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Abstract

In this paper, we study a new class of mixed hemivariational-
variational inequalities in which both the non-smooth convex func-
tional and the non-smooth non-convex functional can depend on two
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1 Introduction

Hemivariational inequalities arise in applications of problems involving non-
smooth, non-monotone and set-valued relations among physical quantities.
Since the pioneering work of Panagiotopoulos in early 1980s ([17]), there
has been extensive research on modeling, analysis, numerical solution and
applications of hemivariational inequalities. For recent representative refer-
ences, one is referred to [18] for well-posedness analysis of hemivariational
inequalities, and to [12] for a survey of numerical analysis of hemivariational
inequalities.

Mixed formulations are useful in the numerical solution of problems with
certain constraints. A standard example of a mixed formulation is its use
in the treatment of the incompressibility constraint for fluid flow problems.
Mixed formulations are also useful in the development of efficient numerical
methods for the computation of physical quantities other than the original
unknown variable of the underlying partial differential equations. The refer-
ence [4] provides a comprehensive coverage of mixed finite element methods
for solving a variety of boundary value problems through their mixed formu-
lations. Mixed finite element methods have also been applied to solve mixed
hemivariational inequalities of the Stokes equations ([6]) and Navier–Stokes
equations ([9]).

In [11], well-posedness analysis is provided for the following elliptic mixed
hemivariational-variational inequality:

Problem 1 Find (u, p) ∈ KV ×KQ such that

〈Au, v − u〉+ b(v − u, p) + Φ(u, v)− Φ(u, u) + Ψ0(u; v − u)

≥ 〈f, v − u〉 ∀ v ∈ KV , (1)

b(u, q − p) ≤ 0 ∀ q ∈ KQ. (2)

In Problem 1, KV and KQ are closed convex sets in Hilbert spaces, A
is a Lipschitz continuous and strongly monotone operator, b is a continu-
ous bilinear form, Φ is continuous and convex with respect to its second
argument, Ψ is locally Lipschitz continuous and Ψ0 denotes its generalized
directional derivative in the sense of Clarke, and f is a given linear contin-
uous functional. Precise descriptions of the assumptions on the data will
be given in Section 2. For applications, the term Ψ0(u; v − u) in (1) is usu-
ally replaced by I∆(ψ0(γψu; γψv − γψu)), where I∆ stands for the operator
of integration over ∆ which can be the spatial domain of the application
problem, or a subdomain, or a part of the boundary of the spatial domain,
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ψ is a real-valued function, and γψ is a linear operator mapping functions
defined on the spatial domain of the problem to functions defined on ∆. The
corresponding elliptic mixed hemivariational-variational inequality is of the
following form:

Problem 2 Find (u, p) ∈ KV ×KQ such that

〈Au, v − u〉+ b(v − u, p) + Φ(u, v)− Φ(u, u) + I∆(ψ0(γψu; γψv − γψu))

≥ 〈f, v − u〉 ∀ v ∈ KV , (3)

b(u, q − p) ≤ 0 ∀ q ∈ KQ. (4)

Elliptic mixed hemivariational-variational inequalities of special types of
Problem 1 or Problem 2 have been studied in other papers. For example,
Problem 2 with Φ ≡ 0 was studied in [13], Problem 1 with Φ ≡ 0 was studied
in [3, 15]. The results in [3] were extended in [2] to a problem of the form of
Problem 1 where Φ(u, v) ≡ Φ(v) depends on only one variable. Note that
in these references, the main theoretical tools for proving solution existence
are rather complicated fixed-point principles for set-valued mappings. In
comparison, in [11], well-posedness of Problems 1 and 2 is shown through
the use of more elementary knowledge of functional analysis, starting with
the analysis of related saddle-point formulations in [10], and is thus more
accessible by applied mathematicians and engineers.

The rest of the paper is organized as follows. In Section 2, we review
preliminary materials needed later; in particular, we recall results from [11]
on well-posedness of Problems 1 and 2. In Section 3, we provide a well-
posedness analysis of a new class of elliptic mixed hemivariational-variational
inequalities that are more general than Problems 1 and 2 in that the locally
Lipschitz continuous functions Ψ and ψ are allowed to depend on two ar-
guments. In Section 4, we study a Bingham type fluid flow problem by
applying the theoretical results proved in Section 3.

