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Abstract

The synthesis problem of static output feedback controllers within
the anisotropic-norm setup for Linear Parameter Varying system is
considered. A synthesis approach involving iterations over a convex
optimisation problem is suggested, leading to a gain-scheduled con-
troller. The results are formulated by a couple of Linear Matrix In-
equalities and a coupling bilinear equality, using a parameter depen-
dent Lyapunov function. Following LPVTOOL, the problem which is
continuous in the gain-scheduling parameter, and hence infinite dimen-
sional, is approximated by a finite grid leading to a tractable sequence
of convex optimization problems. The design method is demonstrated
on a simple example from the field of flight control.
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1 Introduction

Flight control and other industrial control problems, often involve ad-hoc
gain scheduling. The common practice starts with linearization of the non-
linear plant around equilibrium (trim) conditions over a grid of operating
points (e.g. Mach number, altitude). The resulting collection of linear plants
is then used to design corresponding controllers for each operating condition,
which are tailored together to form a gain-scheduled controllers. The above
practice works fine in many applications, given a slow enough variation of
the gain-scheduling (GS) parameters. However, no stability or performance
guarantee applies for rapid changes of the GS parameters [18, 17]. While the
gain scheduled design under the Linear Parameters Varying (LPV) setup is
completely covered by [18] and the tools described there, the synthesis of
Static Output Feedback (SOF) controllers have received much less atten-
tion (see [21] for a somewhat conservative approach assuming a structural
constraint on the Lyapunov function). Nevertheless, SOF synthesis is practi-
cally important, in many applications, since full order controllers are rather
challenging for implementation even for Linear Time Invariant (LTI) sys-
tems (see [13, 14, 16] . The dependence on GS parameters, makes it even
more difficult.

In [20] a static output feedback design have been considered aiming to
minimize the a-anisotropic norm of the resulting closed-loop system. The
aim of the present paper is to generalize those results to allow synthesis of
gain scheduled controllers under a Linear Parameters Varying (LPV) setup
by applying the methods and tools of [18] and [19].

The a-anisotropic norm setup, becomes a useful alternative to model-
ing exogenous signals either as white noise or of finite energy. When the
external input signals are of white noise type, H2−norm minimisation is
applied, leading to the Kalman filter [5] and Linear Quadratic Gaussian
(LQG) control. An alternative modeling of the exogenous inputs is based
on deterministic bounded energy signals associated with the H∞-norm based
framework [11] applicable both to filtering and control e.g. [12]. Since H2

is not entirely suitable when signals are strongly coloured and H∞ may re-
sult in poor performance when these signals are weakly coloured (e.g. white
noise), mixed H2/H∞ norm minimisation becomes useful (see, e.g. [8]). An-
other option to accomplish a compromise between the H2 and the H∞ norms
is to use the so-called a-anisotropic norm [6] defined as follows: consider the
discrete-time stable system denoted by F with the state-space equations
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x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t), t = 0, 1, ...

(1)

where A ∈ Rn×n, B ∈ Rn×m, Cf ∈ Rp×n, Df ∈ Rp×m. By definition, the
a-anisotropic norm of F is

|||F |||a = sup
G∈Ga

‖FG‖2
‖G‖2

, (2)

where G denotes a discrete-time stable filter of form

xf (t+ 1) = Afxf (t) +Bfv(t)
w(t) = Cfxf (t) +Dfv(t), t = 0, 1, ...

