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Abstract
A new model that captures the cellular evolution of patients undergoing

maintenance therapy for acute lymphoblastic leukemia in connection with al-
lergic reactions is considered. A previous model from is modified to include
the cells involved in allergies induced by chemotherapy and desensitization.

Delay differential equations are used to model cell evolution. General
properties of solutions are deduced, eventually proving partial stability of
certain equilibria with respect to some of the variables. The immune sys-
tem’s functioning, as well as the therapeutic role for cancer cure without
interference of allergic reactions caused by this treatment, are also evaluated
using numerical simulations.
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1 Introduction

Leukemia is a type of blood and bone marrow cancer characterized by an over-
abundance of abnormal white blood cells.

Acute lymphoblastic leukemia (ALL), also known as acute lymphocytic leu-
kemia, is a type of cancer that arises from the early stages of lymphocyte cells
known, as lymphoblasts, in the bone marrow. Leukemic cells normally infiltrate
the bloodstream swiftly. They can spread to other organs such the lymph nodes,
liver, spleen, etc[7].

Chemotherapy’s goal is that, by using drugs, to stop or decrease the growth of
cancerous cells. Following the first round of chemotherapy, front line of mainte-
nance therapy is to give the patient 6-MT (mercaptopurine) orally[7, 21].

The more and more use of chemotherapy in recent time enhances hypersensi-
tive responses (HSRs). Drug allergies can be lethal, limiting the use of first-line
medicines and threatening patients’ survival chance but also the quality of life.
The reactions can range from minor cutaneous symptoms like itching and hives to
potentially lethal anaphylaxis, which causes hypotension, oxygen deficiency, and
cardiovascular collapse [9].

Mercaptopurine is a popular antimetabolite used to treat, besides acute lym-
phoblastic leukemia, the inflammatory bowel illness[26]. Mercaptopurine’s side
effects include myelosuppression, hepatotoxicity and hyperpigmentation. The ex-
ample of a 36-year-old man with Philadelphia chromosome-negative pre-B-cell
acute lymphoblastic leukemia who experienced a severe mercaptopurine-induced
hypersensitivity reaction that required prolonged hospitalization as well as inten-
sive laboratory tests and imaging is described in the literature[10].

According to [29], administration of oral 6-MP was associated with a 21 %
increase in the percentage of CD4+ T cells, restoring the CD4/CD8 ratio. Prior
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to treatment with 6-MP, there was a T helper type 1(Th1) predominance, with the
percentage of IFN-γ+ positive cells exceeding that of IL-4 cells. The percent-
age of CD4+ T cells that were interferon (IFN)-γ+ was reduced by 66%, moving
the cytokine balance away from Th1 cells (known as proinflammatory) predomi-
nance.The IFN-γ+ /IL-4 ratio dropped [29]. IFN-γ+ is a cytokine which induces
Th1 cells response while IL-4 is a cytokine which induces Th2 cells reponse (see
[32]). Moreover 6-MP induces cytokines like IL-6 and TNF-alpha [27], where IL-
6, the cytokine secreted by antigen-presenting cells, is able to polarize naive CD4+
T cells to effector Th2 cells, by inducing the initial production of IL-4 in CD4+ T
cells [31].

According to [35] , Th2 cells stimulate IgE production, whereas Thl cells en-
courage IgG production (see [15]). So the shift from a Th2-dominated memory
state to a Thl-dominated memory state shows a successful chemotherapy without
the detection of allergic reactions.

There are several types of regulatory T cells, but the kind that appears to be
essential in the context of allergic reactions is the so-called induced regulatory T
cells (Treg) [15]. These cells produce cytokines such as IL-10 and TGF-β, which
can suppress both Th1 and Th2 immune responses, and they differentiate from
naive T cells in the same way as the other subsets do. (see [15]).

The process of helping patients to accept drugs that previously produced hyper-
sensitive reactions is known as drug desensitization. Desensitization, initially used
to treat antibiotic hypersensitivity reactions, is now widely used to treat allergies
to chemotherapy drugs and ambient sources , broadening the clinical applicability
of a procedure that has been shown to be safe and effective in improving clinical
outcomes, primarily by allowing patients to continue on their preferred first-line
therapy.([34]). Drug desensitization is essentially a process in which an objection-
able chemical is supplied in very small dose increments until the total dose equals
the medication’s initial target dose.

In order to mimic the ALL-immune dynamics under therapy, we use DDEs
and some previous ideas (see [6],[7],[15]) to model the allergic reactions. We
incorporate desensitization for mercaptopurine in our model to study the avoidance
of hypersensitivity to this drug.

Following [37], the body is separated into two compartments: the central com-
partment, which contains the blood and well-perfused organs such as the heart,
lungs, liver, and kidneys, and the peripheral compartment, which contains the
weakly perfused tissues and organs.
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2 The Model

The model consists of eleven nonlinear delay differential equations describing, in
the first 4 equations, the temporal behavior of four variables implied in allergic
reactions after allergen administration during treatment with 6-MP. The variables
are: the concentration of naive CD4+ cells (N ) and the concentrations of Th1, Th2
and Treg cells, (T1, T2 and Tr respectively). The first four equations are essentially
those from [15], but, following [37], we introduce a delay for the action of antigen
presenting cells (APCs).

In Equations (5) and (6) we consider a process of maturation of APCs, denoted
as A1, A2, after the contact with an allergen.Here we separate from [15] and use
the approach in [24].

The rest of equations describe a compartment of erythropoiesis, on the lines
in [11],[1], coupled with the dynamics of 6-MP used in the maintenance therapy
([21]). As in [21], we consider the whole population of erythrocytes to be affected
by the drug. We denote by E the stem-like short-term erythroid cells, Ec the ery-
throcytes, Ep, the concentration of erythropoietin, L the loss during cell cycle, Mp

the amount of 6-MP in plasma, I the concentration of induced cytokines during
chemotherapy

βe(x, y) = β0
1

1 + xm
y

1 + y
(1)

is the function that regulates the rate of self renewal.
The function

ke(x) = k0
x

1+x (2)

is the rate of differentiation.
The loss of stem-like cells is given by the function

h(t) =
γ0

1 + Ep(t)α
+

R̃mMp(t)

R̃50 +Mp(t)
, (3)

such that R̃m = ERm and R̃50 = ECR50 (see [6]). Here R̃m is the maximum
effect of drug on erythrocytes and R̃50 is the saturation constant for drug on ery-
throcytes.

