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Abstract

The paper originates from the early ideas of A. D. Myshkis and his
co-workers and of K. L. Cooke and his co-worker. These ideas send
to a one-to-one correspondence between lossless and/or distortionless
propagation described by nonstandard boundary value problems and
a system of coupled differential and difference equations with deviated
argument. In this way any property obtained for one mathematical ob-
ject is automatically projected back on the other one. This approach
is considered here for certain engineering applications. The common
feature of these applications is the critical stability of the difference
operator associated with the system with deviated argument obtained
for each of the aforementioned applications. In fact the associated sys-
tems are of neutral type and, according to the assumption of Hale,
only strong stability of the difference operator ensures robust asymp-
totic stability with respect to the delays. If the difference operator is
in the critical case, the stability becomes fragile with respect to the
delays. Based on some old results in the field, a conjecture concerning
the (quasi)-critical modes of the system is stated; also a connection
with the so called dissipative boundary conditions is suggested.
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1 Introduction. The methodology

Those who know the early history of the differential equations with devi-
ated argument in the XXth century know also the very first book on such
equations - the book of of A. D. Myshkis [1], more precisely its first edition
of 1951, because a more recent revised edition was published in 1972. This
book contains no reference to applications of such equations but another
book published after 4 years does [2]. It is however not our intention to
draw a history of these equations over the last 7 decades, but to point out
a certain line of research and studies. It is firstly interesting to point out
a series of three papers [3, 4, 5] where dynamics of controlled structures of
thermal power engineering incorporated rather long steam or oil pipes in-
ducing propagation effects. Linearization and use of the Laplace transform
suggested characteristic quasi-polynomials which were specific to equations
with deviated arguments with pointwise delays of neutral type.

Much later, in the 60ies of XXth century, a certain research made at
IBM under the guidance of R. K. Brayton displayed similar aspects but for
electrical circuits containing lossless transmission lines [6, 7, 8, 9]. Later
it was pointed out [10] that pointwise delays are modeling what is called
lossless and/or distortionless propagation.

The mathematical theory connected to those aspects grew in parallel.
Firstly, the papers of Myshkis and his co-workers were published [11, 12]. In
these papers there were considered hyperbolic partial differential equations
in the plane - having as independent variables time and one space variables -
in fact 1D systems. Their boundary conditions were non-standard since they
contained Volterra operators. Somehow later the papers of K. L. Cooke were
published: the first one, co-authored by D. W. Krumme, had clear reference
to electrical circuits containing lossless transmission lines [13]. The second
one [14] - less circulated (it looked more as a seminar exposition, with in-
complete proofs) has little reference to applications. Worth mentioning that
the papers of Cooke contain boundary problems of non-standard type but
whose boundary conditions contain only differential equations, thus being
less general than those considered by Myshkis and his co-workers.

Now, regardless the generality of the non-standard boundary conditions,
the methodology of the two groups of papers is the same. Namely, making
use of the fact that the Riemann invariants of the problems are constant
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along the characteristics, a system of functional equations is associated to
the boundary value problem for hyperbolic partial differential equations.
The type of the functional equations is induced by the type of operators
involved in the non-standard boundary conditions.

This association of the system of functional equations is one-to-one in the
sense that a one-to-one correspondence is established between the solutions
of the boundary value problem for the hyperbolic partial differential equa-
tions (with given initial conditions also) and the initial value (Cauchy) prob-
lem for the associated functional equations. The aforementioned one-to-one
correspondence is far going since any property obtained for one mathemat-
ical object is automatically projected back on the other. Some advantages
of this aspect will be discussed in the next section.

2 A basic theorem and its consequences

We shall refer here to [14]. The basic result of it is given only with a sketch of
half-proof and, in our opinion, lacked rigor. For this reason we re-considered
it in [15], endowed with a complete rigorous proof. Here we shall reproduce
what is necessary to understand the methodology mentioned in the previous
section. Consider the following initial boundary value problem

∂u+

∂t
+ τ+(λ, t)

∂u+

∂λ
= Φ+(λ, t)

∂u−

∂t
+ τ−(λ, t)

∂u−

∂λ
= Φ−(λ, t), 0 ≤ λ ≤ 1, t ≥ t0,

m∑
k=0

[
a+k (t)

dk

dtk
u+(0, t) + a−k (t)

dk

dtk
u−(0, t)

]
= f0(t)

m∑
k=0

[
b+k (t)

dk

dtk
u+(1, t) + b−k (t)

dk

dtk
u−(1, t)

]
= f1(t)

u±(λ, t0) = ω±(λ) , 0 ≤ λ ≤ 1 ; τ+(λ, τ) > 0 , τ−(λ, τ) < 0

(1)

and the two families of characteristics

dt

dλ
=

1

τ±(λ, t)
, τ+(λ, t) > 0 , τ−(λ, t) < 0 (2)

In (1) and (2) we have τ+ : [0, 1]× [t0,∞)→ R+ and τ− : [0, 1]× [t0,∞)→
R−. Let t±(σ;λ, t) be the two characteristics crossing some point (λ, t) of
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the strip [0, 1]× [t0, t1]. As it will appear in the sequel, the current variable
σ is in [0, 1] or in some sub-interval of it. Define

T+(t) := t+(1; 0, t)− t , T−(t) := t−(0; 1, t)− t, (3)

t ∈ [t0, t1], called propagation times along the characteristics or forward
and backward propagation time respectively. Also (2) shows that t+(·;λ, t)
is increasing hence it can be extended “to the right” up to σ = 1; the
other characteristic t−(·;λ, t) is strictly decreasing hence it can be extended
“to the left” up to σ = 0. Considering the “progressive (forward) wave”
u+(λ, t) along the increasing characteristic and the “reflected (backward)
wave” u−(λ, t) along the decreasing one, then integrating from λ to 1 and
from 0 to λ respectively, the following is obtained

u+(λ, t) = u+(1, t+(1;λ, t))−
∫ 1

λ

Φ+(σ, t+(σ;λ, t))

τ+(σ, t+(σ;λ, t))
dσ

u−(λ, t) = u−(0, t−(0;λ, t)) +

∫ λ

0

Φ−(σ, t−(σ;λ, t))

