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M. Megan † A. Găină ‡ R. Boruga (Toma)§

Dedicated to Dr. Dan Tiba on the occasion of his 70th anniversary

Abstract

The paper considers a general concept of dichotomy in Banach
spaces for skew-evolution cocycles. As particular cases the proper-
ties of exponential dichotomy, polynomial dichotomy and logarithmic
dichotomy are obtained. Characterizations of these concepts are pre-
sented.

MSC: 34D05; 34D09

keywords: Skew-evolution cocycle, h-dichotomy, exponential dichotomy,
polynomial dichotomy, logarithmic dichotomy.

∗Accepted for publication on July 3-rd, 2023
†mihail.megan@gmail.com Department of Mathematics, Faculty of Mathematics and

Computer Science, West University of Timişoara, V. Pârvan Blv. No. 4, 300223
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1 Introduction

In the last years, an impressive development is represented by the study of
asymptotic behaviors for skew-evolution cocycles in Banach spaces, which
can be considered generalizations for evolution operators and skew-product
semiflows.

Lately, significant progress has been made in the study of exponential
dichotomy in Banach spaces. The importance of the role played by this
concept in the theory of dynamical systems is illustrated by the appearance
of various papers in this domain for the exponential case that started with
the work of Perron [15] and continued by Massera and Schffer [10], Daleckii
and Krein [7], Chicone and Latushkin [6], Megan, Sasu and Sasu [11], Stoica
and Megan [20], Sasu and Sasu [18, 19], Megan and Stoica [12].

The polynomial case was introduced by Barreira and Valls in [1] and it
was also studied by Boruga (Toma) and Megan [3, 4, 5], Megan and Stoica
[12], Rămneanţu, Ceauşu and Megan [17].

Throughout the years an important extension of exponential dichotomy
and polynomial dichotomy is introduced by Pinto [16] and it is called di-
chotomy with growth rates or h-dichotomy, where the growth rate is a non-
decreasing and bijective function h : R+ → [1,∞). For recent contributions
we refer to the works of Bento, Lupa, Megan and Silva [2], Mihiţ, Borlea
and Megan [14], Găină [9], Megan and Găină [13].

The main aim of this paper is to give some necessary and sufficient
conditions for dichotomy with growth rates with the particular cases of ex-
ponential dichotomy, polynomial dichotomy and logarithmic dichotomy for
skew-evolution cocycles in Banach spaces. More precisely, considering a
skew-evolution cocycle with h-growth, strong h-growth, exponential growth,
polynomial growth, respectively logarithmic growth and a family of projec-
tors invariant to the skew-evolution cocycle, we obtain different characteri-
zations of Datko [8] type for these concepts.

2 Skew-evolution cocycles

Let X be a metric space, V a Banach space and B(V ) the Banach algebra
of all bounded linear operators acting on V . Moreover, we consider the
following sets

∆ = {(t, s) ∈ R2
+ : t ≥ s}

T = {(t, s, t0) ∈ R3
+ : t ≥ s ≥ t0}.
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Definition 2.1. A mapping ϕ : ∆ × X → X is said to be an evolution
semiflow on X if:

(es1) ϕ(s, s, x) = x, for all (s, x) ∈ R+ ×X;

(es2) ϕ(t, s, ϕ(s, t0, x0)) = ϕ(t, t0, x0), for all (t, s, t0, x0) ∈ T ×X.

Definition 2.2. A mapping Φ : ∆×X → B(V ) is said to be a skew-evolution
semiflow on X × V over the evolution semiflow ϕ if the following properties
are satisfied:

(ses1) Φ(s, s, x) = I (the identity operator on X), for all (s, x) ∈ R+ ×X;

(ses2) Φ(t, s, ϕ(s, t0, x0))Φ(s, t0, x0) = Φ(t, t0, x0), for all (t, s, t0, x0) ∈ T ×
X.

If ϕ : ∆×X → X is an evolution semiflow and Φ : ∆×X → B(V ) a skew-
evolution semiflow over the evolution semiflow ϕ, then the pair C = (Φ,ϕ)
is said to be a skew-evolution cocycle.

Example 2.1. Let X be a metric space, V a Banach space, ϕ : ∆×X → X
an evolution semiflow on X and A : X → B(V ) a continuous mapping. If
Φ(t, s, x) is the solution of the Cauchy problem{

v̇(t) = A(ϕ(t, s, x))v(t), t > s
v(s) = x ,

then C = (Φ,ϕ) is a skew-evolution cocycle.