(3)

with m inputs and m outputs, where the inputs v ∈ Rm are independent
Gaussian white noises. In equation (2), Ga denotes the set of all systems
(3) with the mean anisotropy Ā(G) ≤ a. The mean anisotropy of stationary
Gaussian sequences has been introduced in [6] and it represents an entropy
theoretic measure of the deviation of a probability distribution from Gaus-
sian distributions[6, 9]. Based on the Szegö-Kolmogorov theorem, the mean
anisotropy of a signal generated by an m-dimensional Gaussian white noise
v(t) with zero mean and identity covariance applied to a stable linear system
G with m outputs has the form

Ā(G) = −1

2
ln det

 mE
[
w̃(0)w̃(0)T

]
Tr (E [w(0)w(0)T ])

, (4)

where E[w̃(0)w̃(0)T ] is the covariance of the prediction error w̃(0) := w(0)−
E[w(0)|(w(k), k < 0]. In the case when the output w of the filter G is
a zero mean Gaussian white noise (i.e. its optimal estimate is just zero),
w(0) cannot be estimated from its past values and w̃(0) = w(0) leading to
Ā(G) = 0. The relationship between the H2, H∞ and the a-anisotropic
norms are given by the following inequalities :

1√
m
||F ||2 = |||F |||0 ≤ |||F |||a ≤ ||F ||∞ = lim

a→∞
|||F |||a (5)

showing that the a-anisotropic norm may be regarded as a relaxation of the
H∞ norm. In a study case presented in [10] it is concluded that using the
a-anisotropic norm instead of H∞ norm one may reduce the controller gains



430 A.M. Stoica, I. Yaesh

and the controls effort. In [20] a static output feedback design have been
considered aiming to minimise the a-anisotropic norm of the resulting closed-
loop system. The main result proved there states that the optimal static
output feedback gain may be obtained solving a non-convex optimisation
problem.

The aim of the present paper is to derive solvability conditions for the
static output feedback problem with respect to the anisotropic norm ex-
pressed in terms of convex optimisation conditions suitable for tractable
numerical implementation in the case of LPV systems.

Notation. Throughout the paper the superscript ‘T ’ stands for matrix
transposition, R denotes the set of scalar real numbers whereas Z+ stands
for the non-negative integers. Moreover, Rn denotes the n dimensional
Euclidean space, Rn×m is the set of all n×m real matrices, and the notation
P > 0 (P ≥ 0), for P ∈ Rn×n means that P is symmetric and positive
definite (positive semi-definite). The trace of a matrix Z is denoted by
Tr(Z), and |v| denotes the Euclidian norm of an n-dimensional vector v.
Finally note that the terms Lyapunov and Riccati equations in this paper,
refer to generalised versions of the standard equations appearing in the H2

and H∞ control literature.

2 Static Output Feedback for LPV Systems

Consider the following plant

x(t+ 1) = A(ρ(t))x(t) +B1(ρ(t))w(t) +B2u(t) (6)

where we seek for a stabilising static control matrix K, such that u(t) =
Ky(t), where y(t) = C2x(t) will minimize

z(t) = C1(ρ(t))x(t) +D12u(t) +D11(ρ(t))w(t) (7)

in the sense of bounded anisotropic norm. Here ρ(t) ∈ Rnρ is a time varying
parameters vector with a bounded rate |dρi/dt| < νi, i = 1, 2, ..., nρ, defining
the convex hull Ṗ := {ρ̇, |dρi/dt| < νi, i = 1, 2, ..., nρ} and A,B1, C1, D11

are of affine dependence on ρ(t). The compact set of allowable ρ is denoted
by P where we adopt the grid based approach, and where the system de-
noted by S(ρ) of (7) is approximated as a state-space array of S(ρ̂k) where
ρ̂k ∈ Pg represent a parameters vector corresponding to the k’th point on
the grid. The parameters space for the sake of control synthesis is, therefore,
approximated by Ω := Pg × Ṗ This approach is motivated by traditional
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gain scheduling framework in flight control. where linear models are derived
around various flight conditions characterized by e.g. mach number and al-
titude (or dynamic pressure). When, however, the flight conditions around
which linearization is performed includes also fast variables (e.g. angle of
attack), the LPV framework can ensure stability and performance, in con-
trast to the general practice of designing gains to each point in the grid and
then tailoring them together by either a polynomial or linear interpolation
over a table, as a function of the gain scheduling parameters.