2 Preliminaries

In this section, we review some basic notions and recall well-posedness results
on Problems 1 and 2 from [11]. In describing hemivariational inequalities,
we need the notions of the generalized directional derivative and generalized
subdifferential in the sense of Clarke for a locally Lipschitz continuous func-
tion ([5]). Let Ψ: V → R be a locally Lipschitz continuous functional defined
on a real Banach space V . The generalized (Clarke) directional derivative
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of Ψ at an element u ∈ V in the direction v ∈ V is defined by

Ψ0(u; v) := lim sup
w→u, λ↓0

Ψ(w + λ v)−Ψ(w)

λ
.

Given Ψ0(u; v), the generalized subdifferential of Ψ at u ∈ V is defined by

∂Ψ(u) :=
{
η ∈ V ∗ | Ψ0(u; v) ≥ 〈η, v〉 ∀ v ∈ V

}
.

Conversely, given ∂Ψ(u), the generalized directional derivative can be de-
termined through the formula

Ψ0(u; v) = max {〈u∗, v〉 | u∗ ∈ ∂Ψ(u)} ∀u, v ∈ V.

If the locally Lipschitz continuous function Ψ: V → R is convex, then
the subdifferential ∂Ψ(u) at any u ∈ V in the sense of Clarke coincides with
the convex subdifferential ∂Ψ(u). In this sense, the notion of the Clarke
subdifferential is a generalization of the notion of the convex subdifferential
to non-convex functions. We recall here some basic properties of the gen-
eralized directional derivative and the generalized subdifferential. For all
λ ∈ R and all u ∈ V , we have

∂(λΨ)(u) = λ∂Ψ(u).

For locally Lipschitz functions Ψ1,Ψ2 : V → R, the inclusion

∂(Ψ1 + Ψ2)(u) ⊂ ∂Ψ1(u) + ∂Ψ2(u) ∀u ∈ V (5)

holds. This inclusion is equivalent to the inequality

(Ψ1 + Ψ2)0(u; v) ≤ Ψ0
1(u; v) + Ψ0

2(u; v) ∀u, v ∈ V. (6)

Detailed discussions of properties of the generalized directional derivative
and the generalized subdifferential for locally Lipschitz continuous function-
als can be found in several references, e.g. [5, 14].

As in [10, 11], we will assume V and Q are real Hilbert spaces, with dual
spaces V ∗ and Q∗. The symbol 〈·, ·〉 denotes the duality pairing between
V ∗ and V , or between Q∗ and Q; it should be clear from the context which
duality pairing is meant by 〈·, ·〉. Let KV ⊂ V and KQ ⊂ Q. Given operators
and functionals A : V → V ∗, b : V ×Q→ R, Φ: V ×V → R, Ψ: V ×V → R,
and f ∈ V ∗, we consider Problems 1 and 2. We will use the following
conditions on the problem data.
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• H(KV ): V is a real Hilbert space, KV ⊂ V is non-empty, closed and
convex.

• H(KQ): Q is a real Hilbert space, KQ ⊂ Q is non-empty, closed and
convex.

• H(A): A : V → V ∗ is Lipschitz continuous and strongly monotone.

• H(b): b : V ×Q→ R is bilinear and bounded.

• H(Φ)2: Φ: V × V → R; for any u ∈ V , Φ(u, ·) : V → R is convex and
continuous, and there exists a constant αΦ ≥ 0 such that

Φ(u1, v2)− Φ(u1, v1) + Φ(u2, v1)− Φ(u2, v2)

≤ αΦ‖u1 − u2‖V ‖v1 − v2‖V ∀u1, u2, v1, v2 ∈ V. (7)

• H(Ψ)1: Ψ: V → R is locally Lipschitz continuous, and there exists a
constant αΨ ≥ 0 such that

Ψ0(v1; v2 − v1) + Ψ0(v2; v1 − v2) ≤ αΨ‖v1 − v2‖2V ∀ v1, v2 ∈ V. (8)

• H(f): f ∈ V ∗.

We use MA > 0 for the Lipschitz constant of A:

‖Av1 −Av2‖V ∗ ≤MA‖v1 − v2‖V ∀ v1, v2 ∈ V, (9)

and use mA > 0 for the strong monotonicity constant:

〈Av1 −Av2, v1 − v2〉 ≥ mA‖v1 − v2‖2V ∀ v1, v2 ∈ V. (10)

We denote by Mb > 0 for the boundedness constant of the bilinear form b:

|b(v, q)| ≤Mb‖v‖V ‖q‖Q ∀ v ∈ V, q ∈ Q. (11)

Assumption H(b) allows us to define an operator B ∈ L(V ;Q∗) by the
relation

〈Bv, q〉 = b(v, q) ∀ v ∈ V, q ∈ Q.