Example 2.2. Let us consider V = R2, X = R+ and f : R → R∗+ a
nondecreasing function. The mapping ϕ : ∆× R+ → R+ defined by

ϕ(t, s, x) = t− s+ x

is an evolution semiflow on R+ and the mapping Φ : ∆ × R+ → B(R2)
defined by

Φ(t, s, x)(v1, v2) =

(
f(x)

f(t− s+ x)
v1,

f(t− s+ x)

f(x)
v2

)
is a skew-evolution semiflow over the evolution semiflow ϕ.

So C = (Φ,ϕ) is a skew-evolution cocycle.

Example 2.3. We consider X = R+. The mapping ϕ : ∆ × R+ → R+

defined by ϕ(t, s, x) = t − s + x is an evolution semiflow on R+. For every
evolution operator E : ∆→ B(V ), we have

ΦE : ∆×X → B(V ), ΦE(t, s, x) = E(t− s+ x, x)

is a skew-evolution cocycle on X × V over the evolution semiflow ϕ.
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3 Invariant family of projectors for skew-evolution
cocycles

Definition 3.1. A mapping P : R+ ×X → B(V ) is said to be a family of
projectors if

P 2(t, x) = P (t, x), for all (t, x) ∈ R+ ×X.

Definition 3.2. If P : R+ × X → B(V ) is a family of projectors, then
Q : R+ × X → B(V ), Q(s, x) = I − P (s, x) is also a family of projectors
which is called the complementary family of projectors of P.

Definition 3.3. A family of projectors P : R+ ×X → B(V ) is said to be
invariant for the skew-evolution cocycle C if

Φ(t, s, x)P (s, x) = P (t, ϕ(t, s, x))Φ(t, s, x),

for all (t, s, x) ∈ ∆×X.

Remark 3.1. If the family of projectors P : R+×X → B(V ) is invariant for
the skew-evolution cocycle C, then its complementary family of projectors
Q : R+ ×X → B(V ) is also invariant for the skew-evolution cocycle C.

In what follows, if P is invariant for the skew-evolution cocycle C, then
we denote by ΦP : ∆×X → B(V ) the application defined by

ΦP (t, s, x) = Φ(t, s, x)P (s, x).

Proposition 3.1. The application ΦP has the following properties:

(i) ΦP (t, s, x) = P (t, ϕ(t, s, x))ΦP (t, s, x), for all (t, s, x) ∈ ∆×X;

(ii) ΦP (t, t, x) = P (t, x), for all (t, x) ∈ R+ ×X;

(iii) ΦP (t, t0, x0) = ΦP (t, s, ϕ(s, t0, x0))ΦP (s, t0, x0), for all (t, s, t0, x0) ∈
T ×X.

Proof. The properties (i) and (ii) are immediate from definition of ΦP , Def-
inition 3.3 and Definition 2.2.

For (iii) we observe that

ΦP (t, t0, x0) = Φ(t, t0, x0)P (t0, x0) =

= Φ(t, s, ϕ(s, t0, x0))P (s, ϕ(s, t0, x0))ΦP (s, t0, x0) =

= = ΦP (t, s, ϕ(s, t0, x0))ΦP (s, t0, x0),

for all (t, s, t0, x0) ∈ T ×X.
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4 h-dichotomy for skew-evolution cocycles

Definition 4.1. A nondecreasing map h : R+ → [1,∞) with lim
t→∞

h(t) =∞
is called a growth rate.

Let C be a skew-evolution cocycle and P a family of projectors invariant
to C.

Definition 4.2. The pair (C,P ) is said to be h-dichotomic if there are
N ≥ 1, ν > 0 and ε ≥ 0 such that:

h(t)ν(||ΦP (t, t0, x0)v0||+ ||ΦQ(s, t0, x0)v0||) ≤

≤ Nh(s)ν(h(s)ε||ΦP (s, t0, x0)v0||+ h(t)ε||ΦQ(t, t0, x0)v0||),

for all (t, s, t0, x0, v0) ∈ T ×X × V .

Remark 4.1. In the previous definition we can consider ν ∈ (0, 1).