τ−(σ, t−(σ;λ, t))
dσ

(4)

When the two characteristics can be extended on the entire segment [0, 1] i.e.
t+(·;λ, t) - “to the left” and t−(·;λ, t) “to the right”, the pair (4) becomes

u+(0, t) = u+(1, t+ T+(t))−
∫ 1

0

Φ+(σ, t+(σ; 0, t))

τ+(σ, t+(σ; 0, t))
dσ

u−(1, t) = u−(0, t+ T−(t)) +

∫ 1

0

Φ−(σ, t−(σ; 1, t))

τ−(σ, t−(σ; 1, t))
dσ

(5)

(with (3) also taken into account). Equalities (5) are in fact some functional
relations between the boundary values of the forward and backward waves.
Denoting

y+(t) := u+(1, t) , Ψ+(t) :=

∫ 1

0

Φ+(σ, t+(σ; 0, t))

τ+(σ, t+(σ; 0, t))
dσ

y−(t) := u−(0, t) , Ψ−(t) :=

∫ 1

0

Φ−(σ, t−(σ; 1, t))

τ−(σ, t−(σ; 1, t))
dσ

(6)
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it follows that (y+(t), y−(t)) thus defined satisfy the following system of
differential equations with deviated argument

m∑
k=0

[
a+k (t)

dk

dtk
y+(t+ T+(t)) + a−k (t)

dk

dtk
y−(t)

]
= f0(t) +

m∑
k=0

a+k (t)
dk

dtk
Ψ+(t)

m∑
k=0

[
b+k (t)

dk

dtk
y+(t) + b−k (t)

dk

dtk
y−(t+ T−(t))

]
= f1(t)−

m∑
k=0

b−k (t)
dk

dtk
Ψ−(t)

(7)
Considering (7) as an independent mathematical object, its solutions can
be constructed by steps for t > t0 + max{T−(t0), T

+(0)}. Some initial
conditions are needed for this procedure: they can be obtained starting
from the initial conditions of (1) as follows.

Consider the case when t+(·;λ, t) cannot be extended any longer up to
λ = 0 but only to the point where the characteristic curve crosses the ab-
scissa line t = t0 i.e. σ̂ = λ̂(λ, t, t0) deduced from t+(σ̂;λ, t) = t0. Consider
next the first equality of (4) and write it down for λ = λ̂, t = t0

u+(λ̂, t0) = u+(1, t+(1; λ̂, t0))−
∫ 1

λ̂

Φ+(σ, t+(σ; λ̂, t0))

τ+(σ, t+(σ; λ̂, t0))
dσ

From here, using (6) and the initial conditions, it follows that:

y+0 (t+(1;λ, t0)) = ω+(λ) +

∫ 1

λ

Φ+(σ, t+(σ;λ, t0))

τ+(σ, t+(σ;λ, t0))
dσ (8)

for 0 ≤ λ ≤ 1, t0 ≤ t+(1;λ, t0) ≤ t0 + T+(t0). Analogously

y−0 (t−(0;λ, t0)) = ω−(λ)−
∫ λ

0

Φ−(σ, t−(σ;λ, t0))

τ−(σ, t−(σ;λ, t0))
dσ (9)

for 0 ≤ λ ≤ 1, t0 ≤ t−(0;λ, t0) ≤ t0 + T−(t0). Obviously y±0 (·) should be
viewed together with their derivatives and this requires sufficiently smooth
initial conditions ω±(·) and sufficiently smooth functions τ±(λ, t). A discus-
sion on the smoothness aspects will follow when discussing the type of the
associated equations with deviated arguments.

Conversely, equalities (4) suggest the representation formulae

u+(λ, t) = y+(t+(1;λ, t))−
∫ 1

λ

Φ+(σ, t+(σ;λ, t))

τ+(σ, t+(σ;λ, t))
dσ

u−(λ, t) = y−(t−(0;λ, t)) +

∫ λ

0

Φ−(σ, t−(σ;λ, t))

τ−(σ, t−(σ;λ, t))
dσ

(10)
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for the solutions of (2). The following result is thus valid

Theorem 1. Consider the initial boundary value problem (2) with τ±(λ, t)
sufficiently smooth e.g. of class Cm+1 on [0, 1]× [t0, t1] and ω±(·) on [0, 1].
Then, if u±(λ, t) is a classical solution of (1), then y±(t) defined by (6) is
a solution of (7) with the initial conditions defined by (8), (9). Conversely,
let y±(t) be a sufficiently smooth solution of (7) with some initial conditions
y±0 (t) defined on [t0, t0+T±(t0)]. Then u±(λ, t) defined by (10) is a (possibly
discontinuous) classical solution of (7) with the initial conditions defined also
by (10) computed at t = t0.

The following remark of [14] is quite suggestive. Define the integers

L+ = max{k : a+k (t) 6= 0} , L− = max{k : b−k (t) 6= 0}

K+ = max{k : b+k (t) 6= 0} , K− = max{k : a−k (t) 6= 0}

M = L+ + L− − (K+ +K−)

(11)

According to the sign of M , system (7) belongs to one of the three classes of
systems with deviated arguments: if M > 0, it is of delayed type; if M < 0,
it is of advanced type; if M = 0, it is of neutral type. This assertion is
consistent with all definitions and classifications from the standard refer-
ence [16, 17, 18], especially with the classification of G. A. Kamenskii (see
in [17]). The aforementioned facts allow the assertion the the most natural
source of equations with deviated argument is represented by the boundary
value problems for hyperbolic partial differential equations. The reference list
as well as the motivating Section 1, Chapter 1 of [18] speak for this state-
ment. Worth mentioning also that the very first paper on a certain equation
with deviated argument, belonging to J. Bernoulli [19], refers to the equation
of the vibrating string - a hyperbolic partial differential equation.

