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Abstract

The problem of exact solutions for isothermal motions of non-
Newtonian fluids is of interest yet and a new way to get them is wel-
come. In this work an important observation regarding the governing
equations corresponding to some isothermal hydromagnetic unidirec-
tional motions of incompressible Maxwell fluids is brought to light. It
allows us to easily determine exact solutions for motions with shear
stress or velocity on the boundary when similar solutions for motions
with velocity, respectively shear stress on the boundary are know. To
exemplify, the solutions of some hydromagnetic motion problems of
Maxwell fluids with velocity on the boundary are used to generate
exact steady state solutions for similar motions of same fluids with
shear stress on the boundary. These solutions are very important for
the experimental researchers who want to know the required time to
reach the steady state.
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1 Introduction

The motion of a fluid over an oscillating flat plate, as well as the motion
between parallel plates, is not only of fundamental theoretical interest but it
also appears in many applied problems [1]. It is called Stokes second problem
by Schlichting [2]. The same motion is also termed as Stokes or Rayleigh
problem in the existing literature. The fluid motion between parallel plates
is also termed as the modified Stokes second problem by Rajagopal et al.
[3] if one of plates oscillates. They are some of the most important motion
problems near moving bodies having multiple applications in engineering
and science in general. Both motions have been extensively studied in the
literature and the obtained solutions are important both for theoreticians
and experimental researchers. Although the numerical integration of gov-
erning equations can be realized by computers, the accuracy of results can
be established by a comparison with an exact solution.

The first exact starting solutions of the second problem of Stokes for
incompressible Newtonian fluids seem to be those of Erdogan [1]. New equi-
valent exact solutions for the same problem and their extension to incom-
pressible Maxwell fluids have been established by Corina Fetecau et al. [4],
respectively [5]. On the other hand, the interaction between an electri-
cal conducting fluid and the magnetic field produces important effects with
many applications in physics, chemistry, engineering, horticulture and hy-
drology. In addition, the hydromagnetic motions of fluids have multiple ap-
plications in polymer technology, petroleum industry, nuclear reactors and so
on. More recent results regarding hydromagnetic motions of incompressible
Newtonian fluids have been obtained by Kiema et al. [6], Onyango et al. [7]
and Dash and Ojha [8]. However, the first general solutions for such motions
of same fluids over an infinite plate or between infinite parallel plates have
been obtained by Fetecau et al. [9], respectively Fetecau and Narahary [10]
using an important remark concerning the governing equations of velocity
and shear stress.

The main purpose of this work is to show that the respective remark
is also valid for the same isothermal hydromagnetic unidirectional motions
of the incompressible Maxwell fluids. This observation, with direct applica-
tions in obtaining new exact solutions for fluid motions, says that the govern-
ing equations of the velocity and shear stress fields corresponding to some
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isothermal hydromagnetic unidirectional flows of incompressible Maxwell
fluids are identical as form. As an immediate consequence, it results that
exact solutions for some hydromagnetic motions of incompressible Maxwell
fluids with velocity or shear stress on the boundary can be easily obtained
if exact solutions for similar motions of same fluids with shear stress, re-
spectively velocity on the boundary are known. In order to bring to light
the advantages of this important observation, some hydromagnetic motions
of Maxwell fluids with velocity on the boundary are considered and their
solutions are used to determine exact solutions for similar motions of same
fluids with shear stress on the boundary.

2 Constitutive and governing equations

The constitutive equations of incompressible upper-convected Maxwell fluids
(IUCMFs) are given by the following relations [11]

T = −pI + S,

(
1 + λ

δ

δt

)
S = µA, (1)

in which T is the Cauchy stress tensor, −pI is the undetermined spherical
stress due to the constraint of incompressibility, S is the constitutively de-
termined extra-stress tensor, A = L+LT is the first Rivlin-Ericksen tensor
(L being the gradient of the velocity vector v), µ is the fluid viscosity and
λ is its relaxation time. The upper-convected derivative δ/δt is defined by
the relation

δS

δt
=
dS

dt
− LS− SLT with

dS

dt
=
∂S

∂t
+ [grad S]v. (2)