Note that, in the sequel, we may omit the dependence on ρ for the sake
of simpler notations.

Define the cost function associated to the above problem

J(K) = |||Fc`(K)|||a (8)

where Fc`(K) denotes the closed loop system obtained from (6) and (7) with
the static output feedback u2(t) = Ky(t), having the realisation

x(t+ 1) = (A+B2KC2)x(t) +B1w(t)
z(t) = (C1 +D12KC2)x(t) +D11w(t) .

Using the time-varying version (e.g.[22]) it follows that the above closed loop
system Fc`(K) is stable and it has the a-anisotropic norm less than a given
γ > 0 if and only if there exist a q ∈

(
0,min(γ−2, ‖Fc`‖−2∞ )

)
and a symmetric

matrix X(ρ) > 0 such that[
E1(X,K) E2(X,K)
E2(X,K)T −1

q I +BT
1 XB1 +DT

11D11

]
< 0 (9)

where one denoted

E1(X,K) := −∂X
∂ρ (ρ)ρ̇h−X(ρ) + (A+B2KC2)

T X(ρ) (A+B2KC2)

+ (C1 +D12KC2)
T (C1 +D12KC2)

E2(X,K) := (A+B2KC2)
T X(ρ)B1 + (C1 +D12KC2)

T D11

and

1

q
− γ2 < e−

2a
m

(
det

(
1

q
I −BT

1 X(ρ)B1 −DT
11D11

)) 1
m

. (10)

In the above expression of E1(X,K) the first order approximation of the
Taylor expansion

X(ρ(k + 1)) = X(ρ(k)) +
∂X

∂ρ
(ρk)

dρ

dt
h
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was used, where h is the interval between consequent time steps and ν =
dρk/dt.

Based on Schur complements arguments, it follows that the inequality
(9) is equivalent with the condition

Z + PTKQ+QTKTP < 0, (11)

where by definition

Z :=


−X̄ 0 ATX CT1

0 −1
q I BT

1 X DT
11

XA XB1 −X 0
C1 D11 0 −I

 ,PT :=


0
0

XB2

D12

 , QT :=


CT2
0
0
0

 , (12)

where we denoted

X̄(ρ, ρ̇) := X(ρ) +
∂X

∂ρ
(ρ)ρ̇h. (13)

Further, using the so-called Projection lemma, one obtains that the in-
equality (11) is feasible with respect to K if and only if the following condi-
tions are accomplished

W T
PZWP < 0 (14)

and

W T
QZWQ < 0, (15)

where WP and WQ are any bases of the null spaces of P and Q, respectively.
Since a base of the null space of P is

WP =


I 0 0
0 I 0
0 0 X−1W1

0 0 W2

 (16)

where W :=

[
W1

W2

]
is the orthogonal complement of

[
BT

2 DT
12

]
. Simi-

larly, a base of the null space of Q is

WQ =


W3 0 0
W4 0 0
0 I 0
0 0 I

 (17)
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where V :=

[
W3

W4

]
is the orthogonal complement of

[
C2 0

]
. In order

to simplify the inequality of (14) we next express

WP =

 I 0 0 0
0 I 0 0
0 0 W T

1 W T
2



I 0 0 0
0 I 0 0
0 0 X−1 0
0 0 0 I

 ,
namely

WP =

[
I 0
0 W T

]
I 0 0 0
0 I 0 0

0 0 X−1 0
0 0 0 I


with the above definition of W . Therefore, (14) is simply expressed as[

I 0
0 W T

] [
M11 M12

MT
12 M22

] [
I 0
0 W

]
< 0 (18)

where M is given by

M :=

[
M11 M12

MT
12 M22

]
with

M11 =

[
−X̄ 0

0 −1
q I

]
,M12 =

[
A B1

C1 D11

]T
,M22 =

[
−X−1 0

0 −I

]
. (19)