It is now the place to discuss the smoothness problems mentioned in the
text of Theorem 1. The statement of the theorem is general enough to view
this theorem as giving an approach of associating the functional differential
equations of a certain type to the boundary value problem with derivative
boundary conditions.If the equations result of the retarded type, the solu-
tions will be in any case smoother in time. The smoothness of the initial
conditions ω±(λ) has to be sufficient to ensure e.g. piecewise continuity on
the first interval. In the neutral case, smoothness is only preserved hence it
has to be imposed from the beginning. In the advanced type, smoothness is
diminishing and its choice will depend on the existence interval required for
the solution.It should be also clear that here, for simplicity, only classical
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solutions for the boundary value problem are considered. Obviously, these
aspects can be specified according to the tackled problem.

As it will appear in the sequel, most systems with deviated argument as-
sociated to boundary value problems for hyperbolic partial differential equa-
tions modeling engineering applications are of neutral type. Consequently
their solutions preserve the initial piecewise smoothness and they display
discontinuities which propagate - as resulting from mismatched initial and
boundary conditions.

We end this section by briefly considering the special case when τ±(λ, t) ≡
τ±(λ) i.e time invariant propagation coefficients. Therefore the characteris-
tic curves will be expressed as

t±(σ;λ, t) = t+

∫ σ

λ

dξ

τ±(ξ)
, T± = ±

∫ 1

0

dξ

τ±(ξ)
> 0 (12)

the propagation times being constant. Equations (7) will display constant
argument deviations - the attribute of lossless and/or distortionless propa-
gation [10].

3 Two significant applications. A stability condi-
tion

3.1 The first application we consider significant arises from combined heat
electricity generation. Two types of models are considered - linearized [20,
21] and nonlinear [22]. For the aims of this paper, the linearized model is
sufficient. In fact even this model contains bilinear terms which are not
important for the sequel. The equations are as follows

Ta
ds

dt
= απ1 + (1− α)π2 − νg

T1
dπ1
dt

= µ1(t)− π1

Tp
dπs
dt

= π1 − β1µ2(t)πs − β2ξw(0, t)

T2
dπ2
dt

= µ2(t)πs − π2

Tc∂tξp + ∂λξw = 0 , ψ2
cTc∂tξw + ∂λξp = 0 ; 0 ≤ λ ≤ 1 , t > 0

ξw(0, t) + αpξp(0, t) = αpπs(t) , ξw(1, t)− ψsξp(1, t) = 0

(13)

with the significance of the notations as in [20, 22]. Let us follow the pro-
cedure of the previous section. But we have to start by pointing out the
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Riemann invariants of the problem

ξ±(λ, t) =
1

2

[
±ξw(λ, t) +

1

ψc
ξp(λ, t)

]
(14)

to obtain the transformed boundary value problem

Ta
ds

dt
= απ1 + (1− α)π2 − νg

T1
dπ1
dt

= µ1(t)− π1

Tp
dπs
dt

= π1 − β1µ2(t)πs − β2[ξ+(0, t)− ξ−(0, t)]

T2
dπ2
dt

= µ2(t)πs − π2

ψcTc∂tξ
± ± ∂λξ± = 0

(1 + αpψc)ξ
+(0, t)− (1− αpψc)ξ−(0, t) = αpπs(t)

(1 + ψsψc)ξ
−(1, t)− (1− ψsψc)ξ+(1, t) = 0

(15)

With reference to system (1), here K+ = L+ = K− = L− = 0 hence M = 0.
Proceeding as in the previous section we shall find

y+(t) := ξ+(1, t) ⇒ ξ+(0, t) = y+(t+ ψcTc)

y−(t) := ξ−(0, t) ⇒ ξ−(1, t) = y−(t+ ψcTc)
(16)

and denoting w±(t) := y±(t+ψcTc), the following system of differential and
difference equations is obtained

Ta
ds

dt
= απ1 + (1− α)π2 − νg

T1
dπ1
dt

= µ1(t)− π1

Tp
dπs
dt

= π1 −
(
β1µ2(t) +

β2αp
1 + αpψc

)
πs +

2β2αp
1 + αpψc

w−(t− ψcTc)

T2
dπ2
dt

= µ2(t)πs − π2

w+(t) =
1− αpψc
1 + αpψc

w−(t− ψcTc) +
αp

1 + αpψc
πs(t)

w−(t) =
1− ψsψc
1 + ψsψc

w+(t− ψcTc)

(17)
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In stability studies, mainly the behavior for large t > 0 is important; in
turn w−(t) can be eliminated and the equations where it was involved are
re-written as follows

Tp
dπs
dt

= π1 −
(
β1µ2(t) +

β2αp
1 + αpψc

)
πs +

2β2αp
1 + αpψc

· 1− ψsψc
1 + ψsψc

w+(t− 2ψcTc)

w+(t) =
1− αpψc
1 + αpψc

· 1− ψsψc
1 + ψsψc

w+(t− 2ψcTc) +
αp

1 + αpψc
πs(t)

(18)
We focus on the difference operator in the second equation of (18) and
its role in stability. We consider the inherent stability of (18) thus taking
firstly π1(t) ≡ 0, µ2(t) ≡ 0. Then we make some notations and introduce a
transformed state variable

ρ1 :=
1− αpψc
1 + αpψc

, ρ2 :=
1− ψsψc
1 + ψsψc

, T ′p :=
2ψcTp
1− ρ1

; π̂s :=
1− ρ1

2ψc
πs, (19)

to obtain the transformed system

T ′p
dπ̂s
dt

= −β2π̂s + β2(1− ρ1)ρ2w+(t− 2ψcTc)

w+(t) = ρ1ρ2w
+(t− 2ψcTc) + π̂s(t)

(20)

At its turn system (20) can be given the form of a standard neutral functional
differential equation

d

dt
(w+(t)− ρ1ρ2w+(t− 2ψcTc)) = −β2

T ′p
(w+(t)− ρ2w+(t− 2ψcTc)) (21)

This equation is of the type considered in the introductory Chapter 1, Sec-
tion 1.7 of [23] - equation (1.7.5). Its characteristic equation belongs to the
type

λ(1− de−λr)− a− be−λr = 0 (22)

where d = ρ1ρ2, a = −β2/T ′p, b = aρ2, r = 2ψcTc. The role of d in
(22) is displayed by Lemma 1.7.1 of [23], reproduced here for the sake of
completeness

Lemma 1. (Lemma 1.7.1 of [23]) There exists α ∈ R such that all roots of
(22) are subject to <e(λ) < α. If d 6= 0, all solutions of (22) lie in a vertical
strip β < <e(λ) < α in C. If d 6= 0 and there is a sequence {λj}j of roots
of (22) such that |λj | → ∞ as j →∞, then there exists a sequence {λ′j}j of
roots of

1− de−λr = 0 (23)
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such that λj − λ′j → 0 for j → ∞. Moreover, there exists such a sequence
{λj}j whenever d 6= 0.