The subscript 2 in H(Φ)2 reflects the fact that this is an assumption on Φ
for the case where Φ has two arguments; similarly, H(Ψ)1 is an assumption
on Ψ where Ψ is a one-argument function. In H(Φ)2, the convex function
Φ: V → R is assumed to be continuous, instead of l.s.c. As is explained in
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[7, 8], there is no loss of generality with the stronger assumption of continuity
for a vast majority of applications.

When KQ is an unbounded set in Q and KV is a subspace of V , we
will assume additionally that the bilinear form b(·, ·) satisfies an inf-sup
condition: there exists a constant αb > 0 such that

sup
06=v∈KV

b(v, q)

‖v‖V
≥ αb‖q‖Q ∀ q ∈ Q. (12)

The following result is proved in [11].

Theorem 3 Assume H(KV ), H(KQ), H(A), H(b), H(Φ)2, H(Ψ)1, H(f),
and αΦ + αΨ < mA. Moreover, assume either

KQ is bounded,

or

KQ is unbounded; KV is a subspace of V ; for any u ∈ V ,
Φ(u, ·) : V → R is Lipschitz continuous on KV ; there exist non-
negative constants c0, c1 such that

‖∂Ψ(v)‖V ∗ ≤ c0 + c1‖v‖V ∀ v ∈ V ; (13)

and the inf-sup condition (12) holds.

Then, Problem 1 has a solution (u, p) ∈ KV ×KQ and the first component
u of the solution is unique. Moreover, u depends Lipschitz continuously on
f .

Note that the assumption (13) is a short-hand notation for the property

‖η‖V ∗ ≤ c0 + c1‖v‖V ∀ v ∈ V, η ∈ ∂Ψ(v),

and it is equivalent to∣∣Ψ0(u; v)
∣∣ ≤ (c0 + c1‖u‖V ) ‖v‖V ∀u, v ∈ V.

For Problem 2, assume γψv is an Rm-valued function for v ∈ V , for some
positive integer m. In applications in solid mechanics or fluid mechanics,
the operator γψ is either the normal trace operator and then m = 1, or the
tangential component trace operator and then m = d, d being the dimen-
sion of the spatial domain of the problem. Let us introduce the following
assumption on the function ψ.
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• H(ψ)1: γψ ∈ L(V ;L2(∆;Rm)); ψ : ∆×Rm → R; ψ(·, z) is measurable
on ∆ for all z ∈ Rm; there exists z0 ∈ L2(∆;Rm) such that ψ(·, z0(·)) ∈
L1(∆); ψ(x, ·) is locally Lipschitz continuous on Rm for a.e. x ∈ ∆;
and for some non-negative constants c and αψ, a.e. on ∆,

|∂ψ(·, z)| ≤ c (1 + |z|Rm) ∀ z ∈ Rm, (14)

ψ0(z1; z2 − z1) + ψ0(z2; z1 − z2) ≤ αψ|z1 − z2|2Rm ∀ z1, z2 ∈ Rm.
(15)

To simplify the notation, we usually write ψ(z), ∂ψ(z) and ψ0(z1; z2)
to mean ψ(·, z), ∂ψ(·, z) and ψ0(·, z1; z2). Denote by c∆ > 0 the smallest
constant in the inequality

I∆(|γψv|2Rm) ≤ c2
∆‖v‖2V ∀ v ∈ V. (16)

Define the functional

Ψ(v) = I∆(ψ(γψv)), v ∈ V. (17)

Then under the assumption H(ψ)1, similar to the results and arguments
in [14, Section 3.3], it can be shown that Ψ(·) is well-defined and locally
Lipschitz on V , and

Ψ0(u; v) ≤ I∆(ψ0(γψu; γψv)) ∀u, v ∈ V. (18)

Thus, (15) and (16) imply that for any v1, v2 ∈ V ,

Ψ0(v1; v2 − v1) + Ψ0(v2; v1 − v2)

≤ I∆(ψ0(γψv1; γψv2 − γψv1) + ψ0(γψv2; γψv1 − γψv2))

≤ I∆(αψ|γψ(v1 − v2)|2Rm)

≤ αψc2
∆‖v1 − v2‖2V , (19)

i.e., (8) is satisfied with αΨ = αψc
2
∆. Moreover, (13) follows from (14) and

(18). The following result is found in [11].

Theorem 4 Assume H(KV ), H(KQ), H(A), H(b), H(Φ)2, H(ψ)1, H(f),
and αΦ + αψc

2
∆ < mA. Moreover, assume either

KQ is bounded,

or

KQ is unbounded; KV is a subspace of V ; for any u ∈ V ,
Φ(u, ·) : V → R is Lipschitz continuous on KV ; and the inf-sup
condition (12) holds.