The loss during the cell cycle is given by:

v(t) = e

−
t∫

t−τ

h(s)ds

, (4)

and a new variable will be introduced as x9 = v.
The analysis above impose the consideration of four time delays:
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• The first delay, τ1, is due to the time for propagation of allergen from central

compartment to peripheral compartment[37]. τ1=
arctg( 2π

Kcp
)T

2π
. Here T is

the infusion time interval and Kcp is a pharmacokinetic parameter related to
the transition between central and peripheral compartment.

• The stem cell proliferation time will be denoted as τ2.

• The time necessary for the development of the erythrocytes, τRM , (see[11])
is denoted as τ3.

• τ4 is the time necessary for the production of cytokines by the APCs, Naive
cells and T cells.

Thus, the complete new model consists in the following equations:

Ṅ = Λ− β1N −NA(t− τ1)

(
T1η

1 +m2T2

)
− pNA2(t− τ1)T2 − κNA2(t− τ1)Tr

(5)

Ṫ1 = −β2T1 +
γ1NA2(t− τ1)

(1 +mrTr)

(
T1

1 +m2T2

)
(6)

Ṫ2 = −β3T2 + p
γ1NA2(t− τ1)

(1 +mrTr)

 T2

1 +m1
T1

1 +m2T2

 (7)

Ṫr = −β4Tr + κγ1NA2(t− τ1)Tr − ηr
ITr

1 + I
(8)

Ȧ1 = λ− βMpA1 − γ21A1 (9)

Ȧ2 = βMpA1 − γ22A2 − µA2Tr (10)

Ė =− γ0

1 + Eα1
p
E − R̃mMp

R̃50 +Mp

E − (η1e + η2e)ke(Ep)E − (1− η1e − η2e)βe(E,Ep)E

+ 2L(1− η1e − η2e)βe(Eτ2 , Epτ2)Eτ2 + η1eLke(Epτ2)Eτ2
(11)
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Ėc = −γ3Ec + Ãeke(Epτ3)Eτ3 (12)

Ėp = −kEp +
a1

1 + Enc
(13)

L̇ = L

(
− γ0

1 + Eα1
p
− R̃mMp

R̃50 +Mp

+
γ0

1 + Eα1
pτ2

+
R̃mMpτ2

R̃50 +Mpτ2

)
(14)

Ṁp = a2 − e1Mp −
µCMpEc
c+Mp

(15)

İ = −γ4I + k1[A(t− τ4) +N(t− τ4) + T1(t− τ4) + T2(t− τ4) + Tr(t− τ4)]
(16)

In what follows, details are given on the form of the equations as well as on the
occurring parameters.

Equation (5) represents the variation of concentration of naive T -cells which
are produced at a constant rate Λ. The second term represents the degradation
of naive cells. The last three terms stand for differentiation of naive cells into
Th1, Th2 and Treg respectively, under the action of APCs.

Equation (6) represents the variation of concentration of Th1, which is pro-
portional to the concentration of naive cells timed the concentration of APCs stim-
ulated by the allergen with a delay τ1. The first term represents the degradation
of Th1 cells, the second term represents the differentiation of naive cell into Th1
diminished due to suppression by Treg and Th2 cells.

Equation (7) represents the variation of concentration of Th2, which is propor-
tional to the concentration of naive cells timed the concentration of APCs and the
concentration of their respective cytokines. The first term represent the degradation
of Th2 cells, the second term represents the differentiation of naive cell into Th2
divided by the suppression of Treg and Th1 cells. Remark that the suppression is
modeled by factors of the form 1/(1 + x) where x stands for the concentration of
cytokines produced by the suppressing population.

Equation (8) represents the variation of concentration of Treg, which is propor-
tional to the concentration of naive cells timed the concentration of APCs . The
first term represents the degradation of Treg cells, the second term represents the
differentiation of naive cell into Treg. The last term stands for inhibition of Treg by
the induced cytokines during chemotherapy with inhibition rate ηr . The parameter
γ1 determines how many differentiated T cells arise from a single naive cell.
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p and κ account for differences in autocrine action between the three subsets. The
suppression strength of Th1, Th2 and Treg is controlled by the parameters m1,
m2, and mr, in that order.

In equation (9) the first term represents the supply rate of immature (naive)
APCs, the second term accounts for the rate of APC activated by the antigen in-
duced during maintenance therapy, the third term represents the death rate of naive
APCs

In equation (10) the first term represents the influx of mature APCs from the
naive pool due to activation by the antigen, the second term is the natural mortality
and the last term represents the deactivation of mature APCs by regulatory T cells
with a rate µ.

In equation (11) E represents the stem-like short-term erythroid cells. η2e is the
percentage of short term-hematopoietic stem cells (ST-HSC) supposed to undergo
asymmetric division. η1e is the percentage that goes to differentiation through
symmetric division and 1 − η1e − η2e is the percentage of cells that self-renew
through symmetric division. The factor 2 represents the division of each cell into 2
daughter cells. The time necessary for ST-HSC to complete a cycle of self renewal
asymmetric division or differentiation is supposed to be same, τ2.

In equation (12), Ec represents the uninfected erythrocytes. −γ3Ec reflects the

death of erythrocytes at a rate γ3 and
∼
Ae = Ae(2η1e + η2e) with Ae the amplifi-

cation factor. Following the completion of amplification through cell division, the
cells traverse a maturation period (duration in days denoted by τ3) then enter the
circulation.

In equation (13), Ep(t) represents the concentration of erythropoietin and k
represents the absorption rate of erythropoietin.

In equation (14), L is a new variable that represents the loss during the cell
cycle.

In equation (15), Mp represents the amount of 6-MP in plasma. The first term
accounts for the initial dose of 6MP, the second term represents the direct elimina-
tion rate of 6-MP from plasma [21], the third term accounts for the drug elimination
from plasma due to the metabolizing into 6-TGP in the blood cells, where we mod-
ified the term given in [21] using some ideas from [17] to model the last action. In
order to prevent the model to become too complicated, we suppose that elimination
has a similar form for other blood cells than erythrocytes and adjust the constant
µC to account for this.