The following assertions are important. Equation (23) is the character-
istic equation of the difference operator Dφ(·) := φ(0)− dφ(−r), associated
to the neutral functional differential equation (21) with the above notations.
Its importance in stability analysis follows from the fact that the roots of
(23) with d 6= 0 are given by

λ′k =


1
r ln d+ ı2kπr , k = 0,±1± 2, . . . , if d > 0

1
r ln |d|+ ı (2k+1)π

r , k = 0,±1± 2, . . . , if d < 0
(24)

From (24) it follows that if ln |d| > 0 (for either d < 0 or d > 0), then
Lemma 1 implies existence of infinitely many solutions of the basic equation

d

dt
(y(t)− dy(t− r)) = ay(t) + by(t− r) (25)

approaching ∞ exponentially. Therefore stability is never obtained. How-
ever, system (20) or, equivalently, equation (21), have d = ρ1ρ2 ∈ (0, 1) and
stability can be obtained.

It appears that such aspects motivated the well known and popular as-
sumption concerning the exponential stability of the difference operator as-
sociated to neutral functional differential equations, assumption which cov-
ered all studies of these equations and their applications. Most probably
this assumption was introduced in [26] and [27].

3.2 We shall turn here to another important application arising from
mechanical Engineering - oscillation quenching in distributed parameter oil
drillstrings. The dynamics of oilwell drillstrings for vibration quenching
became of increased interest in the last two - three decades when control
approaches started to be involved in this matter. We mention here only
two survey references - [24] and [25] and consider the model we deduced in
[15] using the variational principle of Hamilton for distributed parameter
systems. In the particular case of constant parameters and zero distributed
damping,

ρθtt −Gθss = 0 ; 0 < s < L , t > 0

c`θ̇m +GIpθs(0, t) = 0 ; Jmθ̈m + c0θ̇m + θ̇(0, t) = τ(t)

Jbθ̈(L, t) + T (θ̇(L, t)) +GIpθs(L, t) = 0,

(26)
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θ(s, t) and θm(t) are cyclic variables. Denoting ω(s, t) := θt(s, t), ωm(t) =
θ̇m(t), system (26) becomes

ρωt −Gθss = 0 ; c`ωm = −GIpθs(0, t)

Jmω̇m + c0ωm + c`ω(0, t) = τ(t)
Jbω̇(L, t) + T (ω(L, t)) +GIpθs(L, t) = 0

(27)

In practice, control of the drillstring vibrations is ensured by controlling the
rotating speed ω(0, t) at the surface; this goal is achieved by varying the
motor torque τ(t) at the surface. The controller is designed as

τ(t)− τ̄ = −g0(ωm(t)− ω̄m) (28)

where g0(σ)/σ > −c0 is a sector restricted nonlinearity. The controller thus
introduces an additional damping at s = 0, the speed reference ω̄m equals
ω̄ - the steady state rotating speed of the drillstring (physical reasons - the
integrity of the string). The closed loop equations, obtained by combining
(26) and (28) read

ρθtt −Gθss = 0 ; c`θ̇m +GIpθs(0, t) = 0

Jmθ̈m + c0θ̇m + θ̇(0, t) = τ̄(ω̄)− g0(θ̇m − ω̄m)

Jbθ̈(L, t) + T (θ̇(L, t)) +GIpθs(L, t) = 0,

(29)

where τ̄(ω̄) = c0(ω̄− T (ω̄)/c`) - see [15]. For this system it was constructed
the control Lyapunov functional

V(θ̇m, θ̇(L, t), θt(·, t), θs(·, t)) =
1

2

{
Jm(θ̇m − ω̄)2 + Jb(θ̇(L, t)− ω̄)2+

+ Ip

∫ L

0
[ρ(θt(s, t)− ω̄)2 +G(θs(s, t)− θ̄s(s))2]ds

}
(30)

whose derivative results negative semi-definite - see [15]. This fact ensures
Lyapunov stability of the steady state, in the sense of the metrics induced
by the Lyapunov functional (30) itself. To obtain asymptotic stability we
use the approach of associating the system of functional differential equa-
tions following the methodology of Section 2 - see also [15]. We skip the
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intermediate development and give below the associated system

(JmIp/c`)
d

dt
(η+(t)− η−(t− L

√
ρ/G)) + (Ipc0/c`)

√
ρG(η+(t)−

−η−(t− L
√
ρ/G)) + c`(η

+(t) + η−(t− L
√
ρ/G))+

+g0((Ip/c`)(η
+(t)− η−(t− L

√
ρ/G))) = 0

Jb
d

dt
(η−(t) + η+(t− L

√
ρ/G)) + T (ω̄ + η−(t) + η+(t− L

√
ρ/G))−

−T (ω̄) + Ip
√
ρG(η−(t)− η+(t− L

√
ρ/G)) = 0

(31)
This system is obviously of neutral type: its difference operator is defined
by

D

η+(·)

η−(·)

 =

η+(0)

η−(0)

+

0 −1

1 0

 ·
η+(−L

√
ρ/G)

η−(−L
√
ρ/G)

 (32)

The matrix D of the operator has its eigenvalues ±ı and the characteristic
equation of the difference operator reads

1 + e−λr = 0 , r = L
√
ρ/G (33)

with its roots λk = ı(2k + 1)π/(2r), k = 0,±1,±2, . . ..

If we have in mind a generalization of Lemma 1 to the vector case,
then at least the linearized version of (31) will have chains of eigenvalues
approaching the roots λk for k → ∞. Consequently the linearized system
(31) can have an infinity of solutions displaying oscillatory behavior. The
nonlinear system (31) has two sector restricted nonlinearities - T (·) and g0(·).
The absolute stability theory in its frequency domain version [28] does not
cover the critical case with infinitely many roots of the linear part located
on the imaginary axis ıR. We do not know anything within the framework
of the Lyapunov function(al) approach.