If we consider the particular cases h(t) = et, h(t) = t + 1 and h(t) =
ln(t + e), then it results the concepts of exponential dichotomy, polynomial
dichotomy and respectively logarithmic dichotomy.

If ε = 0, then we obtain the concepts of uniform h-dichotomy, uniform
exponential dichotomy, uniform polynomial dichotomy and respectively uni-
form logarithmic dichotomy.

Remark 4.2. The concept of uniform h-dichotomy implies the concept of
h-dichotomy. The converse implication is not true, as we can see in:

Example 4.1. We consider X a metric space, V a Banach space, P an
invariant family of projectors with P (t, x)P (s, x) = P (s, x) and C = (Φ,ϕ)
a skew-evolution cocycle where

ϕ : ∆×X → X,ϕ(t, s, x)(τ) = x(t− s+ τ)

is an evolution semiflow on X and Φ : ∆×X → B(V ) defined by

Φ(t, s, x) =
f(s)

f(t)
P (s, x) +

g(t)

g(s)
Q(s, x)

where Q(s, x) = I −P (s, x), f(t) = h(t)2−cos lnh(t) and g(t) = h(t)− cos 2t is a
skew-evolution semiflow.

It is easy to see that (C,P ) is h-dichotomic for ε = 2 and ν = 1.
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If we suppose that (C,P ) is uniformly h-dichotomic, then it means that
there exist N ≥ 1 and ν > 0 with

Nh(t)−ν ||ΦQ(t, s, x)v|| ≥ h(s)−ν ||Q(s, x)v||,

which is equivalent to

Nh(t)−ν
h(t)− cos 2t

h(s)− cos 2s
||Q(s, x)|| ≥ h(s)−ν ||Q(s, x)v||,

for all (t, s, x, v) ∈ ∆×X × V .

For s = 0 we have

Nh(t)ν+cos 2t ≤ h(0)ν−1,

In particular, for t = nπ + π
4 with n ∈ N and n → ∞ we obtain a

contradiction.

Theorem 4.1. The following statements are equivalent:

(i) (C,P ) is h-dichotomic;

(ii) there are N ≥ 1, ν > 0 and ε ≥ 0 with:

(hd′) h(t)ν(||ΦP (t, s, x0)v0||+ ||Q(s, x0)v0||) ≤

≤ Nh(s)ν(h(s)ε||P (s, x0)v0||+ h(t)ε||ΦQ(t, s, x0)v0||),

for all (t, s, x0, v0) ∈ ∆×X × V ;

(iii) there are N ≥ 1, ν > 0 and ε ≥ 0 such that:

(hd′1) h(t)ν ||ΦP (t, s, x)v|| ≤ Nh(s)ν+ε||P (s, x)v||;
(hd′2) h(t)ν ||Q(s, x)v||) ≤ Nh(s)νh(t)ε||ΦQ(t, s, x)v||,

for all (t, s, x, v) ∈ ∆×X × V ;

(iv) there exist N ≥ 1, ν > 0 and ε ≥ 0 with:

(hd1) h(t)ν ||ΦP (t, t0, x0)v0|| ≤ Nh(s)ν+ε||ΦP (s, t0, x0)v0||;
(hd2) h(t)ν ||ΦQ(s, t0, x0)v0|| ≤ Nh(s)νh(t)ε||ΦQ(t, t0, x0)v0|,

for all (t, s, t0, x0, v0) ∈ T ×X × V .
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Proof. (i) =⇒ (ii) It results from (i) for s = t0.

(ii) =⇒ (iii) For (hd′) =⇒ (hd′1) we take v0 = P (s, x0)v and we
notice that Q(s, x0)v0 = Q(s, x0)P (s, x0)v = 0 and ΦQ(t, s, x0)P (s, x0)v =
Φ(t, s, x0)Q(s, x0)P (s, x0)v = 0.

In a similar way, for (hd′) =⇒ (hd′2) we take v0 = Q(s, x0)v and we
observe that P (s, x0)v0 = P (s, x0)Q(s, x0)v = 0 and ΦP (t, s, x0)Q(s, x0)v =
Φ(t, s, x0)P (s, x0)Q(s, x0)v = 0.