In equation (16), I represents the production of induced cytokines during che-
motherapy, where we follow [16] and consider as its sources the mature APCs and
the naive and the mature CD4+ cells. Here the first term accounts for clearing rate
of these cytokines, the second term represents the production of cytokines with a
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delay τ4, by mature APCs, Naive T cells, Th1 cells, Th2 cells and T reg cells.
In order to facilitate the study of the DDE system, we introduce the following

notations:
x1 = concentration of naive T -cells(N ).
x2 = concentration of Th1 cells(T1) .
x3 = concentration of Th2 cells(T2) .
x4 =concentration of Treg cells(Treg).
x5 = concentration of naive APCs(A1).
x6 = concentration of mature APCs(A2).
x7 =concentration of stem-like short-term erythroid cells(E).
x8 = concentration of the erythrocyte(Ec).
x9 = concentration of erythropoietin(Ep).
x10 = the loss during a cell cycle(L).
x11 = the amount of 6-MP in plasma(Mp).
x12 =the concentration of induced cytokine during maintenance therapy(I).
Thus, the complete model with these new notations consists in the following equa-
tions:

ẋ1 = Λ− β1x1 − x1x6τ1

(
x2

1 +m2x3

)
− px1x6τ1x3 − κx1x6τ1x4

ẋ2 = −β2x2 +
γ1x1x6τ1

(1 +mrx4)

(
x2

1 +m2x3

)

ẋ3 = −β3x3 + p
γ1x1x6τ1

(1 +mrx4)

 x3

1 +m1
x2

1 +m2x3


ẋ4 = −β4x4 + κγ1x1x6τ1x4 − ηr

x12x4

1 + x12
ẋ5 = λ− βx11x5 − γ21x5

ẋ6 = βx11x5 − γ22x6 − µx6x4

ẋ7 = − γ0

1 + xα1
9

x7 −
R̃mx11

R̃50 + x11

x7 − (η1e + η2e)ke(x9)x7

−(1− η1e − η2e)βe(x7, x9)x7 + 2x10(1− η1e − η2e)βe(x7τ2 , x9τ2)x7τ2

+η1ex10ke(x9τ2)x7τ2

ẋ8 = −γ3x8 + Ãeke(x9τ3)x7τ3

ẋ9 = −kx9 +
a1

1 + xn8

ẋ10 = x10

(
− γ0

1 + xα1
9

− R̃mx11

R̃50 + x11

+
γ0

1 + xα1
9τ2

+
R̃mx11τ2

R̃50 + x11τ2

)

(17)
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ẋ11 = a2 − e1x11 −
µCx11x8

c+ x11

ẋ12 = −γ4x12 + k1(x6τ4 + x1τ4 + x2τ4 + x3τ4 + x4τ4)

3 Equilibria

Setting the right-hand side of the equations in (17) to be equal to zero, the equilib-
rium points of our model are found. We choose only the non-negative equilibria,
since only they have a biological meaning. Some of these equilibria will be pre-
sented next and analyzed from a medical point of view.

The first one is E1 = (x∗1, 0, 0, 0, x
∗
5, x
∗
6, 0, 0, x

∗
9, x
∗
10, x

∗
11, x

∗
12)

with
x∗1 =

Λ

β1
, x∗5 =

λ

γ21 + βx∗11

, x∗6 =
βx∗11x

∗
5

γ22

x∗9 =
a1

k

x∗10 = e
−

 γ0

1 + x∗α1
8

+
R̃mx

∗
11

R̃50 + x∗11

τ2
x11 =

a2

e1
, x∗12 =

k1(x∗6 + x∗1)

γ4
E1 corresponds to the death of the patient since there are no more erythrocytes nor
Treg.
The second equilibrium point, E2 = (x∗1, x

∗
2, 0, 0, x

∗
5, x
∗
6, 0, 0, x

∗
9, x
∗
10, x

∗
11, x

∗
12),

illustrates a situation when there is still a critical condition but there are no allergic
effects because we see that the number of Th1-cells is different from zero but that
of Th2-cells is equal to zero.

Here,

x1 =
β2

γ1x∗6
, x∗2 =

Λ− β1x
∗
1

x∗1x
∗
6

, x∗5 =
λ

γ21 + βx∗11

, x∗6 =
βx∗11x

∗
5

γ22

x∗9 =
a1

k

x∗10 = e
−

 γ0

1 + x∗α1
8

+
R̃mx

∗
11

R̃50 + x∗11

τ2
x∗11 =

a2

e1
, x∗12 =

k1(x∗5 + x∗1 + x∗2)

γ4

E3 = (x∗1, x
∗
2, 0, 0, x

∗
5, x
∗
6, x
∗
7, x
∗
8, x
∗
9, x
∗
10, x

∗
11, x

∗
12) corresponds to a healthy

state of the patient with no allergic reactions (because in E3 we see that the Th1
(x2) cells are not equal to zero so in this way Th1 will dominate Th2 cells that are
zero)[32].
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Here,

x∗1 =
β2

γ1x∗6
, x∗2 =

Λ− β1x
∗
1

x∗1x
∗
6

, x∗5 =
λ

γ21 + βx∗11

, x∗6 =
βx∗11x

∗
5

γ22

x∗10 = e
−

 γ0

1 + x∗α1
8

+
R̃mx

∗
11

R̃50 + x∗11

τ2
x∗12 =

k1(x∗6 + x∗1 + x∗2)

γ4
The values of x∗1, x∗7, x∗8, x∗9, x

∗
11 are calculated numerically in the last section.

E4 = (x∗1, 0, x
∗
3, 0, x

∗
5, x
∗
6, x
∗
7, x
∗
8, x
∗
9, x
∗
10, x11∗, x∗12) corresponds to a healthy

state of the patient with allergic effects that might still persist (because in E4 we
see that the Th2(x3) cells are not equal to zero so in this way Th2 dominate the
Th1 cells and T reg cells that are zero)[32].

x∗1 =
β3

pγ1x∗6
, x∗3 =

Λ− β1x
∗
1

px∗1x
∗
6

, x∗5 =
λ

γ21 + βx11∗
,x∗6 =

βx∗11x
∗
5

γ22
,

x∗10 = e
−

 γ0

1 + x∗α1
8

+
R̃mx

∗
11

R̃50 + x∗11

τ2
x∗12 =

k1(x∗5 + x∗1 + x∗3)

γ4
The values of x∗7, x∗8, x∗9 and x∗11 are also calculated numerically in the last section.