We end this section by mentioning that all applications arising from Me-
chanical Engineering, described in [15], display the same critical case of the
difference operators associated to the systems of neutral functional differen-
tial equations involved in the aforementioned systems. A direct consequence
of this property is that Theorem 9.8.2 of [23] - the Barbashin Krasovskii
LaSalle invariance principle - cannot be applied, see also [29, 30]
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4 Two applications in water hammer - hydraulic
engineering

Water hammer is an abnormal regime of the hydraulic power plants occur-
ring after a sudden large load discharge of the hydraulic turbine. It consists
of large water mass oscillations which may result in water conduit breaking,
flood a.o. Its regulating “device” (in fact - construction) is the surge tank
- an energy dissipator also. For the purpose of the paper we shall consider
the two plant configurations of figure 1a,b

 

1 

2 

3 

4 
5 

Q1, H1 

L1, F1 

Q2, H2 

L2, F2 

H0 Z 

a) Hydroelectric plant with a
single tunnel:1. Lake 2. Tunnel 3.

Surge tank 4. Penstock 5.
Hydraulic turbine

b) Hydroelectric plant with two
tunnels and common lake.

Figure 1: Hydroelectric plants with surge tank

The mathematical model of the water hammer processes is based on
the Saint Venant partial differential equations under the following assump-
tions which are covering from the engineering point of view since they refer
to energy dissipation: i) the dynamic (velocity) heads and the distributed
(Darcy-Weisbach) losses are neglected; ii) the water hammer is generated
by the complete shutdown of the hydraulic turbine.

The models of the analyzed hydroelectric power plants have been con-
sidered and processed by introducing rated (per unit - p.u) variables, also
a rated independent variable - the “time”. Details, as well as a list of
variables and parameters significance, can be found in our previously pub-
lished [31, 32, 33, 34, 35].

4.1 Consider firstly the “standard” configuration of figure 1a. Its model
appeared in [36], next in [37]. The model as resulting from its processing as
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previously described reads as follows

θwi∂τqi + ∂ξihi = 0 , δ2i θwi∂τhi + ∂ξiqi = 0 , i = 1, 2 ; 0 < ξi < 1 , t > 0

h1(0, τ) ≡ 1 ; θs
dz

dτ
= q1(1, τ)− q2(0, τ)

h1(1, τ) = 1 + z(τ) + λs
dz

dτ
= h2(0, τ) ; q2(1, τ) ≡ 0

(34)
The boundary condition q2(1, τ) ≡ 0 accounts for the complete shutdown
of the hydraulic turbine. The parameter λs shows that the surge tank has
throttling. Briefly the things are as follows. The turbine shutdown imposes
a new steady state of (34) defined by

h̄i(ξi) ≡ const , q̄i(ξi) ≡ const ; h̄1(0) = 1 , q̄1(1) = q̄2(0)

h̄1(1) = 1 + z̄ = h̄2(0) , q̄2(1) = 0
(35)

hence h̄1 = h̄2 = 1, z̄ = 0, q̄1 = q̄2 = 0. Introducing the deviations
χi(ξi, τ) = hi(ξi, τ)− 1, the following system in deviations is obtained

θwi∂τqi + ∂ξiχi = 0 , δ2i θwi∂τχi + ∂ξiqi = 0 , i = 1, 2 ; 0 < ξi < 1 , t > 0

χ1(0, τ) ≡ 0 ; θs
dz

dτ
= q1(1, τ)− q2(0, τ)

χ1(1, τ) = z(τ) + λs
dz

dτ
= χ2(0, τ) ; q2(1, τ) ≡ 0

(36)
For this system the energy identity suggests the following Lyapunov func-
tional (written as a state functional)

V(z, φi(·), ψi(·)) =
1

2

{
θsz

2 +
2∑
1

θwi

∫ 1

0
[φ2i (ξi) + δ2i ψ

2
i (ξi)]dξi

}
(37)

This functional is written along the solutions of (36) as V?(z(τ), qi(·, τ), χi(·, τ)).
Differentiating it along the solutions and taking into account the energy
identity, the following inequality is obtained

dV?

dτ
= −λs

(
dz

dτ

)2

≤ 0 (38)

Inequality (38) displays Lyapunov stability of (36), in the sense of the met-
rics induced by the Lyapunov functional itself. For the asymptotic stabil-
ity, application of the Barbashin Krasovskii LaSalle invariance principle is
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suitable. This principle holds for neutral functional differential equations
(Theorem 9.8.2 of [23]). Consequently we apply the methodology of Section
2 and associate the following system with deviated argument

(1 + (δ1 + δ2)λs)θs
dz

dτ
= −(δ1 + δ2)z(τ)− 2η−1 (τ − 2δ1θw1)+

+2η+2 (t− 2δ2θw2)

(1 + (δ1 + δ2)λs)η
−
1 (τ) = δ1z(τ) + (1 + (δ2 − δ1)λs)η−1 (τ − 2δ1θw1)+

+2δ1λsη
+
2 (t− 2δ2θw2)

(1 + (δ1 + δ2)λs)η
+
2 (τ) = δ2z(τ)− 2δ2λsη

−
1 (τ − 2δ1θw1)−

−(1 + (δ1 − δ2)λsη+2 (t− 2δ2θw2)
(39)

On the set where the derivative of of the Lyapunov functional vanishes
we shall have

z(τ) =
2

δ1 + δ2
[−η−1 (τ − 2δ1θw1) + η+2 (t− 2δ2θw2)] (40)

and the difference subsystem of (39) considered on this set will be

(δ1 + δ2)η
−
1 (τ) = (δ2 − δ1)η−1 (τ − 2δ1θw1) + 2δ1η

+
2 (t− 2δ2θw2)

−2δ2η
−
1 (τ − 2δ1θw1)− (δ1 − δ2)η+2 (t− 2δ2θw2)

(41)