(iii) =⇒ (iv) For (hd′1) =⇒ (hd1) we have x = ϕ(s, t0, x0) and
v = ΦP (s, t0, x0)v0 in (hd′1) and we obtain

h(t)ν ||ΦP (t, t0, x0)v0|| = h(t)ν ||ΦP (t, s, ϕ(s, t0, x0))ΦP (s, t0, x0)v0|| ≤
≤ Nh(s)ν+ε||P (s, ϕ(s, t0, x0))ΦP (s, t0, x0)v0|| =
= Nh(s)ν+ε||ΦP (s, t0, x0)v0||,

for all (t, s, t0, x0, v0) ∈ T ×X × V .

We use the same method for (hd′2) =⇒ (hd2) we take x = ϕ(s, t0, x0)
and v = ΦQ(s, t0, x0)v0 in (hd′2) and we obtain

Nh(s)νh(t)ε||ΦQ(t, t0, x0)v0||
= Nh(s)νh(t)ε||ΦQ(t, s, ϕ(s, t0, x0))ΦQ(s, t0, x0)v0|| ≥
≥ h(t)ν ||Q(s, ϕ(s, t0, x0))ΦQ(s, t0, x0)v0|| =
= h(t)ν ||ΦQ(s, t0, x0)v0||,

for all (t, s, t0, x0, v0) ∈ T ×X × V .

(iv) =⇒ (i) It results by adding the conditions (hd1) and (hd2).

5 h-growth concepts for skew-evolution cocycles

Definition 5.1. The pair (C,P ) has h-growth if there are M ≥ 1, ω > 0
and δ ≥ 0 such that:

h(s)ω(||ΦP (t, t0, x0)v0||+ ||ΦQ(s, t0, x0)v0||) ≤

≤Mh(t)ω(h(s)δ||ΦP (s, t0, x0)v0||+ h(t)δ||ΦQ(t, t0, x0)v0||),

for all (t, s, t0, x0, v0) ∈ T ×X × V .
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Remark 5.1. The concept of h-dichotomy implies the h-growth property,
but the converse implication is not true, as we can see in:

Example 5.1. Let V = R2, ϕ : ∆×X → X a evolution semiflow on X and
Φ : ∆×X → B(V ) defined by

Φ(t, s, x)(v1, v2) =

(
h(t)

h(s)
v1,

h(s)

h(t)
v2

)
a skew-evolution semiflow on X × V over ϕ. Then C is a skew-evolution
cocycle.

We consider the families of projectors P,Q : R+×X → B(V ) defined by

P (t, x)(v1, v2) = (v1, 0),

Q(t, x)(v1, v2) = (0, v2),

for all (t, x, v1, v2) ∈ R+ ×X × V .

It is easy to see that (C,P ) has h-growth, but is not h-dichotomic.

6 Growth concepts with differentiable growth rates
of skew-evolution cocycles

Let h : R+ → [1,∞) be a differentiable growth rate and P a family of
projectors invariant to the skew-evolution cocycle C.

Definition 6.1. The pair (C,P ) has strong h-growth if there are M ≥ 1, ω >
0 and δ ≥ 0 with:

h(s)ω(||ΦP (t, t0, x0)v0||+ ||ΦQ(s, t0, x0)v0||) ≤

≤Mh(t)ω
(
h′(s)

h(s)
h(s)δ||ΦP (s, t0, x0)v0||+

h′(t)

h(t)
h(t)δ||ΦQ(t, t0, x0)v0||

)
,

for all (t, s, t0, x0, v0) ∈ T ×X × V .

For the particular cases h(t) = et, h(t) = t + 1 and h(t) = ln(t + e) we
obtain the concepts of strong exponential growth, strong polynomial growth
and strong logarithmic growth.

Finally, if δ = 0 it results the concepts of uniform strong h-growth,
uniform strong exponential growth, uniform strong polynomial growth and
respectively uniform strong logarithmic growth.
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Remark 6.1. The pair (C,P ) has strong h-growth if and only if there are
M ≥ 1, ω > 0 and δ ≥ 0 with:

h(s)ω(||ΦP (t, s, x)v||+ ||Q(s, x)v||) ≤

≤Mh(t)ω(
h′(s)

h(s)
h(s)δ||P (s, x)v||+ h′(t)

h(t)
h(t)δ||ΦQ(t, s, x)v||),

for all (t, s, x, v) ∈ ∆×X × V .