The linearized system around an equilibrium point is written as:

ẋ = Ax+Bxτ1 + Cxτ2 +Dxτ3 + Exτ4 (18)

with x = (x1, · · · , x12), xτi = (x1τi , · · · , x12τi), i = 1, 2, 3, 4

A =
∂f

∂x

∣∣∣∣
Ei

, B =
∂f

∂xτ1

∣∣∣∣
Ei

, C =
∂f

∂xτ2

∣∣∣∣
Ei

, D =
∂f

∂xτ3

∣∣∣∣
Ei

, E =
∂f

∂xτ4

∣∣∣∣
Ei

(19)

The characteristic equation corresponding to (18) is :

det
(
λI11 −A−Be−λτ1 − Ce−λτ2 −De−λτ3 − Ee−λτ4

)
= 0 (20)

To study the stability of an equilibrium point we should use this characteristic
equation. It is known that if all the roots of the characteristic equation have neg-
ative real parts, then the equilibrium point is uniformly asymptotically stable. If
there exist at least one root with a positive real part then the equilibrium point is
unstable . The matrices introduced above will be calculated below. The values of
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the state variables must be replaced by the values corresponding to the equilibrium
point under study.

A =
∂f

∂x

a11 = −β1 − x6
x2

1 +m2x3
− px6x3 − κx6x4

a12 = − x1x6

1 +m2x3

a13 =
m2x1x6x2

(1 +m2x3)2
− px1x6

a14 = −κx1x6

a21 =
γ1x6x2

(1 +mrx4)(1 +m2x3)

a22 = −β2 +
γ1x1x6

(1 +mrx4)(1 +m2x3)

a23 =
−γ1m2x6x1x2

(1 +mrx4)(1 +m2x3)2

a24 =
−γ1mrx6x1x2

(1 +mrx4)2(1 +m2x3)

a31 =
pγ1x6x3

(1 +mrx4)(1 +m1
x2

1+m2x3
)

a32 = − pγ1x1x6x3m1(1 +m2x3)

(1 +mrx4)(1 +m2x3 +m1x2)2

a33 = −β3 +
pγ1x1x6

1 +mrx4

1 +m2x3 +m2
2x

2
3 +m1x2 + 2m1m2x2x3

(1 +m1x2 +m2x3)2
)

a34 = − pmrγ1x1x6x3

(1 +mrx4)2(1 +m1
x2

1+m2x3
)

a41 = κγ1x6x4

a44 = −β4 + κγ1x6x1 −
ηrx12

1 + x12

a4,12 = − ηrx4

(1 + x12)2

a55 = βx11 − γ21

a5,11 = −βx5

a64 = −µx6

a65 = βx11

a66 = −γ22

a6,11 = βx5

a77 = − γ0

1 + xα1
9

− R̃mx11

R̃50 + x11

− (η1e + η2e)ke(x9)

− (1− η1e − η2e)

[
βe(x7, x9) +

∂βe(x7, x9)

∂x7
x7

]
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a79 =
α1γ0x7x

α1−1
9

(1 + xα1
9 )2

− (η1e + η2e)k
′
e(x9)x7 − (1− η1e − η2e)x7

∂βe
∂x9

(x7, x9)

a7,10 = 2(1− η1e − η2e)x7βe(x7, x9) + η1eke(x9)x7

a7,11 = −R̃mx7
R̃50

(R̃50 + x11)2

a88 = −γ3

a98 = − a1nx
n−1
8

(1 + x8)2

a99 = −k

a10,9 =
γ0α1x10x

α1−1
9

(1 + xα1
9 )2

a10,11 = −R̃mx10
R̃50

(R̃50 + x11)2

a11,8 = − µCx11

c+ x11

a11,11 = −e1 −
µCx8c

(c+ x11)2

a12,12 = −γ4

and the other values are zeros

B =
∂f

∂xτ1

b16 = − x1x2

1 +m2x3
− px1x3 − κx1x4

b26 =
γ1x1x2

(1 +mrx4)(1 +m2x3)

b36 =
pγ1x1x3

(1 +mrx4)(1 +m1
x2

1+m2x3
)

b46 = κγ1x1x4

and the other values are zero.

C =
∂f

∂xτ2

c77 = 2x10(1− η1e − η2e)

[
βe(x7, x9) +

∂βe(x7, x9)

∂x7
x6

]
+ η1ex10ke(x9)

c79 = 2x10(1− η1e − η2e)

[
∂βe(x7, x9)

∂x9
x7

]
+ η1ex10x7k

′
e(x9)

c10,9 = −γ0α1x10x
α1−1
9

(1 + xα1
9 )2
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c10,11 =
x10R̃50R̃m

(R̃50 + x11)2

and the other values are zero.

D =
∂f

∂xτ3

d87 = Ãeke(x9)
d89 = Ãex7k

′
e(x9)

and the other values are zero.

E =
∂f

∂xτ4
e12,1 = e12,2 = e12,3 = e12,4 = e12,6 = k1

and the other values are zero.

3.1 Stability Analysis of E1

The characteristic equation (20) corresponding to E1 becomes:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 −a12 −a13 −a14 0 0 0 0 0 0 0 0
0 k2 0 0 0 0 0 0 0 0 0 0
0 0 k3 0 0 0 0 0 0 0 0 0
0 0 0 k4 0 0 0 0 0 0 0 0
0 0 0 0 k5 0 0 0 0 0 −a5,11 0
0 0 0 −a64 −a65 k6 0 0 0 0 −a6,11 0
0 0 0 0 0 0 k7 0 0 0 0 0
0 0 0 0 0 −d87e

−λτ2 k8 0 0 0 0 0
0 0 0 0 0 0 0 0 k9 0 0 0
0 0 0 0 0 0 0 0 −a10,9 − c10,9e

−λτ2 k10 −a10,11 − c10,11e
−λτ2 0

0 0 0 0 0 0 0 −a11,8 0 0 k11 0
−e12,1e

−λτ4 −e12,2e
−λτ4 −e12,3e

−λτ4 −e12,4e
−λτ2 0 −e12,6e

−λτ4 0 0 0 0 0 k12

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

where
k1 = λ− a11

k2 = λ− a22

k3 = λ− a33

k4 = λ− a44

k5 = λ− a55

k6 = λ− a66

k7 = λ− a77 − c77e
−λτ2

k8 = λ− a88

k9 = λ− a99

k10 = λ
k11 = λ− a11,11

k12 = λ− a12,12

Expanding the above determinant we get the following form of the equation:

d1(λ) = λ(λ− a11)(λ− a22)(λ− a33)(λ− a44)(λ− a55)(λ− a66)
(λ− a77 − c77e

−λτ2)(λ− a88)(λ− a99)(λ− a11,11)(λ− a12,12) = 0.
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Remark that a critical case for stability appears since λ = 0 is a root. If one can
apply the results from [3], E1 has a regular asymptotic behavior if
a11, a22, a33, a44, a55, a66, a88, a99, a11,11, a12,12 are negative and all the roots
of the equation