In the following we shall consider isothermal unidirectional motions of
IUCMFs whose velocity field in a suitable Cartesian coordinate system x, y
and z has the form

v = v(y, t) = u(y, t)ex, (3)

where ex is the unit vector along the x-direction. If the fluid is at rest at
the initial moment t = 0, it results that

v(y, 0) =
∂v(y, t)

∂t

∣∣∣
t=0

= 0, S(y, 0) = 0. (4)

We also assume that the extra-stress tensor S, as well as the velocity vector
v, is also a function of y and t only.
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Substituting v(y, t) from Eq. (3) in (1)2 and bearing in mind the last
condition from Eqs. (4), it is easy to prove that the components Syy, Syz, Szz
and Szx of the extra-stress tensor S are zero. The other two non-trivial
components σ(y, t) = Sxx(y, t) and τ(y, t) = Sxy(y, t) of S have to satisfy
the following partial differential equations(

1 + λ
∂

∂t

)
σ(y, t) = 2λτ(y, t)

∂u(y, t)

∂y
,(

1 + λ
∂

∂t

)
τ(y, t) = µ

∂u(y, t)

∂y
.

(5)

The balance of linear momentum for isothermal hydrodynamic unsteady
fluid motions is given by the following relation [12]

ρ
dv

dt
= div T + ρb + J×B, (6)

where ρ is the fluid density, b is the body force and J × B represents the
Lorentz force due to the interaction between the current density J and the
magnetic induction B. We also assume that the fluid is finitely conducting
so that the Joule heat due to the presence of magnetic field is negligible.
Furthermore, there exists no surplus electric charge distribution present in
the fluid and the magnetic Reynolds number is assumed to be small enough.
Consequently, the induced magnetic field can be neglected and [12]

J×B = −σ̃B2v(y, t), (7)

where σ̃ is the electrical conductivity of the fluid and B represents the mag-
nitude of the applied magnetic field.

In these conditions, in the case of conservative body forces and in the
absence of a pressure gradient in the flow direction, Eqs. (3), (6) and (7)
lead to the relation

ρ
∂u(y, t)

∂t
=
∂τ(y, t)

∂y
− σ̃B2u(y, t). (8)

Eliminating τ(y, t) between Eqs. (5)2 and (8), one obtains the governing
equation

ρ

(
1 + λ

∂

∂t

)
∂u(y, t)

∂t
= µ

∂2u(y, t)

∂y2
− σ̃B2

(
1 + λ

∂

∂t

)
u(y, t), (9)

for the dimensional velocity field u(y, t).
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Now, deriving the equality (8) with respect to y one obtains the equation

ρ
∂

∂t

[
∂u(y, t)

∂y

]
=
∂2τ(y, t)

∂y2
− σ̃B2 ∂u(y, t)

∂y
. (10)

Substituting ∂u(y, t)/∂y from Eq. (5)2 in (10), one finds the next governing
equation for the dimensional shear stress τ(y, t), namely

ρ

(
1 + λ

∂

∂t

)
∂τ(y, t)

∂t
= µ

∂2τ(y, t)

∂y2
− σ̃B2

(
1 + λ

∂

∂t

)
τ(y, t), (11)

Consequently, the governing equations (9) and (11) for the velocity u(y, t),
respectively the corresponding non-trivial shear stress τ(y, t) are identical
as form.

3 Applications

In the previous section it was proved that governing equations for the fluid
velocity u(y, t) and the shear stress τ(y, t) corresponding to isothermal hydro-
magnetic unidirectional motions of IUCMFs, whose velocity vector is given
by Eq. (3), are identical as form. In order to bring to light the advantages
of this observation, some important applications will be considered in the
following and new exact steady state solutions will be provided.