In what follows we will denote by

• H the set of differentiable growth rates h : R+ → [1,∞) with the
property that there exists H > 1 such that

h′(t) ≤ Hh(t), for all t ≥ 0;

• H1 the set of differentiable growth rates h : R+ → [1,∞) with the
property that there exist m > 0 and M > 0 such that

mh(t) ≤ h′(t) ≤Mh(t), for all t ≥ 0.

Example 6.1. If e(t) = et, p(t) = t+ 1, l(t) = ln(t+ e) and r(t) =
√
t2 + 1,

then e ∈ H1 ⊂ H and p, l, r ∈ H.

Proposition 6.1. If h ∈ H, then:

(i) h(t) ≤ h(s)eH(t−s), for all (t, s) ∈ ∆;

(ii) h(t+ 1) ≤ eHh(t), for all t ≥ 0;

Proof. (i) From h ∈ H it results that∫ t

s

h′(t)

h(t)
dτ ≤ H(t− s),

which implies that

h(t) ≤ eH(t−s)h(s),

for all (t, s) ∈ ∆.

(ii) It is immediate from (i).
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7 Integral h-dichotomy

Let C be a strongly measurable skew-evolution cocycle (i.e. the mapping
t 7→ ||Φ(t, s, x)v|| is measurable on [s,∞), for all (s, x, v) ∈ R+ ×X × V ), P
a family of projectors invariant to C and h : R+ → [1,∞) a differentiable
growth rate.

Definition 7.1. The pair (C,P ) is integrally h-dichotomic if there are D ≥
1, ε ≥ 0 and d ∈ (0, 1) such that

(hD)

∞∫
t

h′(τ)

h(τ)
h(τ)d||ΦP (τ, t0, x0)v0||dτ +

t∫
t0

h′(s)

h(s)
h(s)−d||ΦQ(s, t0, x0)v0||ds

≤ Dh(t)ε(h(t)d||ΦP (t, t0, x0)v0||+ h(t)−d||ΦQ(t, t0, x0)v0||),

for all (t, t0, x0, v0) ∈ ∆×X × V .

Remark 7.1. In particular, if ε = 0, then we obtain the concept of uniform
integral h-dichotomy.

Proposition 7.1. The pair (C,P ) is integrally h-dichotomic if and only if
there are D ≥ 1, ε ≥ 0 and d ∈ (0, 1) with

(hD1)
∞∫
t

h′(τ)
h(τ) h(τ)d||ΦP (τ, t0, x0)v||dτ ≤ Dh(t)ε+d||ΦP (t, t0, x0)v||;

(hD2)
t∫
t0

h′(s)
h(s) h(s)−d||ΦQ(s, t0, x0)v||ds ≤ Dh(t)ε−d||ΦQ(t, t0, x0)v||,

for all (t, t0, x0, v0) ∈ ∆×X × V .

Proof. Necessity. For (hD) =⇒ (hD1) we take v0 = P (t0, x0)v in (hD)
and observe that ΦP (τ, t0, x0)v0 = ΦP (τ, t0, x0)v and ΦQ(s, t0, x0)v0 = 0.

Similarly, for (hD) =⇒ (hD1) we take v0 = Q(t0, x0)v in (hD) and it
follows that ΦP (τ, t0, x0)v0 = 0 and ΦQ(s, t0, x0)v0 = ΦQ(s, t0, x0)v.

Sufficiency. It is immediate.

Theorem 7.1. If (C,P ) is h-dichotomic, then it is also integrally h-dichotomic.

Proof. If (C,P ) is h-dichotomic, then there exist N > 1, ν ∈ (0, 1) and ε ≥ 0
such that for every d ∈ (0, ν) we have
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∞∫
t

h′(τ)

h(τ)
h(τ)d||ΦP (τ, t0, x0)v0||dτ +

t∫
t0

h′(s)

h(s)
h(s)−d||ΦQ(s, t0, x0)v0||ds

≤
∞∫
t

h′(τ)

h(τ)
h(τ)dNh(t)ε

(
h(τ)

h(t)

)−ν
||ΦP (t, t0, x0)v0||dτ

+

t∫
t0

h′(s)

h(s)
Nh(t)εh(s)−d

(
h(t)

h(s)

)−ν
||ΦQ(t, t0, x0)v0||ds

= Nh(t)ε(h(t)ν ||ΦP (t, t0, x0)v0||
∞∫
t

h′(τ)h(τ)d−ν−1dτ

+ h(t)−ν ||ΦQ(t, t0, x0)v0||
t∫

t0

h′(s)h(s)ν−d−1ds)