λ− a77 − c77e
−λτ2 = 0 (21)

have negative real parts.
According to [12] a necessary and sufficient condition in order that all roots of
equation(21) have negative real parts is that:

• a77τ2 < 1

• a77τ2 < −c77τ2 < (θ2 + a2
77τ

2
2 )

1
2

where, since a77 6= 0, θ is the unique root of the equation θ = a66τ2 tan(θ).
Since we do not have an equation with the linear part equal to zero, the theorem
in [3] is not directly applicable, so we should proceed to bring the system to the
canonical form to which this theorem can be applied (see the details in [3], [6]).
But, according to the numerical values of the parameters, we get :
a22 = 1.8991, a33 = 0.0722 so E1 is not stable, therefore we will study its partial
stability below.

3.2 Stability Analysis of E2

The characteristic equation (20) corresponding to E2 becomes:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 −a12 −a13 −a14 0 0 0 0 0 0 0 0
−a21 k2 0 0 0 0 0 0 0 0 0 0

0 0 k3 0 0 0 0 0 0 0 0 0
0 0 0 k4 0 0 0 0 0 0 0 0
0 0 0 0 k5 0 0 0 0 0 −a5,11 0
0 0 0 −a64 −a65 k6 0 0 0 0 −a6,11 0
0 0 0 0 0 0 k7 0 0 0 0 0
0 0 0 0 0 −d87e

−λτ2 k8 0 0 0 0 0
0 0 0 0 0 0 0 0 k9 0 0 0
0 0 0 0 0 0 0 0 −a10,9 − c10,9e

−λτ2 k10 −a10,11 − c10,11e
−λτ2 0

0 0 0 0 0 0 0 −a11,8 0 0 k11 0
−e12,1e

−λτ4 −e12,2e
−λτ4 −e12,3e

−λτ4 −e12,4e
−λτ2 0 −e12,6e

−λτ4 0 0 0 0 0 k12

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

where,
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k1 = λ− a11

k2 = λ− a22

k3 = λ− a33

k4 = λ− a44

k5 = λ− a55

k6 = λ− a66 − c66e
−λτ2

k7 = λ− a77

k8 = λ− a88

k9 = λ
k10 = λ− a1010

This time, the determinant above gives the following equation:

d2(λ) = λ[λ2 − λ(a11 + a22) + a11a22 − a12a21]

× (λ− a33)(λ− a44)(λ− a55)(λ− a66)(λ− a77 − c77e
−λτ2)

× (λ− a88)(λ− a99)(λ− a11,11)(λ− a12,12) = 0.

Therefore, using the approach for the critical case as before, necessary condi-
tions for stability of E2 are
a33, a44, a55, a77, a88, a10,10, a11,11 to be negative and all the roots of the equa-
tions

λ− a77 − c77e
−λτ2 = 0 (22)

λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0 (23)

have negative real parts.
Once again, according to numerical calculations, using the parameters listed at the
end of the paper, the solutions of equation (23) are λ1 = 2.3799 and λ2 = 0.0239
and since both of them are positive, E2 is unstable.

4 General properties of the solutions

Define τ = max{τ1, τ2, τ3, τ4} and let PC([−τ, 0],R12) denote the space of
piecewise continuous functions defined on [−τ, 0] with values in R12. The norm in
PC([−τ, 0],R12) will be defined by

||ϕ||τ = sup{||ϕ(t)||2|t ∈ [−τ, 0]},

with || · ||2 the euclidean norm in Rn. For (17 )consider the initial data

x(s) = ϕ(s), s ∈ [−τ, 0] (24)
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Proposition 1. If the initial data ϕ ∈ PC([−τ, 0],R11) satisfy ϕj(s) > 0 ∀ s ∈
[−τ, 0], j = 1, . . . , 10 then the solution of the Cauchy problem ((17)+(24)) will
satisfy xj(t) ≥ 0, j = 1, . . . , 10 for all t in the domain of existence.

Proof. Since xj(0) > 0 ∀ j = 1, . . . , 12 there t0 > 0 so that

xj(t) > 0 ∀ t ∈ [0, t0), ∀ j = 1, . . . , 11.

It follows that x1(t) > 0 ∀ t ∈ [−τ, t1), t1 ≥ t0.
If x1(t1) = 0 one has x′1(t1) = Λ > 0 so x1 will increase for t > t1 and conse-
quently, x1(t) > 0 ∀ t in the domain of existence. The same reasoning applies to
x5 and x11.
In the same vein we see that if

x12(t0) = 0⇒ x′12(t0) > 0⇒ x12(t) > 0 ∀ t ∈ [t0, t12)t12 > t0

→ 1 + x12(t) > 0 for t ∈ (0, t12)

Then, since

x4(t) = x4(0)e
−

∫ t
0 [β4−kγ1x1(s)x5(s−τ1)+ηr

x12(s)
1+x12(s)

]ds

one has x4(t) > 0 ∀ t ∈ [0, t11).
Remark that we have

1 +m2x3(t) > 0, 1 +m1x2(t) +m2x3(t) > 0 ∀ t ∈ [0, t2) ⊂ [0, t12), t2 ≥ t0

Then

x3(t) = x3(0)e
∫ t
0 [−β3+pγ1

x1(s)x5(s−τ1)[1+m2x3(s)]
[1+mrx4(s)][1+m1x2(t)+m2x3(t)]

]ds
> 0 ∀ t ∈ [0, t2).

Since x3(t2) = 0 is clearly impossible we conclude that x3(t) > 0 ∀ t ∈ [0, t12).
Similarly,

x2(t) = x2(0)e
−

∫ t
0 [β2−γ1 x1(s)x5(s−τ1)

[1+mrx4(s)][1+m2x3(s)]
]ds

we conclude that x2(t) > 0 ∀ t ∈ [0, t12).
x10(t) > 0 by its definition.
If x6(t6) = 0⇒ x′s(t6) > 0⇒ x6(t) > 0 ∀ t in the domain of existence.
The same reasoning apply to x7, x8 so they are also strictly positive on the whole
interval of existence and then x9 > 0 on the whole interval of existence.
From now on, the initial data for (17) will be supposed positive.
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Proposition 2. If

5k1

γ4
< 1, (25)

then,
x1, x5, x6, x9, x10, x11 are bounded on the whole interval of existence.