Then, from (18), using the Schur complement of M11 it follows that

W T (M22 −MT
12M−111M12)W < 0 . (20)

Substituting the definition for Mij , i, j = 1, 2 and recalling the definition
η2 = 1

q we obtain the following convenient form of (20)

W T

[
−Y +AȲ AT +B1B

T
1 AȲ CT1 +B1D

T
11

C1Ȳ A
T +D11B

T
1 −ΦY

]
W < 0 (21)

where
ΦY := η2I − C1Ȳ C

T
1 −D11D

T
11

and where we have defined

η−2Y = X−1 and , η−2Ȳ = X̄−1 (22)
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We next repeat the same lines to simplify (15) as well. To this end, we
partition

WQ =

[
V 0
0 I

]

and readily obtain using Schur complements, that (15) is equivalent to

V T (N11 −N12N−122 N
T
12)V < 0

where

N11 =

[
−X̄ 0

0 −1
q I

]
,N12 =

[
XA XB1

C1 D11

]T
,

N22 =

[
−X 0

0 −I

]
.

(23)

We, therefore, obtain the following form of (15)

V T

[
−X̄ +ATXA+ CT1 C1 ATXB1 + CT1 D11

BT
1 XA

+DT
11C1 −ΦX

]
V < 0 (24)

where ΦX := η2I−BT
1 XB1−DT

11D11. We summarize the above derivations
in the following result.

Theorem 1 The closed loop system Fc`(K) is stable and it has the a-
anisotropic norm less than a given γ > 0 if there exist for all {ρ, ρ̇} ∈ Ω
symmetric matrices X(ρ) > 0, Y (ρ) > 0, X̄(ρ, ρ̇), Ȳ (ρ, ρ̇) and a scalar η
satisfying the dual LMIs (21) and (24) together with the convex condition

η2 − det(ΦX)1/me−2a/m < γ2 (25)

and the additional bilinear conditions

XY = η2I and X̄Ȳ = η2I. (26)

where X̄ is defined in (13).

If the conditions of the above theorem are satisfied then the static output
gain may be obtained solving the linear matrix inequality (11) with respect
to K(ρ).
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However, the above requires a solution of a set of Bilinear Matrix In-
equalities (BMI) due to the XY = η2I equality. One way to tackle the BMI
is to adopt a by first relaxing XY = η2I and X̄Ȳ = η2I by[

X ηI
ηI Y

]
> 0, and ,

[
X̄ ηI
ηI Ȳ

]
> 0. (27)

Then if one minimizes Tr{XY } and Tr{X̄Ȳ }, the bilinear constraints are
satisfied. To this end, a sequential linearization algorithm (see e.g. [14])
can be used. In the initialization step, the convex problem comprised of the
inequalities of Theorem 1 and (27) is solved for a given γ > 0, and ` = 0,
X` = 0 and Y` = 0 are set. Next step where ` is set to ` + 1 and X,Y are
found so as to minimize

f` := Tr{X`Y +XY` + X̄`Ȳ + X̄Ȳ`}

subject to (21) and (24). Then X` = X and Y` = Y are set. This step is
repeated until f` is small enough. A related algorithm requiring also line
search but with improved convergence properties has been suggested in [7]
and will be applied in the calculations below of the numerical example of
the next section. To this end we note that one could choose also X = Y −1

rather than η−2Y = X−1. In such a case, the inequality (21) is replaced by

W T

[
−Y +AȲ AT + qB1B

T
1 AȲ CT1 + qB1D

T
11

C1Ȳ A
T + qD11B

T
1 −ΦỸ

]
W < 0

where ΦỸ is defined to be

ΦỸ := I − C1Ȳ C
T
1 − qD11D

T
11

and (27) becomes [
X I
I Y

]
> 0,

[
X̄ I
I Ȳ

]
> 0 (28)

Although this different choice of Y reveals the duality between the control
and filtering type inequalities in a less obvious manner, it is more convenient
to deal with. Note that to apply [7] one needs to define a new variable
q = η−2 where in addition to XỸ = I also the scalar valued bilinear equality
constraint η2q = 1 has to be satisfied. To this end, one needs also to consider
the relaxed version [

η2 1
1 q

]
> 0 (29)
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so that the minimization steps involve now searching for X,Y, η2, q are found
so as to minimise

g` := Tr{X`Y +XY` + X̄`Ȳ + X̄Ȳ`}+ η2` q + η2q`

subject to (21), (24), (28) and (29).