≤ Nh(t)ε
(
h(t)ν ||ΦP (s, t0, x0)v0||

h(t)d−ν

ν − d
+ h(t)−ν ||ΦQ(t, t0, x0)v0||

h(t)ν−d

ν − d

)
=
Nh(t)ε

ν − d

(
h(t)d||ΦP (t, t0, x0)v0||+ h(t)−d||ΦQ(t, t0, x0)v0||

)
≤ Dh(t)ε(h(t)d||ΦP (t, t0, x0)v0||+ h(t)−d||ΦQ(t, t0, x0)v0||),

where D = ν−d+N
ν−d .

Theorem 7.2. We suppose that (C,P ) has strong h-growth with h ∈ H.
If there exist D ≥ 1, ε ≥ 0 and d > δ with (hD), then the pair (C,P ) is
h-dichotomic.

Proof. Case I: t ≥ s+ 1.

By Definition 6.1 and (hD) we obtain
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||ΦP (t, t0, x0)v0||+ ||ΦQ(s, t0, x0)v0|| =

=

t∫
t−1

||ΦP (t, t0, x0)v0||dτ +

s+1∫
s

||ΦQ(s, t0, x0)v0||dτ

≤
t∫

t−1

Mh(τ)δ
(
h(t)

h(τ)

)ω h′(τ)

h(τ)
||ΦP (τ, t0, x0)v0||dτ

+

s+1∫
s

Mh(τ)δ
(
h(τ)

h(s)

)ω h′(τ)

h(τ)
||ΦQ(τ, t0, x0)v0||dτ

≤Mh(t)δ
(
h(t)

h(s)

)−d t∫
t−1

h′(τ)

h(τ)

(
h(t)

h(τ)

)ω+d(h(τ)

h(s)

)d
||ΦP (τ, t0, x0)v0||dτ

+Mh(s)δeHδ
(
h(t)

h(s)

)−d s+1∫
s

h′(τ)

h(τ)

(
h(τ)

h(s)

)ω+d( h(t)

h(τ)

)d
||ΦQ(τ, t0, x0)v0||dτ

≤Mh(t)δ
(
h(t)

h(s)

)−d
eH(ω+d)

∞∫
s

h′(τ)

h(τ)

(
h(τ)

h(s)

)d
||ΦP (τ, t0, x0)v0||dτ

+Mh(s)δeHδ
(
h(t)

h(s)

)−d
eH(ω+d)

s+1∫
s

h′(τ)

h(τ)

(
h(t)

h(τ)

)d
||ΦQ(τ, t0, x0)v0||dτ

≤ DMeH(ω+d)

[(
h(t)

h(s)

)δ−d
h(s)ε+δ||ΦP (s, t0, x0)v0||+

+ eHδh(t)ε+δ
(
h(t)

h(s)

)−(d+δ)
||ΦQ(t, t0, x0)v0||

]
,

for all (t, s, t0, x0, v0) ∈ T ×X × V .

Case II: t ∈ [s, s+ 1) .

By Definition 6.1 we have
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||ΦP (t, t0, x0)v0||+ ||ΦQ(s, t0, x0)v0|| ≤

≤ Mh(s)δ
(
h(t)

h(s)

)ω h′(s)
h(s)

||ΦP (s, t0, x0)v0||+

+ Mh(t)δ
(
h(t)

h(s)

)ω h′(t)
h(t)
||ΦQ(t, t0, x0)v0|| ≤

≤ MH

[
eH(ω+d−δ)h(s)ε+δ

(
h(t)

h(s)

)−(d−δ)
||ΦP (s, t0, x0)v0||+

+ eH(ω+d+δ)h(t)ε+δ
(
h(t)

h(s)

)−(d+δ)
||ΦQ(t, t0, x0)v0||

]
,

for all (t, s, t0, x0, v0) ∈ T ×X × V .