3.1 Motions over an infinite flat plate

3.1.1 The second problem of Stokes

Consider the isothermal hydromagnetic unsteady motion of an IUCMF over
an infinite flat plate which oscillate in its plane according to one of the
relations

v = U cos(ωt)ex or v = U sin(ωt)ex. (12)

In the above relations, U and ω are the amplitude, respectively the frequency
of oscillations. The velocity vector v corresponding to such motions is given
by Eq. (3) and the dimensional velocity u(y, t) has to satisfy the governing
equation (9) with the boundary conditions

u(0, t) = U cos(ωt), lim
y→∞

u(y, t) = 0, (13)

or
u(0, t) = U sin(ωt), lim

y→∞
u(y, t) = 0. (14)
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The second condition of Eqs. (13) and (14) says us that the fluid is
quiescent at infinity. We also assume that there is no shear in the free
stream, i.e.

lim
y→∞

τ(y, t) = 0. (15)

On the other hand, the normal and shear stresses σ(y, t), respectively τ(y, t)
have to satisfy the governing equations (5). The initial conditions (4) will
not be here used. The boundary conditions (13) or (14) and the fact that
the fluid was at rest at the initial moment tell us that the two unsteady
motions become steady or permanent in time. An important problem for
such motions refers to the required time to touch the steady state. To
determine this time, the steady state solutions have to be known. This is the
reason that, in the following, only steady state solutions will be determined.
These solutions are independent of the initial conditions but satisfy the
boundary conditions and governing equations.

Introducing the following non-dimensional functions, variables and pa-
rameters

u∗ =
u

U
, τ∗ =

1

ρU2
τ, σ∗ =

1

ρU2
σ, y∗ =

U

v
y, t∗ =

U2

v
t,

λ∗ =
U2

v
λ, ω∗ =

v

U2
ω

(16)

and dropping out the star notation, one obtains the next boundary value
problem(

1 + λ
∂

∂t

)
∂u(y, t)

∂t
=
∂2u(y, t)

∂y2
−M

(
1 + λ

∂

∂t

)
u(y, t); y > 0, t > 0, (17)

u(0, t) = cos(ωt), lim
y→∞

u(y, t) = 0; t > 0, (18)

or again the governing equation (17) with the boundary conditions

u(0, t) = sin(ωt), lim
y→∞

u(y, t) = 0; t > 0, (19)

for the dimensionless velocity field u(y, t). In Eqs. (16), v = µ/ρ is the
kinematic viscosity of the fluid while in Eq. (17)

M =
σB2

ρ

v

U2
, (20)
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is the magnetic parameter. The dimensionless forms of Eqs. (5) are(
1 + λ

∂

∂t

)
σ(y, t) = 2λτ(y, t)

∂u(y, t)

∂y
,(

1 + λ
∂

∂t

)
∂τ(y, t)

∂t
=

∂u(y, t)

∂y
.

(21)

In the following, for differentiate, we denote by uc(y, t), τc(y, t), σc(y, t) and
and us(y, t), τs(y, t), σs(y, t) the dimensionless starting solutions of the two
motion problems. These solutions can be presented as sums of steady state
(permanent or long time) and transient components, i.e.

uc(y, t) = ucp(y, t) + uct(y, t),
τc(y, t) = τcp(y, t) + τct(y, t), σc(y, t) = σcp(y, t) + σct(y, t),

(22)

us(y, t) = usp(y, t) + ust(y, t),
τs(y, t) = τsp(y, t) + τst(y, t), σs(y, t) = σsp(y, t) + σst(y, t),

(23)

The dimensionless steady state velocity fields ucp(y, t) and usp(y, t), as it was
previously mentioned, are independent of the initial conditions but they
have to satisfy the governing equation (17) and the boundary conditions
(18), respectively (19).

Direct computations show that the steady state solutions ucp(y, t) and
usp(y, t) of these motion problems can be presented in the simple forms

ucp(y, t) = e−my cos(ωt− ny), usp(y, t) = e−my sin(ωt− ny), (24)

or equivalent

ucp(y, t) = <e{e−δy+iωt}, usp(y, t) = Im{e−δy+iωt}, (25)

where δ =
√

(M + iω)(1 + iλω) and

m =

√√
(M − λω2)2 + ω2(1 + λM)2 +M − λω2

2
,

n =

√√
(M − λω2)2 + ω2(1 + λM)2 − (M − λω2)

2

(26)

The equivalence of the expressions of ucp(y, t) and usp(y, t) given by Eqs.
(24) and (25) is graphically proved by Figs. 1. Taking λ = 0 in Eqs. (24) and
neglecting magnetic effects, the steady state solutions obtained by Erdogan
[1, Eqs. (12) and (17)] are recovered.
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Figure 1: Profiles of velocities ucp(y, t) and usp(y, t) given by equations (24)1
and (25)1, respectively (24)2 and (25)2 for λ = 0.8, ω = π/12, M = 0.6 and
t = 5.