Then, Problem 2 has a solution (u, p) ∈ KV ×KQ and the first component
u of a solution is unique. Moreover, u depends Lipschitz continuously on f .
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3 New elliptic mixed hemivariational-variational
inequalities

We first consider an elliptic mixed hemivariational-quasivariational inequal-
ity that is more general than Problem 1.

Problem 5 Find (u, p) ∈ KV ×KQ such that

〈Au, v − u〉+ b(v − u, p) + Φ(u, v)− Φ(u, u) + Ψ0(u, u; v − u)

≥ 〈f, v − u〉 ∀ v ∈ KV , (20)

b(u, q − p) ≤ 0 ∀ q ∈ KQ. (21)

Here, for a two-argument function Ψ(w, u), the symbol Ψ0(w, u; v) stands
for the generalized directional derivative of Ψ with respect to its second ar-
gument u in the direction v. In the study of Problem 5, we modify H(Ψ)1 to
H(Ψ)2; the subscript 2 in H(Ψ)2 reminds the reader that this is a condition
for the case where Ψ depends on two variables.

• H(Ψ)2: Ψ: V × V → R is locally Lipschitz continuous with respect
to its second argument, and there exist two constants αΨ,1, αΨ,2 ≥ 0
such that

Ψ0(w1, v1; v2 − v1) + Ψ0(w2, v2; v1 − v2)

≤ αΨ,1‖v1 − v2‖2V + αΨ,2‖w1 − w2‖V ‖v1 − v2‖V
∀w1, w2, v1, v2 ∈ V. (22)

Theorem 6 Assume H(KV ), H(KQ), H(A), H(b), H(Φ)2, H(Ψ)2, H(f),
and

αΦ + αΨ,1 + αΨ,2 < mA. (23)

Moreover, assume either

KQ is bounded,

or

KQ is unbounded; KV is a subspace of V ; for any u ∈ V ,
Φ(u, ·) : V → R is Lipschitz continuous on KV ; there exists a
constant c such that∣∣Ψ0(w, u; v)

∣∣ ≤ c (1 + ‖w‖V + ‖u‖V ) ‖v‖V ∀w, u, v ∈ V ;

and the inf-sup condition (12) holds.
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Then, Problem 5 has a solution (u, p) ∈ KV ×KQ and the first component
u of a solution is unique. Moreover, the solution component u depends
Lipschitz continuously on f .

Proof. We use a fixed-point argument based on the result of Theorem 3.
For any w ∈ KV , introduce an auxiliary problem of finding (u, p) ∈ KV ×KQ

such that

〈Au, v − u〉+ b(v − u, p) + Φ(u, v)− Φ(u, u) + Ψ0(w, u; v − u)

≥ 〈f, v − u〉 ∀ v ∈ KV , (24)

b(u, q − p) ≤ 0 ∀ q ∈ KQ. (25)

Under the stated assumptions, we can apply Theorem 3 to conclude that
there is a pair (u, p) ∈ KV ×KQ satisfying (24)–(25) and u is unique. This
allows us to define a mapping P : KV → KV by the relation

P (w) = u.

Let us show that P : KV → KV is a contraction. For any w1, w2 ∈ KV ,
denote u1 = P (w1), u2 = P (w2). By the definition of the mapping P , there
exist p1, p2 ∈ KQ such that

〈Au1, v − u1〉+ b(v − u1, p1) + Φ(u1, v)− Φ(u1, u1) + Ψ0(w1, u1; v − u1)

≥ 〈f, v − u1〉 ∀ v ∈ KV , (26)

b(u1, q − p1) ≤ 0 ∀ q ∈ KQ (27)

and

〈Au2, v − u2〉+ b(v − u2, p2) + Φ(u2, v)− Φ(u2, u2) + Ψ0(w2, u2; v − u2)

≥ 〈f, v − u2〉 ∀ v ∈ KV , (28)

b(u2, q − p2) ≤ 0 ∀ q ∈ KQ. (29)

We take v = u2 in (26), v = u1 in (28), and add the two resulting inequalities
to obtain

〈Au1 −Au2, u1 − u2〉 ≤ −b(u1 − u2, p1 − p2)

+ Ψ0(w1, u1;u2 − u1) + Ψ0(w2, u2;u1 − u2)

+ Φ(u1, u2)− Φ(u1, u1) + Φ(u2, u1)− Φ(u2, u2).