The invariant set included in the set where dV?/dτ = 0 consists of the
constant solutions of (40)-(41). The unique constant solution of (41) is
η̄−1 = η̄+2 = 0 hence z̄ = 0. Applying Theorem 9.8.2 of [23] we obtain global
asymptotic stability hence of (36) - due to the one-to-one correspondence
between the solutions of the two systems. However, application of Theo-
rem 9.8.2 of [23] is conditioned by the asymptotic stability of the difference
operator. Here the difference operator displays two delays

D

η−1 (·)

η+2 (·)

 =

η−1 (0)

η+2 (0)

−
 ρ1 0

−(1− ρ2) 0

η−1 (−2δ1θw1)

η+2 (−2δ1θw1)

−
−

0 1− ρ1

0 ρ2

η−1 (−2δ2θw2)

η+2 (−2δ2θw2)


(42)
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where

ρ1 =
1 + (δ2 − δ1)λs
1 + (δ1 + δ2)λs

, ρ1 =
1 + (δ1 − δ2)λs
1 + (δ1 + δ2)λs

The characteristic equation of the difference operator reduces to

zν+1 + ρ2z
ν − ρ1z + 1− ρ1 − ρ1 = 0;

ν := (δ1θw1)(δ2θw2)
−1 + 1− ρ1 − ρ2 = 0 (43)

and asymptotic stability means its roots are subject to |z| < 1. However, if
there are no roots such that |z| > 1, for ν = p/q rational and irreducible, if
p is odd, all roots are subject to |z| < 1. If p is even (and q - odd) then one
root equals −1 and the system is in critical case. We have thus asymptotic
stability of the difference operator - and, therefore, of systems (39) and
(36) - only for a countable set of values of the delay ratio. Referring now to
Theorem 9.6.1 of [23], dealing with strong stability of the difference operator,
it is stated there that existence of at least one set of rationally independent
delays i.e. one irrational ν for asymptotic stability of the difference operator
is equivalent to its spectral radius less than 1. In the case of (42) this means
for the equation with complex coefficients

(z − ρ1)(z + ρ2e
ıθ) + (1− ρ1)(1− ρ2)eıθ = 0 (44)

to have its roots subject to |z| < 1 for ∀θ ∈ [0, 2π). It is quite obvious
however that for θ = π, one root is z = 1 while the other is z = (ρ1 + ρ2 −
1) ∈ (0, 1). Consequently, according to Theorem 9.6.1 of [23], there is no
irrational ν to ensure asymptotic stability of the difference operator.

We deduce that asymptotic stability of system (39) - and (36) - is possible
for a countable set of delay ratios - a rational number with odd numerator.
We call this property, firstly signaled in [36], fragile stability.

4.2 The plant structure of figure 1b was considered in an early paper [38]
under lumped parameters and re-analyzed in [37] since it is very much alike
to the “Tismana” hydroelectric power plant in Romania. The model with
distributed parameters, corresponding to fast water mass oscillations, has
been proposed in a seminar discussion as a challenge. The idea was to tackle
it under the same assumptions as (34) in order to point out (possibly) the
same “arithmetic conditions” of stability. The assumptions being similar to
those leading to (34), the rating of the state variables and the parameters
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being the same, the equations are as follows

θwi∂τqi + ∂ξihi = 0 , δ2i θwi∂τhi + ∂ξiqi = 0 , i = 1, 2 ; 0 < ξi < 1 , t > 0

h1(0, τ) = h2(0, τ) ≡ 1 ; θs
dz

dτ
= q1(1, τ) + q2(0, τ)− qp(0, τ)

h1(1, τ) = h2(1, τ) = 1 + z(τ) + λs
dz

dτ
= hp(0, τ) ; qp(1, τ) ≡ 0

(45)
Here, as in figure 1b, the indexes i = 1, 2 account for the two tunnels while
i = p designates the common penstock. The last boundary condition shows
that, in this case also, the water hammer is generated by complete turbine
shutdown. Also in this case, the turbine shutdown defines a new steady
state described by

h̄i(ξi) ≡ const , q̄i(ξi) ≡ const ; h̄1(0) = h̄2(0) = 1 , q̄p = q̄1 + q̄2

h̄1(1) = h̄2(1) = 1 + z̄ = h̄p(1) , q̄p = 0
(46)

The result is

h̄1 = h̄2 = h̄p = 1 , z̄ = 0 ; q̄p = 0 , q̄1 + q̄2 = 0 (47)

and the first remark is that q̄1 and q̄2 are not uniquely determined. Ob-
serve that q̄1 = q̄2 = 0 is one of the possible solutions. Moreover, q̄1 = −q̄2
suggests the possibility of the flow back into the lake. This senseless situa-
tion occurs from the fact that the model is completely lossless hence a flow
upstream is not impossible.

To complete this preliminary analysis, let us consider the slow water mass
oscillations by assuming δ2i θwi a small time constant (usually δi � 1) and
introducing formally the singular perturbations. We obtain qi(ξi, τ) ≡ qi(τ)
and integrate with respect to ξi to obtain

θwi
dqi
dτ

+ hi(1, τ)− hi(0, τ) , i = 1, 2 ; θwp
dqp
dτ

+ hp(1, τ)− hp(0, τ)

qp(τ) ≡ 0 ; θs
dz

dτ
= q1(τ) + q2(τ)− qp(τ)

(48)

If the boundary conditions on hi are taken into account, equations (48)
become

θw1
dq1
dτ

+ (λs/θs)(q1 + q2) + z = 0

θw2
dq2
dτ

+ (λs/θs)(q1 + q2) + z = 0 ; θs
dz

dτ
= q1 + q2

(49)
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If λs = 0 (the surge tank without throttling), the case of [38] is re-discovered
but without the local hydraulic losses in the first two equations. The steady
state solution is again q̄1 + q̄2 = 0, z̄ = 0. The conclusion is as follows. In-
troduction of at least local hydraulic losses is necessary to ensure uniqueness
of the steady state. Too much idealization is harmful ! However, system (49)
has as invariant set (in fact as prime integral)

θw1q1(τ)− θw2q2(τ) ≡ const

allowing a detailed stability analysis. This prime integral might exist also
for system (45) but discovering it is outside the purpose of this paper.