The corresponding dimensionless steady state shear stresses, namely

τcp(y, t) = −
√
p2 + q2 e−my cos(ωt− ny − φ),

τsp(y, t) = −
√
p2 + q2 e−my sin(ωt− ny − φ),

(27)

or equivalently

τcp(y, t) = −<e
{

δ

1 + iλω
e−δy+iωt

}
,

τsp(y, t) = −Im

{
δ

1 + iλω
e−δy+iωt

} (28)

have been obtained using the relations (21)2, (24) and (25). Into Eqs. (27)
φ = arctg(q/p) and the constants p and q are given by the relations

p = −m+ λωn

1 + (λω)2
, q =

n− λωm
1 + (λω)2

. (29)

The equivalence of the expressions of τcp(y, t) and τsp(y, t) given by Eqs.
(27) and (28) is graphically proved by Figs. 2.

Introducing the expressions of ucp(y, t), usp(y, t) and τcp(y, t), τsp(y, t),
from Eqs. (25) and (28) in (21)1, one obtains the corresponding exact ex-
pressions for the dimensionless normal stresses σcp(y, t) and σsp(y, t), namely



20 C. Fetecău

Figure 2: Profiles of shear stresses τcp(y, t) and τsp(y, t) given by equations
(27)1 and (28)1, respectively (27)2 and (28)2 for λ = 0.8, ω = π/12, M = 0.6
and t = 5.

σcp(y, t) = 2λ<e
{

δ2

(1 + iλω)2
e2(−δy+iωt)

}
,

σsp(y, t) = 2λ Im

{
δ2

(1 + iλω)2
e2(−δy+iωt)

}
.

(30)

3.1.2 Motions induced by oscillatory shear stresses
on the boundary

Let us now consider the isothermal hydromagnetic motions of same fluids
generated by the flat plate that applies a shear stress S cos(ωt) or S sin(ωt) to
the fluid. Here S and ω are the amplitude and the frequency of oscillations.
The velocity vector v corresponding to these motions is again given by the
equality (3) and the corresponding governing equations have the same forms
as in the previous section. Instead, the boundary conditions are

τ(0, t) = S cos(ωt), lim
y→∞

τ(y, t) = 0, (31)

or

τ(0, t) = S sin(ωt), lim
y→∞

τ(y, t) = 0. (32)

Introducing the next non-dimensional functions, variables and parame-
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ters

u∗ = u

√
ρ

S
, τ∗ =

τ

S
, σ∗ =

σ

S
, y∗ =

y

v

√
S

ρ
,

t∗ =
S

µ
t, λ∗ =

S

µ
λ, ω∗ =

µ

S
ω

(33)

and again giving up the star notation, one obtains for the dimensionless ve-
locity, shear stress and normal stress fields u(y, t), τ(y, t), respectively σ(y, t)
the same non-dimensional equations (17) and (21). However, as we have a
problem with shear stress on the boundary, the non-dimensional form of the
governing equation (11), namely(

1 + λ
∂

∂t

)
∂τ(y, t)

∂t
=
∂2τ(y, t)

∂y2
−M

(
1 + λ

∂

∂t

)
τ(y, t), (34)

will be used. In this equation, the magnetic parameter M is defined by

M =
σB2

ρ

µ

S
. (35)

The corresponding dimensionless boundary conditions are

τ(0, t) = cos(ωt), lim
y→∞

τ(y, t) = 0, (36)

or
τ(0, t) = sin(ωt), lim

y→∞
τ(y, t) = 0. (37)

Because the non-dimensional governing equation (34) and the boundary
conditions (36) and (37) for the dimensionless shear stress τ(y, t) are iden-
tical as form to the governing equation (17) and the boundary conditions
(18) and (19) for the velocity u(y, t), it results that the dimensionless shear
stresses τcp(y, t) and τsp(y, t) corresponding to the new motion problems are
given by the following equalities