Corollary 7.1. If (C,P ) has uniform strong h-growth with h ∈ H, then
(C,P ) is uniformly h-dichotomic if and only if there exist D ≥ 1 and d ∈
(0, 1) with

∞∫
t

h′(τ)

h(τ)
h(τ)d||ΦP (τ, t0, x0)v0||dτ +

t∫
t0

h′(s)

h(s)
h(s)−d||ΦQ(s, t0, x0)v0||ds

≤ D(h(t)d||ΦP (t, t0, x0)v0||+ h(t)−d||ΦQ(t, t0, x0)v0||),

for all (t, t0, x0, v0) ∈ ∆×X × V .

Proof. It results from Theorem 7.1 and Theorem 7.2 for ε = 0.

Remark 7.2. For the particular cases h(t) = et, h(t) = t + 1 and h(t) =
ln(t+e) from Theorem 7.1 and Theorem 7.2 we obtain related properties for
exponential dichotomy, polynomial dichotomy and respectively logarithmic
dichotomy.

Similarly from Corollary 7.1 it results characterizations for uniform expo-
nential dichotomy, uniform polynomial dichotomy and respectively uniform
logarithmic dichotomy.

For evolution operators these theorems are proved for uniform exponen-
tial dichotomy and uniform polynomial dichotomy by Boruga and Megan in
[5].
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Theorem 7.3. If the pair (C,P ) is h-dichotomic with ν > ε, then there
exist D ≥ 1 and d ∈ (0, ν − ε) such that

(hD′)

t∫
t0

h′(s)

h(s)d+1

1

||ΦP (s, t0, x0)v0||
ds+

∞∫
t

h′(τ)

h(τ)1−d
1

||ΦQ(τ, t0, x0)v0||
dτ

≤ Dh(t)ε
(

h(t)−d

||ΦP (t, t0, x0)v0||
+

h(t)d

||ΦQ(t, t0, x0)v0||

)
,

for all (t, t0, x0, v0) ∈ ∆×X×V with ΦP (t, t0, x0)v0 6= 0 and Q(t0, x0)v0 6= 0.

Proof. If the pair (C,P ) is h-dichotomic with ν > ε, then for d ∈ (0, ν − ε)
we have

t∫
t0

h′(s)

h(s)d+1

1

||ΦP (s, t0, x0)v0||
ds+

∞∫
t

h′(τ)

h(τ)1−d
1

||ΦQ(τ, t0, x0)v0||
dτ ≤

≤
t∫

t0

h′(s)

h(s)d+1
N

(
h(t)

h(s)

)−ν h(s)ε

||ΦP (t, t0, x0)v0||
ds+

+

∞∫
t

h′(τ)

h(τ)1−d
Nh(τ)ε

(
h(τ)

h(t)

)−ν 1

||ΦQ(t, t0, x0)v0||
dτ ≤

≤ Nh(t)−ν

||ΦP (t, t0, x0)v0||
h(t)ν+ε−d

ν + ε− d
+

Nh(t)ν

||ΦQ(t, t0, x0)v0||
h(t)d−ν+ε

ν − d− ε
≤

≤ Dh(t)ε
(

h(t)−d

||ΦP (t, t0, x0)v0||
+

h(t)d

||ΦQ(t, t0, x0)v0||

)
,

where D = 1 +N

(
1

ν+ε−d + 1
ν−d−ε

)

Theorem 7.4. If (C,P ) has strong h-growth with h ∈ H1 and there exist
D ≥ 1, ε ≥ 0 and d > ε such that (hD′) takes place, then the pair (C,P ) is
h-dichotomic.

Proof. We suppose that (C,P ) has strong h-growth with h ∈ H1 and (hD′)
holds for D ≥ 1, ε ≥ 0 and d > ε.
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Case I: From Defintion 6.1 and inequality (hD′), we have (t, s, t0, x0, v0) ∈
T ×X × V with t ≥ s+ 1, ΦP (t, t0, x0)v0 6= 0 and Q(t0, x0)v0 6= 0.

h(s)−d

||ΦP (s, t0, x0)v0||
+

h(t)d

||ΦQ(t, t0, x0)v0||
=

=

s+1∫
s

h(s)−d

||ΦP (s, t0, x0)v0||
dτ +

t∫
t−1

h(t)d

||ΦQ(t, t0, x0)v0||
dτ ≤

≤
s+1∫
s

Mh(s)δ
(
h(τ)

h(s)

)ω h′(s)
h(s)

h(s)−d

||ΦP (τ, t0, x0)v0||
dτ +

+

t∫
t−1

Mh(t)δ
(
h(t)

h(τ)