At this point, it should be noted, that the inequalities for X(ρ) > 0,
Y (ρ) > 0, X̄(ρ, ρ̇), Ȳ (ρ, ρ̇) over P × Ṗ is, in fact, infinite dimensional, and
to get a tractable optimization problem, a couple of simplifying assumptions
are made in the next section.

3 Simplified Finite Dimensional Conditions

We next provide some simplifying assumptions to facilitate the solution pro-
cess :

• As mentioned above, we adopt the grid based approach [18, 19] where
the system denoted by S(ρ) of (6) and (7) is approximated as a state-
space array of S(ρ̂j) where ρ̂j ∈ Pg represent a parameters vector
corresponding to the k’th point on the grid. The parameters space for
the sake of control synthesis is, therefore, approximated by Ω := Pg×Ṗ

• Following [18, 19] we also pick nb basis functions fj(ρ), j = 1, 2, ..., nb
so that

X(ρ) =
nb∑
j=1

fj(ρ)X(j) and Y (ρ) =
nb∑
j=1

fj(ρ)Y (j),

and X̄(ρ, ρ̇) :=
∑nb
k=1 fj(ρ)X(j) +

∑nb
j=1

∂fj
∂ρ (ρ)X(j)ρ̇h,

Ȳ (ρ, ρ̇) :=
nb∑
k=1

fj(ρ)Y (j) +
nb∑
j=1

∂fj
∂ρ

(ρ)Y (j)ρ̇h,

where the superscripts (j) related to the basis function index, is not
to be confused with the subscripts k of the iterations resolving the
bilinear inequalities.

Therefore, the infinite dimensional conditions of Theorem 1 are now reduced
to solutions to X(j), Y (j), X̄(j), Ȳ (j), j = 1, 2, ..., nb of nr2

nρ LMIs, and the
2n2b bilinear equalities, where nb is the number of basis functions, nr is the
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grid size for ρ and 2nρ is the number of vertices of Ṗ. Note that the con-
venient version (28) of the bilinear equalities is used, along with sequential
application of the convex inequalities of Theorem 1 and minimization of

g` := Tr{X`(ρ̂j)Y (ρ̂j) +X(ρ̂j)Y`(ρ̂j) + X̄`(ρ̂j)Ȳ (ρ̂j)+

X̄(ρ̂j)Ȳ`(ρ̂j)}+ η2` q + η2q`

for each ρ̂k ∈ Pg, where at completion of each step in the iteration, X`(ρj) =
X(ρj) and Y`(ρj) = Y (ρj) are set.

The LPVTOOL [19] allows selection of arbitrary basis functions set, for
a given problem, where examples in the tools’ documentation show that
some basis functions, are more successful than others.

One can also suggest seeking for basis functions, that minimize γ while
just fixing the number of basis functions nb, but it may turn out to be a non
tractable problem. Another ad-hoc options is to select basis functions that
are consistent with the dependence of the systems matrices in (3) where
nb = nr restriction is imposed. This may work for examples with small
number of available grid points and will be consdered in the future.