τcp(y, t) = e−my cos(ωt− ny), τsp(y, t) = e−my sin(ωt− ny), (38)

or equivalent

τcp(y, t) = <e{e−δy+iωt}, τsp(y, t) = Im{e−δy+iωt}, (39)

in which the constants m,n and δ have been previously defined.
The corresponding velocity fields, namely

ucp(y, t) = −
√
p21 + q21 e

−my cos(ωt− ny − ψ),

usp(y, t) = −
√
p21 + q21 e

−my sin(ωt− ny − ψ),
(40)
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or equivalent

ucp(y, t) = −<e
{

1 + iλω

δ
e−δy+iωt

}
,

usp(y, t) = −Im

{
1 + iλω

δ
e−δy+iωt

}
,

(41)

have been obtained using Eqs. (21)2 and (38), respectively (21)2 and (39).
In Eqs. (40) ψ = arctg(q1/p1) and

p1 = −m+ λωn

m2 + n2
, q1 =

λωm− n
m2 + n2

. (42)

Figure 3: Profiles of velocities ucp(y, t) and usp(y, t) given by equations (40)1
and (41)1, respectively (40)2 and (41)2 for λ = 0.8, ω = π/12, M = 0.6 and
t = 5.

The exact expressions of the dimensionless steady state normal stresses
σcp(y, t) and σsp(y, t) corresponding to ucp(y, t), τcp(y, t), respectively usp(y, t),
τsp(y, t) given by the relations (39) and (41) are given by the equalities

σcp(y, t) = 2λ<e
{

1 + iλω

1 + 2iλω
e2(−δy+iωt

}
,

σsp(y, t) = 2λ Im

{
1 + iλω

1 + 2iλω
e2(−δy+iωt

}
,

(43)

Simple computations show that the governing equation (21)1 is identically
satisfied if τcp(y, t), τsp(y, t), ucp(y, t), usp(y, t), and σcp(y, t), σsp(y, t), are
given by the equalities (39), (41), respectively (43).
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Finally, making λ = 0 into above relations, the solutions corresponding
to isothermal hydrodynamic motions of incompressible Newtonian fluids per-
forming the same motions are obtained. It is also worth to point out the
fact that the dimensionless solutions given by Eqs. (38), (39), (41) and
(43) are the first exact solutions obtained for motions of incompressible rate
type fluids induced by oscillatory shear stresses S cos(ωt) or S sin(ωt) on the
boundary when magnetic effects are taken into consideration.

3.2 Motions between parallel plates

Now, in order to provide new exact solutions for hydromagnetic motions of
IUCMFs, let us consider such a fluid at rest between two infinite horizontal
parallel plates. At the moment t = 0+, both plates begin to move in their
planes with the velocity U cos(ωt) or U sin(ωt) or to apply a shear stress
S cos(ωt) or S sin(ωt) to the fluid. The velocity vector corresponding to
such a motion is also of the form (3) and the corresponding dimensional
governing equations are identical to those from Section 2.

3.2.1 Motions with velocity on the boundary

Using the same notations as in the previous section, it results that the di-
mensional steady state velocity, shear stress and normal stress fields ucp(y, t),
τcp(y, t), σcp(y, t) and usp(y, t), τsp(y, t), σsp(y, t) corresponding to these mo-
tions have to satisfy the governing equations (5) and (9) and the boundary
conditions

u(0, t) = U cos(ωt), u(d, t) = U cos(ωt), (44)

respectively

u(0, t) = U sin(ωt), u(d, t) = U sin(ωt), (45)

where d is the distance between plates.