)ω h′(t)
h(t)

h(t)d

||ΦQ(τ, t0, x0)v0||
dτ ≤

≤ MH

m
eH(ω+d)

(
h(s)δ

t∫
t0

h′(τ)

h(τ)1+d
1

||ΦP (τ, t0, x0)v0||
dτ +

+ h(t)δ
∞∫
s

h′(τ)

h(τ)1−d
1

||ΦQ(τ, t0, x0)v0||
dτ

)
≤

≤ DMH

m
eH(ω+d)

(
h(s)δ+ε

h(t)ε−d

||ΦP (t, t0, x0)v0||
+ h(t)δ

h(s)ε+d

||ΦQ(s, t0, x0)v0||

)
.

So we have

||ΦP (t, t0, x0)v0||+ ||ΦQ(s, t0, x0)v0|| ≤

≤ DMH

m
eH(ω+d)

[
h(s)δ+ε

(
h(t)

h(s)

)−(d−ε)
h(s)δ+ε||ΦP (s, t0, x0)v0||+

+

(
h(t)

h(s)

)−(d−ε)
h(t)δ+ε||ΦQ(t, t0, x0)v0||

]
.

Case II: By Defintion 6.1 we obtain (t, s, t0, x0, v0) ∈ T × X × V with
t ∈ [s, s+ 1), ΦP (t, t0, x0)v0 6= 0 and Q(t0, x0)v0 6= 0.
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h(t)d||ΦP (t, t0, x0)v0||+ h(t)d||ΦQ(s, t0, x0)v0|| ≤

≤ Mh(s)δh(t)d
(
h(t)

h(s)

)ω h′(s)
h(s)

||ΦP (s, t0, x0)v0||+

+ Mh(t)δh(t)d
(
h(t)

h(s)

)ω h′(t)
h(t)
||ΦQ(t, t0, x0)v0|| =

= Mh(s)δ
h′(s)

h(s)

(
h(t)

h(s)

)ω+d
h(s)d||ΦP (s, t0, x0)v0||+

+ Mh(t)δ
(
h(t)

h(s)

)ω+dh′(t)
h(t)

h(s)d||ΦQ(t, t0, x0)v0|| ≤

≤ MHeH(ω+d)h(s)d(h(s)δ||ΦP (s, t0, x0)v0||+ h(t)δ||ΦQ(t, t0, x0)v0||).

So

||ΦP (t, t0, x0)v0||+ ||ΦQ(s, t0, x0)v0|| ≤

≤ MHeH(ω+d)

[(
h(t)

h(s)

)−(d−ε)
h(s)δ+ε||ΦP (s, t0, x0)v0||+

+

(
h(t)

h(s)

)−(d−ε)
h(t)δ+ε||ΦQ(t, t0, x0)v0||

]
,

for all (t, s, t0, x0, v0) ∈ T ×X × V .
Finally, we obtain that the pair (C,P ) is h-dichotomic.

Corollary 7.2. If (C,P ) has strong h-growth with h ∈ H1, then a necessary
and sufficient condition for (C,P ) to be h-dichotomic with ν > ε is that there
are D ≥ 1 and d > ε such that (hD′) is satisfied.

Proof. It results from Theorem 7.3 and Theorem 7.4.

Corollary 7.3. If (C,P ) has an uniform strong h-growth, then (C,P ) is
uniformly h-dichotomic if and only if there are D ≥ 1 and d > 0 with the
property

t∫
t0

h′(s)

h(s)d+1

1

||ΦP (s, t0, x0)v0||
ds+

∞∫
t

h′(τ)

h(τ)1−d
1

||ΦQ(τ, t0, x0)v0||
dτ ≤

≤ D

(
h(t)−d

||ΦP (t, t0, x0)v0||
+

h(t)d

||ΦQ(t, t0, x0)v0||

)
,
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for all (t, t0, x0, v0) ∈ ∆×X×V with ΦP (t, t0, x0)v0 6= 0 and Q(t0, x0)v0 6= 0.

Proof. It is a particular case (ε = 0) from the previous Corollary.

Remark 7.3. In Theorem 7.3 and Theorem 7.4 when the growth rate is et

we obtain the particular cases, such as exponential dichotomy, respectively
uniform exponential dichotomy. The particular case of uniform exponential
dichotomy of these two theorems was proved for evolution operators in [5].
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