Proof. From (17) it follows that

ẋ1(t) = Λ− β1x1(t)− x1(t)p1(t)

with p1(t) ≥ 0 for positive initial data. Then

x1(t) = x1(0)e−β1t−
∫ t
0 p1(s)ds + Λ

(∫ t

0
eβ1se

∫ s
0 p1(r)drds

)
e−β1te−

∫ t
0 p1(s)ds

and we have the following estimation for the second term

Λ
(∫ t

0 e
β1se

∫ s
0 p1(r)drds

)
e−β1te−

∫ t
0 p1(s)ds ≤

≤ Λ
(∫ t

0 e
β1se

∫ t
0 p1(r)drds

)
e−β1te−

∫ t
0 p1(s)ds = Λ1−e−β1t

β1
≤ Λ

β1
∀ t ≥ 0

It follows that |x1(t)| ≤M1 for some positive M1.
For x11(t) we introduce

p11(t) = µC
x8(t)

c+ x11(t)

and we can write

x11(t) = x11(0)e−e1t−
∫ t
0 p11(s)ds + a2

(∫ t
0 e

e1s+
∫ s
0 p11(r)drds

)
e−e1t−

∫ t
0 p11(s)ds ≤

≤ x11(0) + a2

(∫ t
0 e

e1sds
)
e
∫ t
0 p11(r)dre−e1te−

∫ t
0 p11(s)ds =

= x11(0) + a2
ee1t−1
e1

e−e1t ≤ x11(0) + a2
e1

= M11

(for positive initial data, x8(t) & x11(t) are positive according to proposition 1.)
For x5, remark that

x5(t) = x5(0)e−γ21t−β
∫ t
0 x11(s)ds + λ

(∫ t
0 e

γ21seβ
∫ s
0 x11(r)drds

)
e−γ21te−β

∫ t
0 x11(s)ds ≤

≤ x5(0) + a
(∫ t

0 e
γ21sds

)
eβ

∫ t
0 x11(r)dre−γ21te−β

∫ t
0 x11(s)ds

= x5(0) +
a

γ21
(1− e−γ21t) ≤

≤ x5(0) +
a

γ21
= M5.
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With similar arguments one obtains that x6 is bounded:

x6(t) =x6(0)e−γ22t−µ
∫ t
0 x4(s)ds + β

(∫ t

0
x11(s)x5(s)eγ22seµ

∫ s
0 x4(r)drds

)
· e−γ22te−µ

∫ t
0 x4(s)ds.

Then

x6(t) ≤ x6(0) + βM11M5

(∫ t
0 e

γ12sds
)
eµ

∫ t
0 x4(s)dse−γ22te−µ

∫ t
0 x4(s)ds ≤

≤ x6(0) +
β0

γ22
M11M5 = M6

Passing to x9, one has the following estimations,

x9(t) = x9(0)e−kt +
( ∫ t

0

a1

1 + xn8 (s)
eksds

)
e−kt

But

x8(t) > 0⇒ a1

1 + xn8 (s)
< a1

So we get the following estimations

x9(t) ≤ ||ϕ||τ +
a1

k

(
1− e−kt

)
≤ ||ϕ||τ +

a1

k
= M9

so x9(t) is bounded
x10(t) is bounded by its definition since h(t) > 0,

x10(t) ≤M10 ≤ 1

Proposition 3. The solution of (17) exists on [−τ,∞).

Proof. The Proposition will follow from a slight generalization of Theorem 1.2. in
[23] where the conditionon f that ensures global existence is supposed to hold only
for the solutions of (17), this being used in the proof. So we need to prove that,
with ϕ = (ϕ1, . . . , ϕ11) a solution of (17) and f = (f1, . . . , f11) the right-hand
side of (17), one has

|fj(ϕ)| ≤ h(||ϕ||τ ), j = 1, . . . , 11,

∫ ∞
r0

1

h(r)
dr =∞, ∀ r0 > 0.
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We will show that there exist constants K1,K2 so that
|fj(ϕ)| ≤ K1 +K2||ϕ||τ , j = 1, . . . , 11 and the Proposition will result.

|f1(ϕ)| ≤ |Λ|+ β1M1 +M1M6|ϕ2(t)|+ pM1M6|ϕ3(t)|+ κM1M6|ϕ4(t)| ≤

≤ |Λ|+ β1M1 + (M1M6 + pM1M6 + κM1M6)||ϕ||τ

|f2(ϕ)| ≤ (β2 + γ1M1M6)||ϕ||τ

|f3(ϕ)| ≤ (β3 + pγ1M1M6)||ϕ||τ

|f4(ϕ)| ≤ (β4 + κγ1M1M6 + ηr)||ϕ||τ

|f5(ϕ)| ≤ λ+ γ21M5 + βM5M11,

|f6(ϕ)| ≤ γ22M6 + βM5M11 + µM6||ϕ||tau

|f7(ϕ)| ≤ [γ0 + R̃m + (η1e + η2e)k0 + (1− η1e − η2e)β0

+2M10(1− η1e − η2e)β0 + η1ek0M10]||ϕ||τ

|f8(ϕ)| ≤ (γ3 + Ãeke(M8))||ϕ||τ

|f9(ϕ)| ≤ a1 + kM9,

|f10(ϕ)| ≤ (2γ0 + 2R̃m)M10,

|f11(ϕ)| ≤ a2 + e1M11 + µC ||ϕ||τ
|f12(ϕ)| ≤ (γ4 + 5k1)||ϕ||τ ,

4.1 Partial Stability of E1

In this section we will derive delay-independent partial stability conditions for the
equilibrium E1 of the considered system.
We recall first the necessary definitions and results from [33], [2], [13]. Consider
the system

ẋ = X(t, xt), xt0 = ϕ (26)
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We assume that τ > 0 is a given real number, xt : [−τ, 0] → Rn is defined by
xt(s) = x(t+ s), with the norm

||x(t)||2 =
√
x2

1(t) + · · ·+ x2
n(t)

We introduce the partition:
x = (z, u)T (T denotes transposition), where z ∈ Rm, u ∈ Rn−m(1 ≤ m < n).
X : R × C → Rn is assumed to be continuous and X maps every R× (bounded
set) into a bounded set, in the domain D defined by

t ≥ 0, ||z||τ ≤ h, ||u||τ <∞ (27)

The solutions of (26) are assumed to be unique and u-continuable: the solutions
are defined for every t ≥ t0 where ||z(t; t0, ϕ)||2 ≤ h. If we suppose that (27)
holds for all t ≥ t0 then the solution x(t; t0, ϕ) is defined for all t ≥ t0.
Taking into account the above partitions, the system (26) can be represented as:

ż(t) = Z(t, yt, zt), u̇(t) = U(t, yt, zt) (28)

Suppose that
Z(t, 0, 0) = 0, U(t, 0, 0) = 0 ∀ t ≥ t0 (29)

Let x(t; t0, ϕ) denote a solution of the system (26) with initial condition x(t0;ϕ).The
same notation will be applied for the solutions of each of the two equations in (28).