Introducing the following non-dimensional functions, variables and pa-
rameters

u∗ =
u

U
, τ∗ =

1

ρU2
τ, σ∗ =

1

ρU2
σ, y∗ =

y

d
, t∗ =

U

d
t,

λ∗ =
U

d
λ, ω∗ =

d

U
ω,

(46)

in Eqs. (5) and (9) and again abandoning the star notation, one obtains the
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following partial differential equations(
1 + λ

∂

∂t

)
σ(y, t) = 2λτ(y, t)

∂u(y, t)

∂y
,(

1 + λ
∂

∂t

)
τ(y, t) =

1

Re

∂u(y, t)

∂y
,

(47)

Re

(
1 + λ

∂

∂t

)
∂u(y, t)

∂t
=
∂2u(y, t)

∂y2
−M

(
1 + λ

∂

∂t

)
u(y, t);

y > 0, t > 0,

(48)

for dimensionless velocity, shear stress and normal stress fields u(y, t), τ(y, t)
and σ(y, t). In these relations the Reynolds number Re and the magnetic
parameter M are defined by

Re =
Ud

v
, M =

σB2

ρ

d2

v
. (49)

The corresponding dimensionless boundary conditions are

u(0, t) = cos(ωt), u(1, t) = cos(ωt), (50)

respectively

u(0, t) = sin(ωt), u(1, t) = sin(ωt). (51)

Direct computations show that the dimensionless steady state velocities
ucp(y, t) and usp(y, t) which satisfy the governing equation (48) and the
boundary conditions (50), respectively (51) are given by the relations

ucp(y, t) = <e

{
sinh(δ̃y) + sinh[δ̃(1− y)]

sinh(δ̃)
eiωt

}
,

usp(y, t) = Im

{
sinh(δ̃y) + sinh[δ̃(1− y)]

sinh(δ̃)
eiωt

}
,

(52)

where δ̃ =
√

(M + iωRe)(1 + iλω). Similar solutions for motions of Newto-
nian fluids induced by the lower plate that oscillates in its plane have been
recently established by Fetecau and Agop [13, Eqs. (48)]. As expected,
making ω = 0 in Eq. (52)1 (which means that both plates move in their
planes with the constant velocity U) and taking the limit of the obtained re-
sult for M and λ going to zero, the steady velocity field obtained by Erdogan
[14, Eq. (12)] is recovered.
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The corresponding shear stresses, namely

τcp(y, t) =
1

Re
<e

{
cosh(δ̃y)− cosh[δ̃(1− y)]

sinh(δ̃)

δ̃eiωt

1 + iλω

}
,

τsp(y, t) =
1

Re
Im

{
cosh(δ̃y)− cosh[δ̃(1− y)]

sinh(δ̃)

δ̃eiωt

1 + iλω

}
,

(53)

have been determined using Eqs. (47)2 and (52). Introducing ucp(y, t),
usp(y, t) and τcp(y, t), τsp(y, t) from the last relations (52) and (53) in (47)1
one obtains the corresponding dimensionless normal stresses σcp(y, t) and
σsp(y, t) under forms

σcp(y, t) =
2λ

Re
<e

{
{cosh(δ̃y)− cosh(δ̃(1− y)]}2

sinh2(δ̃)

M + iωRe

1 + 2iλω
e2iωt

}
,

σsp(y, t) =
1

Re
Im

{
{cosh(δ̃y)− cosh(δ̃(1− y)]}2

sinh2(δ̃)

M + iωRe

1 + 2iλω
e2iωt

}
,

(54)
Simple computations show that ucp(y, t), τcp(y, t), σcp(y, t) and usp(y, t),

τsp(y, t), σsp(y, t) given by the relations (52)–(54) satisfy the governing equa-
tions (47), (48) and the boundary conditions (50), respectively (51).

3.2.2 Motions induced by oscillatory shear stresses
on the boundary

Let us now consider isothermal hydromagnetic motions of the same fluids be-
tween infinite parallel plates that applies a shear stress S cos(ωt) or S sin(ωt)
to the fluid. The velocity field corresponding to these motions is again of
the form (3) and the corresponding governing equations are again identical
to those from Section 2. The shear stresses corresponding to these motions
have to satisfy the governing equation (11) with the boundary conditions

τ(0, t) = S cos(ωt), τ(d, t) = S cos(ωt), (55)

or
τ(0, t) = S sin(ωt), τ(d, t) = S sin(ωt). (56)

