∗|| − ||xnk

− x∗||)(||xnk+1 − x∗||+ ||xnk
− x∗||)

)
≥ 0.

(18)
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From (16), we obtain that

lim sup
k→∞

(
− (1− φnk

)
N∑
i=1

αnk,iγnk,i(1− γnk,i)‖xnk
− JAi

λ (IH1 − λfi)xnk
‖2

− µnk
(1− µnk

)
‖znk

− Funk
‖4

‖F ∗(znk
− Funk

‖2 + ηnk
)

)
≤ lim sup

k→∞

(
(1− φnk

)||xnk
− x∗||2 − ||xnk+1 − x∗||2

)
+ lim sup

k→∞

(
2φnk

〈u− x∗, xnk+1 − x∗〉
)

≤ lim sup
k→∞

(
||xnk

− x∗||2 − ||xnk+1 − x∗||2
)

+ lim sup
k→∞

(
2φnk

〈u− x∗, xnk+1 − x∗〉
)

= − lim inf
k→∞

(
||xnk+1 − x∗||2 − ||xnk

− x∗||2
)
≤ 0. (19)

Thus, by applying conditions (i) and (iii) of Algorithm 1, we get

lim
k→∞

‖(IH1 − JAi
λ (I − λfi)xnk

)‖ = 0, i = 1, 2, · · ·N. (20)

and

lim
k→∞

‖znk
− Funk

‖ = 0. (21)

From step 1 of Algorithm 1, we obtain

‖unk,i − xnk
‖ = (1− γnk,i)

∥∥∥∥(IH1 − JAi
λ (IH1 − λfi)

)
xnk

∥∥∥∥ = 0, l→∞, (22)

which also implies that

lim
k→∞

‖unk
− xnk

‖ = lim
k→∞

N∑
i=1

αnk,i‖unkj
− xnkj

‖ = 0. (23)

By applying step 3, step 4 of Algorithm 1, one get

lim
k→∞

‖(IH2 − JBj

λ (IH2 − λgj))Funk
‖ = 0, j = 1, 2, · · ·M. (24)

Using step 5 of (1), one get that

‖tnk
− unk

‖ = ξnk
‖F ∗(znk

− Funk
)‖.
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By applying (21) and the property of the adjoint operator F ∗, we obtain

lim
k→∞

‖tnk
− unk

‖ = 0. (25)

From (23) and (25), one get

lim
k→∞

‖tnk
− xnk

‖ = 0. (26)

We obtain from the step 6 of Algorithm 1 and (26) that

lim
k→∞

‖xnk+1
− xnk

‖ = lim
k→∞

(1− φnk
)‖tnk

− xnk
‖ = 0. (27)

Since {xnk
} is bounded, there exists a subsequence {xnkl

} of {xnk
} which

converges weakly to x∗. Also, from (23) and (26), there exist subsequences
{unkl

} of {unk
} and {tnkl

} of {tnk
} which converge weakly to x∗, respectively.

From (20), Lemma 2 and Lemma 4, we obtain that 0 ∈
N⋂
i=1

(fi(x
∗)+Ai(x

∗)).

Using the fact that F is a bounded linear operator, we have that Fxnkl
⇀

Fx∗. Also, by applying Lemma 2, Lemma 4 and (24), we obtain that 0 ∈
M⋂
j=1

(gj(Fx
∗) +Bj(Fx

∗)). Hence, we conclude that x∗ ∈ Ω.

Let z = PΩu, suppose that {xnkl
} is a subsequence of {xnk

} such that
{xnkl

}⇀ x∗ ∈ Ω, then we obtain

lim sup
k→∞

〈u− z, xnk
− z〉 = lim

l→∞
〈u− z, xnkl

− z〉

= 〈u− z, x∗ − z〉 ≤ 0. (28)

On substituting (28) into (16), we obtain that lim sup
k→∞

dnk
≤ 0. Thus by

applying Lemma 5 to (16), we conclude that ||xn − z|| → 0 as n → ∞.
Therefore, {xn} converges strongly to z = PΩu.
If M = N = 1 in Algorithm 1, we have the following result.

Corollary 1.

Algorithm 2. Halpern Iterative Method for Solving Split Mono-
tone Variational Inclusion Problem.
Define a sequence {xn}∞n=0 generated iteratively by chosen u, x1 ∈ H1, such
that
Step 1: Compute un = γnxn + (1− γn)JAλ (IH1 − λf)xn,
Step 2: Compute zn = JBλ (IH2 − λg)Fun,
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Step 3: Take tn = un + ξnF
∗(zn − Fun), where the step size ξn is denoted

by

ξn = µn
||zn − Fun||2

||F ∗(zn − Fun)||2 + ηn
. (29)

Step 4: Compute xn+1 = φnu+ (1−φn)tn, set k := k+ 1 and go to step 1.