Definition ([33], [13], [2]). The equilibrium point x = 0 of system (26), & (28)
is called

1. z-stable, if for every t0 ≥ 0 and every ε > 0, there exists a δ(ε; t0) > 0
such that ||ϕ||τ < δ implies ||z(t; t0;ϕ)||2 < ε for all t ≥ t0. It is called
uniformly y-stable if δ does not depend on t0,

2. asymptotically z-stable if it is z-stable and for every t0 ≥ 0 there exists a
∆(t0) > 0 such that for every solution x(t; t0;ϕ) of system (26),& (28) that
satisfies ||ϕ||τ < ∆(t0) the following holds true

lim
t→∞
||z(t; t0;ϕ)|| = 0 (30)

3. uniformly asymptotically z-stable, if it is uniformly z-stable with respect to
t0 in terms of point (1) and one can find ∆ > 0 such that relation (30) is met
uniformly with respect to (t0, ϕ) from the domain t0 ≥ 0, ||ϕ||τ < ∆ (for
any numbers η > 0, t0 ≥ 0 one can find the number T = T (η) > 0 such
that ||z(t; t0, ϕ)|| < η for all t ≥ t0 + T , ||ϕ||τ < ∆)
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The following theorem will be used to prove asymptotic stability of E2 with
respect to some of its variables.

Theorem 4. ([33], Th.5.2.1.)
Suppose that there exists a function V : R×C → R of classC1 and continuous

strictly increasing functions
a, b : R+ → R+ with a(0) = b(0) = 0 so that, in the domain (27), for small h,

V (t, ϕ)) ≥ a(||ϕv(0))||), V̇ (t, xt) ≤ 0. (31)

where V̇ denotes the derivative along the system (26). Then the equilibrium point
x = 0 of system (26) is z-stable.
If, in addition,

V (t, ϕ)) ≤ b(||ϕ||τ ), (32)

then the z-stability is uniform.

Theorem 1. ([33], Th.5.2.2.) Suppose that there exists V : R × C → R of class
C1 and a, b, w : R+ → R+, continuous strictly increasing functions for t > 0,
with a(0) = b(0) = w(0) = 0 so that

a(||ϕv(0)||) ≤ V (t, ϕ) ≤ b(||ϕ||τ ), V̇ (t, xt) ≤ −w(||z(t)||) (33)

∀ (t, ϕ) ∈ D (see(27)) with h small enough and

||Z(t, ϕ)|| ≤M ∀ (t, ϕ) ∈ D. (34)

(V̇ means the derivative of V along system (26)). Then the zero solution of (26) is
uniformly asymptotically stable with respect to z.

Proposition 4. If

pγ1x
∗
1x
∗
6 < β3, kγ1x

∗
1x
∗
6 < β4 & β(x∗5 + x∗11) < 2γ22 (35)

E1 is uniformly asymptotically partially stable with respect to variables x3, x4, x5, x6, x11

and with respect to the invariant manifold of solutions with positive components.
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Proof. Translate the equilibrium E1 into zero by yi = xi − x∗i , for i = 1, . . . , 12.
We are interested only in equations 3, 4, 5, 6, and 11.

ẏ3 = −β3y3 + p
γ1(y1 + x∗1)(y6τ1 + x∗6)

(1 +mry4)

 y3

1 +m1
y2

1 +m2y3


ẏ4 = −β4y4 + κγ1(y1 + x∗1)(y6τ1 + x∗6)y4 − ηr

(y12+x∗12)y4
1+y12+x∗12

ẏ5 = −γ21y5 − βy11y5 − βx∗11y5 − βx∗5y11

ẏ6 = −γ22y6 + βy5y11 + βx∗5y11 + βx∗11y5 − µy4y6 − µx∗6y4

ẏ11 = −e1y11 − µC
y8(y11 + x∗11)

c+ y11 + x∗11

(36)

Remark first that for bounded (y3, y4, y5, y6, y11), the right-hand expressions in
(36) are also bounded. Consider the candidate Lyapunov function

V (y3, y4, y5, y6, y11) = α1
y2

3

2
+ α2

y2
4

2
+ α3

y2
5

2
+ α4

y2
6

2
+ α5

y2
11

2

with α1, α2, α3, α4, α5 ∈ (0,∞) subject to further constraints. Remark that one
has

m||(y3, y4, y5, y6, y11)||2 ≤ V (y3, y4, y5, y6, y11) ≤M ||y||2tau, y = (y1, . . . , y12)

for some m,M > 0. The derivative of V along (36) is given by

dV

dt
=− α1β3y

2
3 + α1p

γ1(y1 + x∗1)(y6τ1 + x∗6)

(1 +mry4)

(
y2

3

1 +m1
y2

1+m2y3

)
− α2β4y

2
4 + α2kγ1y1y

2
4y6τ1 + α2kγ1y1y

2
4x
∗
6 + α2kγ1x

∗
1y

2
4y6τ1

+ α2kγ1x
∗
1y

2
4x
∗
6 − α2ηr

y2
4(y12 + x∗12)