Using the non-dimensional functions, variables and parameters

u∗ =

√
ρ

S
u, τ∗ =

τ

S
, σ∗ =

σ

S
, y∗ =

y

d
, t∗ =

S

µ
t,

λ∗ =
S

µ
λ, ω∗ =

µ

S
ω,

(57)
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the equations (5) and (11) take the non-dimensional forms(
1 + λ

∂

∂t

)
σ(y, t) =

2λ√
Re

τ(y, t)
∂u(y, t)

∂y
,(

1 + λ
∂

∂t

)
τ(y, t) =

1√
Re

∂u(y, t)

∂y
,

(58)

respectively

Re

(
1 + λ

∂

∂t

)
∂τ(y, t)

∂t
=
∂2τ(y, t)

∂y2
−M

(
1 + λ

∂

∂t

)
τ(y, t), (59)

while the boundary conditions (55) and (56) become

τ(0, t) = cos(ωt), τ(1, t) = cos(ωt), (60)

or

τ(0, t) = sin(ωt), τ(1, t) = sin(ωt). (61)

In the above relations, the Reynolds number Re and the magnetic para-
meter M are defined by the next relations

Re =
Sd2

µv
=
V d

v
, M =

σB2

ρ

d2

v
, (62)

where V = Sd/µ is a characteristic velocity.
Bearing in mind the fact that the form of the governing equation (59)

for the shear stress τ(y, t) and the boundary conditions (60) and (61) are
identical to those corresponding to u(y, t) from the previous section, it results
that

τcp = <e

{
sinh(δ̃y) + sinh[δ̃(1− y)]

sinh(δ̃)
eiωt

}
,

τsp = Im

{
sinh(δ̃y) + sinh[δ̃(1− y)]

sinh(δ̃)
eiωt

}
.

(63)

The corresponding velocity fields, namely

ucp(y, t) =
√

Re<e

{
cosh(δ̃y)− cosh[δ̃(1− y)]

sinh(δ̃)

1 + iλω

δ̃
eiωt

}
,

usp(y, t) =
√

Re Im

{
cosh(δ̃y)− cosh[δ̃(1− y)]

sinh(δ̃)

1 + iλω

δ̃
eiωt

}
,

(64)
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have been obtained using Eqs. (58) and (64). Finally, the expressions of the
dimensionless steady state normal stresses σcp(y, t) and σsp(y, t) are

σcp(y, t) = 2λ<e

{
{sinh(δ̃y)− sinh[δ̃(1− y)]}2

sinh2(δ̃)

1 + iλω

1 + 2iλω
e2iωt

}
,

σsp(y, t) = 2λ Im

{
{sinh(δ̃y)− sinh[δ̃(1− y)]}2

sinh2(δ̃)

1 + iλω

1 + 2iλω
e2iωt

}
.

(65)

4 Conclusions

The problem of obtaining exact solutions for motions of Newtonian or non-
Newtonian fluids is an important one. In order to facilitate the possibility
of obtaining new exact solutions for hydromagnetic motions of the incom-
pressible upper-convected Maxwell fluids, an important observation con-
cerning the governing equations of velocity and the non-trivial shear stress
has been brought to light. More exactly, it was showed that the governing
equations of the two important entities corresponding to some isothermal
hydromagnetic unidirectional motions of these fluids have identical forms.
This observation allows us to easily obtain exact solutions for motions of
these fluids with shear stress or velocity on the boundary if similar solutions
for motions of same fluids with velocity, respectively shear stress on the
boundary are known. As application, some hydromagnetic unsteady mo-
tions of the incompressible Maxwell fluids over an infinite plate or between
two infinite horizontal parallel plates have been solved and new exact solu-
tions have been provided for the dimensionless steady state velocity, shear
stress and normal stress fields.

The obtained solutions are especially important for those who want to
know the need time to touch the steady or permanent state. This is the
time after which the fluid moves according to the steady state solutions.
From mathematical point of view, it is the time after which the diagrams of
starting solutions (numerical solutions) superpose over those of their steady
state components. In addition, the exact solutions for different motions
of fluids can be used to test the numerical schemes that are developed to
study more complex unsteady flow problems. For a check of results that
have been here provided, the velocity and shear stress fields corresponding
to motions over an infinite flat plate have been presented in different forms
whose equivalence was graphically proved.
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