Since system (45) is linear, we can introduce the deviations with respect
to some steady state and discuss stability. Let h̄i = 1, z̄ = 0, q̄i = 0 be this
steady state and consider the system in deviations

θwi∂τqi + ∂ξiχi = 0 , δ2i θwi∂τχi + ∂ξiqi = 0 , i = 1, 2 ; 0 < ξi < 1 , t > 0

χ1(0, τ) = χ2(0, τ) ≡ 0 ; θs
dz

dτ
= q1(1, τ) + q2(0, τ)− qp(0, τ)

χ1(1, τ) = χ2(1, τ) = z(τ) + λs
dz

dτ
= χp(0, τ) ; qp(1, τ) ≡ 0

(50)
The energy identities being the same, we consider the Lyapunov functional
similar to (37) namely

V(z, φi(·), ψi(·)) =
1

2

{
θsz

2 +
∑
i

θwi

∫ 1

0
[φ2i (ξi) + δ2i ψ

2
i (ξi)]dξi

}
, (51)

its derivative along the solutions of (50) having exactly the form (38). As in
the previous case, Lyapunov stability is obtained, in the sense of the metrics
induced by the Lyapunov functional itself.

Again, for the asymptotic stability, application of the Barbashin Kra-
sovskii LaSalle principle is suitable. This principle being proven for neu-
tral functional differential equations [23] (Theorem 9.8.2), we use again the
methodology of Section 2 and associate the following system of delay differ-
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ential and difference equations

(1 + (δ1 + δ2 + δp)λs)θs
dz

dτ
= −(δ1 + δ2 + δp)z(τ)−

−2(w−1 (τ − 2δ1θw1) + w−2 (τ − 2δ2θw2)− w−p (τ − 2δpθwp))

(1 + (δ1 + δ2 + δp)λs)


w−1 (τ)

w−2 (τ)

w+
p (τ)

 =


δ1

δ2

δp

 z(τ)+

+


1 + (δ2 + δp − δ1)λs −2δ1λs 2δ1λs

−2δ2λs 1 + (δ1 + δp − δ2)λs 2δ2λs

−2δpλs −2δpλs −(1 + (δ1 + δ2 − δp)λs)

×

×


w−1 (τ − 2δ1θw1)

w−2 (τ − 2δ2θw2)

w−p (τ − 2δpθwp)


(52)

This system is associated with the representation formulae

qi(ξi, τ) = r+i (ξi, τ)− r−i (ξi, τ) = w+
i (τ − δiθwi)− w−i (τ + δiθwi(ξi − 1))

χi(ξi, τ) =
1

δi
[r+i (ξi, τ) + r−i (ξi, τ)] =

1

δi
[w+
i (τ − δiθwi)+

+w−i (τ + δiθwi(ξi − 1))]
(53)

Based on (53) and on the difference equations incorporated in (52)

w+
i (τ) = −w−i (τ − δiθwi) , i = 1, 2 ; w−p (τ) = w+

p (τ − δpθwp)

the Lyapunov functional is represented as

V(z, w−1 (·), w−2 (·), w+
p (·)) =

1

2
θsz(τ)2 +

2∑
1

1

δi

∫ 0

−2δiθwi

w−i (τ + ϑ)2dϑ+

+
1

δp

∫ 0

−2δpθwp

w+
p (τ + ϑ)2dϑ,

(54)
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the derivative functionalW remaining the same as in (38). On the set where
W vanishes we shall have

z(τ) =
−1

δ1 + δ2 + δp
[w−1 (τ − 2δ1θw1) + w−2 (τ − 2δ2θw2)− w−p (τ − 2δpθwp)]

(55)
while the difference system on this set becomes, by substituting z(τ) from
(55)

(δ1 + δ2 + δp)


w−1 (τ)

w−2 (τ)

w+
p (τ)

 =


δ2 + δp − δ1 −2δ1 2δ1

−2δ2 δ1 + δp − δ2 2δ2

−2δp −2δp δ1 + δ2 − δp

×

×


w−1 (τ − 2δ1θw1)

w−2 (τ − 2δ2θw2)

w−p (τ − 2δpθwp)


(56)

Since z(τ) ≡ const on the set where W vanishes, we look for the constant
solutions of (56). They are subject to

w̄−1 + w̄−2 − w̄
+
p = 0

w̄−1 + w̄−2 − w̄
+
p = 0

δp(w̄
−
1 + w̄−2 ) + (δ1 + δ2)w̄

+
p = 0

(57)

and this system is under-determined and has a set of solutions given by
w̄+
p = 0, w̄−1 = −w̄−2 , which sends to the set of solutions of (47). The

Barbashin Krasovskii LaSalle invariance principle ensures in this case that
all bounded trajectories will approach asymptotically this invariant set of
constant solutions.

Application of the invariance principle is however conditioned by the
stability of the difference operator, as in the previous case. This aspect is still
under research but the approach is much alike to the previous Subsection
4.1. The challenging aspect is the fact that now the difference operator
displays three delays. We end this subsection by mentioning that besides
the three-delay feature, there are other open problems: the aforementioned
stability of a stationary set and of the equilibria inside it and the inclusion of
the local hydraulic losses in the model, having as consequence the uniqueness
of the equilibrium point under water hammer.
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5 Huygens synchronization and complex behavior

According to a well established convention [39], Huygens synchronization
means synchronization of lumped parameter oscillators through distributed
parameter media, with reference to the classical Huygens experiment. Sev-
eral cases for Huygens synchronization of mechanical and electrical oscilla-
tors have been discussed under a unitary framework in [40]. For the purpose
of this study we choose the mechanical oscillator synchronization problem
pointed out in [41], also considered in [40].

f1 f2

0 L

1 2

x

Figure 2: Two Van der Pol oscillators on the elastic rod

The basic equations of this mechanical structure are as follows [41, 40]

ytt − c2yxx = 0 ; 0 < x < L , t > 0 ; c2 = E/ρ

m1z̈1 + f1(z1, ż1) = ESyx(0, t)

m2z̈2 + f2(z2, ż2) = −ESyx(L, t)