1 + y11 + x∗12

− α3γ21y
2
5 − α3βy

2
5y11

− α3βx
∗
11y

2
5 − α3βx

∗
5y5y11 − α4γ22y

2
6 + α4βy5y6y11 + α4βx

∗
5y6y11

+ α4βx
∗
11y5y6 − α4µy4y

2
6 − α4µx

∗
6y4y6 − α5e1y

2
11

− µc
y8y11(y11 + x∗11)

c+ y11 + x∗11

Then , neglecting some negative terms and using the inequality

ab ≤ a2

2
+
b2

2
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one obtains

dV

dt
<(−α1β3 + α1pγ1x

∗
1x
∗
6)y2

3 + (−α2β4 + α2kγ1x
∗
1x
∗
6)y2

4

+ α1pγ1y1y6τ1y
2
3 + α1pγ1y1x

∗
6y

2
3 + α1pγ1x

∗
1y6τ1y

2
3

+ α2kγ1y1y
2
4y6τ1 + α2kγ1y1y

2
4x
∗
6

+ α2kγ1x
∗
1y

2
4y6τ1 − α3(βx∗11 + γ21)y2

5

− α4γ22y
2
6 + α4βy5y6y11 + α4βx

∗
5

y2
11

2

+ α4βx
∗
5

y2
6

2
+ α4βx

∗
11

y2
5

2

+ α4βx
∗
11

y2
6

2
− α5e1y

2
11

=(−α1β3 + α1pγ1x
∗
1x
∗
6)y2

3 + (−α2β4 + α2kγ1x
∗
1x
∗
6)y2

4

+

(
−α3βx

∗
11 − α3γ21 +

α4βx
∗
11

2

)
y2

5

+ α4

(
−γ22 +

βx∗5
2

+
βx∗11

2

)
y2

6

+

(
α4βx

∗
5

2
− α5

)
y2

11 + α4βy5y6y11

If, besides the conditions (35) that involve only the parameters of the system,
we choose α3, α4, and α5 so that

α4βx
∗
11 < 2α3(βx∗11 + γ21), α4βx

∗
5 < α5 (37)

the quadratic terms in dV
dt give a negative definite quadratic form. Introduce z =

(y3, y4, y5, y6, y11). It follows that

dV
dt ≤ −ω(||z||22) +G(zt)

where ω is strictly positively defined and,

|G(zt)| = α1pγ1y1y6τ1y
2
3 + α1pγ1y1x

∗
6y

2
3 + α1pγ1x

∗
1y6τ1y

2
3

+ α2kγ1y1y
2
4y6τ1 + α2kγ1y1y

2
4x
∗
6 + α2kγ1x

∗
1y

2
4y6τ1 + α4βy5y6y11

≤M ||zt||3τ

Then the derivative of V along the shifted system (17) is strictly negatively defined
for small norm initial data, and uniform asymptotic partial stability is proved (see
also [36], [33], [13], [18], [19], [2])
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5 List of Parameters and Numerical Simulations.
The production rate of naive cells. [24] Λ 0.1
The strength of suppression rate of Th1 by Th2 [15] m2 0.1
The strength of suppression of Th2 by Th1 [15] m1 0.2
The strength of suppression rate by Treg [15] mr 0.25
The differences in the autocrine action at Th2 level [30] p 1.02
The differences in the autocrine action atTreg level[15] κ 0.8
The death rate of Naive T cells [24] β1 0.03

The death rate of Th1 cells [25] β2 5 ∗ 24 ∗ 10−3

The death rate of Th2 cells [25] β3 5 ∗ 24 ∗ 10−3

The death rate of Treg cells [25] β4 5 ∗ 24 ∗ 10−3

The proliferation rate of stimulated T-cells [15] γ1 8
Natural decay of induced cytokine during chemotherapy [28] γ4 0.4152
Inhibition rate of Treg cells by the induced cytokines [20] ηr 0.4
First time delay [37] τ1 0.0794

Second time delay [7] τ2 2.8
Third time delay [6] τ3 6
Forth time delay [28] τ4 0.25
The production rate of induced cytokines [22] k1 1
The birth rate of naive APCs[24] λ 0.3
Rate of APC activation by the antigen[14] β 0.001

Rate of immature APC natural mortality [24] γ21 0.08

Rate of mature APC natural mortality [24] γ22 0.8

Rate of APC inhibition by regulatory T cells [14] µ 10−2

Maximal value of the function β0 [7] β0 1.5

Maximal value of the function β0 [7] k0 0.18

Parameter for the death rate [7] α1 0.8

Loss of stem cells due to mortality [7] γ0 0.1

Rate of asymmetric/symmetric division [7] η1e, η2e 0.3

Parameter in the hill function [7] m 2

Standard half saturation(estimated) [7] a1 3

Instant mortality of mature erythrocytes [7] γ3 0.025

Amplification factor [7] Ã 2400

Maximum effect of drug on erythrocytes [7] R̃m 0.0022

Saturation constant for drug on erythrocytes [7] R̃50 82.2

Supply rate of 6-MP a2 0.2

6-MP elimination rate from the plasma [21][7] e1 5

deactivation rate of drug due to cancer cells killing [17] µC 0.1

drug concentration that produces half of the maximum activity of
drug[17](estimated)

c 6

Clearance rate of EPO [1] k 0.6

Parameter in the negative feedback [5] m 2
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Figure 1: Simulation of a small disturbance in initial conditions nearE1. The equi-
librium exhibits partial stability. E1 corresponds to the death of the patient. In the
simulations, we chose a2 = 0.2 to ensure stability for most of the variables. Note
that this specific choice of a2 was made based on prior analysis and experimental
observations. E1= (3.3333, 0, 0, 0, 3.7481, 1.8741× 10−4 0, 0, 5, 0.7558, 0.0400,
17.0555).

 

 

 

 

 

 

Figure 2: Simulation of a small disturbance in initial conditions near E2. The
equilibrium exhibits partial stability. E2 corresponds to the case when there is still
a critical condition without the detection of allergic reactions because Th1 cells
dominate TH2 cells. E2= (0.2000, 6.2667, 0, 0, 3.0000, 0.0750, 0, 0, 5, 0.7549,
20, 22.8003)



468 R. Abdullah et all.

 

 

 

 

 

 

Figure 3: Simulation of a small disturbance in initial conditions near E3. The
equilibrium exhibits stability. As E3 refers to the cure of the patient without the
detection of allergies, the stability means that we have a successful therapy. This
means that small quantities of allergens do not harm. E3=(0.7869, 11.7596, 0, 0,
3.5594, 0.0191, 9.8143× 10−4, 3.7723, 0.3283, 0.8089, 4.2846, 38.7906)

 

 

 

 

 

 

Figure 4: Simulation of a small disturbance in initial conditions near E4. The
equilibrium exhibits partial stability. E4 represents the cure of the patient with the
presence of allergic reactions as we can figure that in E4 the Th2 cells dominate
Th1 cells initially which means that there is an allergic reaction in this case. E4=
(0.7714, 0, 11.7905, 0, 3.5594, 0.0191, 9.8143 × 10−4, 3.7722, 0.3283, 0.8089,
4.2846, 10.4306)
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