4 Application to Flight Control

We next consider the numerical example of [15] with the synthesis of pitch
control loop for the F4E aircraft. We consider here a slightly modified ver-
sion, where a low-pass filter is added in cascade with the actuator, in order to
get a vertex-independent B2 matrix of the four-blocks plant representation.
Consider

d
dt


Nz

q
δe
δ1

 =


a11 a12 a13 b1

a21 a22 a23 0
0 0 −30 30
0 0 0 −200




Nz

q
δe
δ1

+


0
0
0

200

u +


1
0
0
0

ω

z =

 1 0 0 0
0 1 0 0
0 0 0 0

 x +

 0
0

0.001

u

y =

[
1
0

0
1

0
0

0
0

]
x.

The state-vector consists of the load-factor Nz, the pitch-rate q and
elevon angle δe and a low-pass version of the elevon angle command of
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Operating point 1 2 3 4
Mach number .5 .9 .85 1.5
Altitude (ft) 5000 35000 5000 35000

a11 -.9896 -.06607 -1.702 -.5162
a12 17.41 18.11 50.72 29.96
a13 96.15 84.34 263.5 178.9
a21 .2648 .08201 .2201 -.6896
a22 -.8512 -.6587 -1.418 -1.225
a23 -11.39 -10.81 -31.99 -30.38
b1 -97.78 -85.09 -272.2 -175.6

Table 1: The parameters of the four operating points

200rad/ sec . The actuator is modeled as a first-order system with a band-
width of 30rad/ sec. The parameters aij , i = 1, 2; j = 1, 2, 3, b1 are given in
[15] at the four operating points listed in Table 1.

Discrete-time representation of the above systems have been obtained
with the sampling period Ts = 0.001 sec. The static output controller u =

Ky with K =
[
K1 K2

]
were designed in [20] treating these points as

distinct points. There, for each of the nr = 4 operating points, a mean
anisotropy level of a that tending to ∞ was firstly taken, and then one
considered a = 0.2.

Here we will treat those points as representing a continuous envelope, by
first looking for corresponding nb = 2 simple basis functions, namely f1(ρ) =
1 and f2(ρ) = ρ where ρ = qdyn is the dynamic pressure corresponding
to each of the operating points in Table 1. We will then apply the LPV
approach outlined in Section 2 using a mean anisotropy a → ∞ with γ =
3.6 and a mean anisotropy of a = 0.5 with γ = 3.6 as well. Note that γ
serves merely as an upper bound on the anisotropic norm of the closed-loop
system.

The design results are compared in Figures 1-3. In Figures 1 and 2
the singular values of the closed-loop transfer function matrix, for the four
operation points is depicted, along with the upper bound γ = 3.6 and
the H∞-norm γLPV of the closed-loop overall LPV system, obtained us-
ing the instruction LPVNORM from the LPV tools [19]. Note that In Fig.
3 it is shown that considerably lower gain values are obtained, with the
anisotropic-norm design, comparing to the H∞ design, virtualy at no cost
in the sense of the closed-loop H∞-norm of the closed-loop (γLPV = 5.0889
for the anisotropic design, while it is γLPV = 5.0756 for the H∞ - design)
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Figure 1: H∞-Norm Design - 4 operating points - Singular Values

.Namely, the anisotropic-norm design is less conservative.

5 Conclusions

An LPV synthesis scheme for static output feedback controllers has been
derived, under the setup of a-anisotropic norm which is based on an interme-
diate topology between H2 and H∞. Given a required norm-bound, the set
of Linear Matrix Inequalities, along with a geometric-mean convex inequal-
ity, and an additional bilinear equality, characterize sub-optimal controllers
revealing the duality in the style of [16] between the control and filtering
type Linear Matrix Inequalities. Adopting a well known grid approach,
the resulting infinite dimensional problem is relaxed to a finite-dimensional
one, where bilinear equations are replaced with iterations on LMIs. A sim-
ple example of the field of flight control, demonstrates the design method
and the advantage of the anisotropic-norm approach in the sense of smaller
overdesign .This advantage is a consequence of the smaller class of exogenous
signals of the anisotropic-norm approach with respect to the finite energy
assumption associated with the H∞-norm design.
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