(58)

where the restoring terms fi(zi, żi) account for the type of the oscillating
system: for instance, if fi(zi, żi) = fi(zi), the oscillator is a conservative
system, displaying only closed (cyclic) trajectories in the phase plane. The
Liénard oscillator, in particular, the Van der Pol oscillator, can be also
obtained from (58) provided fi(zi, żi) = −ε(1 − z2i )żi for the Van der Pol
oscillator and fi(zi, żi) = hi(zi)żi + gi(zi) for the Liénard equation. Apply-
ing the standard approach of Section 2 we associate to (58) the following
nonlinear system of functional differential equations

m1z̈1 + f1(z1, ż1) +
ES

c
ż1 = 2

ES

c
η−(t− L/c)

m2z̈2 + f2(z2, ż2) +
ES

c
ż2 = 2

ES

c
η+(t− L/c)

η+(t) = ż1(t)− η−(t− L/c)

η−(t) = ż2(t)− η+(t− L/c)

(59)
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together with the representation formulae

v(x, t) = η−(t+ (x− L)/c) + η+(t− x/c)

w(x, t) =
1

c
[η−(t+ (x− L)/c)− η+(t− x/c)]

(60)

where v(x, t) := yt(x, t), w(x, t) := yx(x, t). Observe the terms (ES/c)żi -
additional damping factors in the equations of the lumped oscillators. Physi-
cists call this aspect “dissipation radiation” but the approach described in
Section 2 offers a more rigorous modeling of the phenomenon. The effect on
the local oscillators is oscillation quenching : the interaction with the dis-
tributed medium (rod, string) quenches the local self-sustained oscillators
– synchronization to zero. This phenomenon was described in [40] in the
case of two electronic Van der Pol oscillators coupled through a lossless LC
transmission line. With the mechanical oscillators this is no longer the case.
System (59) belongs to the more general class described by

ẋ = A0x(t) +A1y(t− τ)−
r∑
1

bmφm(σm(t))

y(t) = A2x(t) +A3y(t− τ) , σm = c∗mx

(61)

with A3 having its eigenvalues on the unit circle. The second, difference
equation can be represented in “integral” form as follows

y(t) = Ak3yo(t− kτ) +

k−1∑
0

Ai3A2x(t− iτ) , (k − 1)τ ≤ t < kτ (62)

to obtain the following “integro-differential” system

ẋ = A0x(t) +

k−1∑
0

Ai3A2x(t− iτ)−
r∑
1

bmφm(σm(t))+

+Ak3yo(t− kτ) , kτ ≤ t < (k + 1)τ

(63)

In (61) and (62) the integer k takes the values ±1,±2, . . .

Observe that the forcing term of (63) is almost periodic and it might be
“responsible” for what was called in [41] - complex behavior, see also [42].
The explanation comes again from the fact that A3 has, in the case of (59),
its eigenvalues ±1, thus on the unit circle.
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6 Conclusions. Old problems remaining open

In this paper we started from the methodology associating to propaga-
tion systems (i.e described by initial boundary value problems for loss-
less/distortionless 1D hyperbolic partial differential equations) a system
of functional differential equations with deviated argument, with particu-
lar reference to neutral functional differential equations. From the broad
list of applications described by such systems and equations we chose sev-
eral applications from Mechanical and Hydraulic Engineering, having the
property that the difference operator of the associated neutral functional
differential equations is only marginally stable (in a critical case), while the
basic assumption occurring from the seminal memoir [26] was asymptotic
stability of the difference operator. Our paper focused on the fact that
marginal stability of the difference operator forbids application of the Bar-
bashin Krasovskii LaSalle invariance principle (which is conditioned by the
asymptotic stability of the difference operator). As a consequence, the afore-
mentioned systems have only Lyapunov non-asymptotic stability obtained
from energy-like Lyapunov function(al)s (which are “weak” Lyapunov func-
tion(al)s, as it is stated by N. G. Četaev). These aspects are quite well
known since the 1977 edition of [23], which integrates the earlier results of
of M. A. Cruz and J. K. Hale [27], see also the general list of references in
[23].

While the strong stability assumption on the difference operator turned
very fruitful, it however obscured those cases where it was not valid. In
this way, a series of mathematical contributions to the critical case analysis
[43, 44, 45, 46, 47] were forgotten.

Here we feel it would be useful to state a beginning of a conjecture -
dealing with the linear case and associated characteristic equations. Larger
is the modulus of the eigenvalues approaching ıR (in the line of Lemma 1),
smaller is the modulus of the associated mode of the system. In this way
the weakly damped oscillations are “filtered” by system’s dynamics. Here
we consider helpful those studies and monographs dealing with the roots of
entire functions, in particular quasi-polynomials [48, 49, 50].

Another line of research would be to establish a connection between the
various difference operators and the dissipative/conservative boundary con-
ditions of the corresponding boundary value problems for hyperbolic partial
differential equations - see [51], pp. 161-163.

Meanwhile, the problem of applying the Barbashin Krasovskii LaSalle
invariance principle without the aforementioned assumption on asymptotic
stability of the difference operator has been also discussed [52]. More pre-



514 V. Răsvan

cisely, it is stated in Chapter VI, Section 8 dedicated to neutral functional
differential equations, that the point is to obtain precompact positive orbits
from boundedness, without the Ascoli theorem. One approach is to have
an asymptotically stable difference operator, thus ensuring some smoothing
of the solutions of neutral functional differential equations. If this is not
possible (the difference operator is e.g. marginally stable - in critical case!),
then it is suggested to embed the semi-dynamical system in a space wherein
the positive orbits are precompact. This approach is illustrated in Chapter
V, Section 4 of [52]. Worth mentioning that the application chosen in Chap-
ter V originated from an initial boundary value problem for 1D hyperbolic
partial differential equations!

Consequently this approach seems correct and fruitful to tackle the neu-
tral functional differential equations with marginally stable difference opera-
tor. Additionally we have to refer to [53] but also to [54]; in this last reference
it is given an example of linear neutral functional differential equation with
marginally stable difference operator which is asymptotically stable but not
exponentially stable.

It is felt that all aforementioned aspects can stimulate a research outside
the standard paradigm which might be rewarding.
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