Suppose that Assumptions 1-4 and conditions (i)-(iv) of (refAlg) holds for
i = j = 1, then {xn} converges strongly to z = PΩu.

4 Numerical Example

Example 1. Let H1 = H2 = R. For every i = 1, 2, · · ·N and j = 1, 2, · · ·M,
let fi : R → R be defined by fix = ix

4 +(i+1) for all x ∈ H1 and gj : `2 → `2
be defined by gjy = jy

2 for all y ∈ H2. It is easy to observe that fi is 4
i−

inverse strongly monotone mapping and gj is 2
j− inverse strongly monotone

mapping. Let Ai : R → 2R be defined by Aix = ix
4 for all x ∈ R and

Bj : R → 2R be defined by Bjy = jy
2 for all y ∈ R. Let Fx = x, for

all x ∈ R. In our method, we take φn = 1
n+5 , γn,i = 0.5, ηn = 0.1, µn =

0.9, αn,i = 1
M , βn,j = 1

N and λ = 1.It is easy to see that JAi
λ x = 4x

4+λi and

J
Bj

λ (x) = x
1+3λj respectively. Let En = ‖xn+1−xn‖2 = 10−4, be the stropping

criterion and checking the cases for different values of N and M with the
initial points x1 = 0.5 for

Case 1 N = 5 and M = 10;

Case 2 N = 10 and M = 10;

Case 3 N = 15 and M = 20;

Case 4 N = 20 and M = 10;

The results of this experiment are reported in Figure 1.

Example 2. Let H1 = H2 = `2 be the linear space whose elements con-
sist of all 2-summable sequence (x1, x2, · · · , xt, · · · ) of scalars, i.e. `2 ={
x : x = (x1, x2, · · · , xt, · · · ) and

∞∑
t=1
|xt|2 < ∞

}
with an inner product

〈., .〉 : `2 × `2 → R defined by 〈x, y〉 =
∞∑
t=1

xtyt where x = {xt}∞t=1 ∈ `2

and y = {yt}∞t=1 ∈ `2, and a norm ‖.‖ : `2 → R defined by ‖x‖2 =
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Figure 1: Example 1. Top left: Case 1, Top right: Case 2, Bottom left:
Case 3, Bottom right: Case 4.

(
∞∑
t=1
|xt|2)

1
2 , where x = {xt}∞t=1 ∈ `2. Let F : `2 → `2 be defined by

Fx = (x12 ,
x2
2 , · · · ,

xt
2 , · · · ) for all x = {xt}∞t=1 ∈ `2, and F ∗ : `2 → `2

be defined by F ∗x = ( e12 ,
e2
2 , · · · ,

et
2 , · · · ) for all x = {et}∞t=1 ∈ `2. For

every i = 1, 2, · · ·N, let the mapping fi : `2 → `2 be defined by fix =
(2x1

3i ,
2x2
3i , · · ·

2xt
3i , · · · ) and for every j = 1, 2, · · ·M, let the mapping gj :

`2 → `2 be defined by gjy = (2y1−1
4j , 2y2−1

4j , · · · , 2yt−1
4j , · · · ), respectively for

all x = {xt}∞t=1 ∈ `2 and y = {yt}∞t=1 ∈ `2. For every i = 1, 2, · · · , N and
j = 1, 2, · · · ,M,, let Ai : `2 → `2 be defined by Aix = ( ix14 ,

ix2
4 , · · · ,

ixt
4 , · · · )

and Bj : `2 → `2 be defined by Bjy = (3jy1, 3jy2, · · · 3jyt, · · · ), for all
x = {xt}∞t=1 ∈ `2 and y = {yt}∞t=1 ∈ `2, respectively. In this experiment, we
take φn = 1

n+5 , γn,i = 0.5, ηn = 0.1, µn = 0.9, αn,i = 1
M , βn,j = 1

N and λ = 1.
Checking the cases for different values of x1 and fix the values of N and M .
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Let En = ‖xn+1− xn‖2 = 10−4, be the stropping criterion, then we consider
the following cases for initial values of x0 and x1 :

Case 1 x1 = (1.5, 0.5, 1.5, · · · );

Case 2 x1 = (0.75, 0.896, · · · );

Case 3 x1 = (−1.50,−2.09, · · · );

Case 4 x1 = (−3.6,−1.9, · · · ).

The results of this experiment are reported in Figure 2. Stopping.
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Figure 2: Example 2. Top left: Case 1, Top right: Case 2, Bottom left:
Case 3, Bottom right: Case 4.
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