From (27) and (29),

b(u1, p2 − p1) ≤ 0,

b(u2, p1 − p2) ≤ 0.
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Hence,

−b(u1 − u2, p1 − p2) = b(u1, p2 − p1) + b(u2, p1 − p2) ≤ 0. (30)

Then,

〈Au1 −Au2, u1 − u2〉 ≤ Ψ0(w1, u1;u2 − u1) + Ψ0(w2, u2;u1 − u2)

+ Φ(u1, u2)− Φ(u1, u1) + Φ(u2, u1)− Φ(u2, u2).
(31)

Thus, by making use of the assumptions H(A), H(Ψ)2 and H(Φ), we derive
from (31) that

mA‖u1 − u2‖2V ≤ αΨ,1‖u1 − u2‖2V + αΨ,2‖w1 − w2‖V ‖u1 − u2‖V
+ αΦ‖u1 − u2‖2V .

Then,

‖u1 − u2‖V ≤ λ ‖w1 − w2‖V , λ :=
αΨ,2

mA − αΨ,1 − αΦ
.

Note that the smallness assumption (23) implies that λ < 1. So the mapping
P : KV → KV is contractive. By the Banach fixed-point theorem ([1, Section
5.1]), the mapping P has a unique fixed-point u ∈ KV . From u = P (u), it
is easy to see that for some p ∈ KQ, the pair (u, p) ∈ KV ×KQ is a solution
of Problem 5. Moreover, the first component u of the solution of Problem 5
is unique due to the uniqueness of the fixed-point of the mapping P .

Now we prove the Lipschitz continuous dependence property of the so-
lution on the right side. Let f1, f2 ∈ V ∗, and let (u1, p1) and (u2, p2) be
corresponding solutions of Problem 5. Then,

〈Au1, v − u1〉+ b(v − u1, p1) + Φ(u1, v)− Φ(u1, u1) + Ψ0(u1, u1; v − u1)

≥ 〈f1, v − u1〉 ∀ v ∈ KV , (32)

b(u1, q − p1) ≤ 0 ∀ q ∈ KQ (33)

and

〈Au2, v − u2〉+ b(v − u2, p2) + Φ(u2, v)− Φ(u2, u2) + Ψ0(u2, u2; v − u2)

≥ 〈f2, v − u2〉 ∀ v ∈ KV , (34)

b(u2, q − p2) ≤ 0 ∀ q ∈ KQ. (35)
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We take v = u2 in (32), v = u1 in (34), and add the two resulting inequalities
to obtain

〈Au1 −Au2, u1 − u2〉 ≤ −b(u1 − u2, p1 − p2)

+ Ψ0(u1, u1;u2 − u1) + Ψ0(u2, u2;u1 − u2)

+ Φ(u1, u2)− Φ(u1, u1) + Φ(u2, u1)− Φ(u2, u2)

+ 〈f1 − f2, u1 − u2〉. (36)

Similar to (30), we deduce from (33) and (35) that

−b(u1 − u2, p1 − p2) = b(u1, p2 − p1) + b(u2, p1 − p2) ≤ 0.

Then, from (36) with the use of H(A), H(Ψ)2 and H(Φ)2,

mA‖u1 − u2‖2V ≤ (αΨ,1 + αΨ,2) ‖u1 − u2‖2V + αΦ‖u1 − u2‖2V
+ ‖f1 − f2‖V ∗‖u1 − u2‖V .

Therefore,

‖u1 − u2‖V ≤
1

mA − (αΦ + αΨ,1 + αΨ,2)
‖f1 − f2‖V ∗ ,

implying the Lipschitz continuous dependence of u on f .

For applications in contact and fluid mechanics, the term Ψ0(u, u; v−u)
in (20) is typically replaced by the integral of ψ0(γ1u, γ2u; γ2v − γ2u) over
a set ∆, where γ1 ∈ L(V ;L2(∆;Rm1)), γ2 ∈ L(V ;L2(∆;Rm2)) for some
positive integers m1 and m2, and ψ : ∆×Rm1×Rm2 → R is a given function
that is locally Lipschitz continuous with respect to its last argument. Thus,
we consider the following variant of Problem 5.

Problem 7 Find (u, p) ∈ KV ×KQ such that

〈Au, v − u〉+ b(v − u, p) + Φ(u, v)− Φ(u, u) + I∆(ψ0(γ1u, γ2u; γ2v − γ2u))

≥ 〈f, v − u〉 ∀ v ∈ KV , (37)

b(u, q − p) ≤ 0 ∀ q ∈ KQ. (38)

On the function ψ, we introduce the following assumption.

• H(ψ)2: For i = 1, 2, γi ∈ L(V ;L2(∆;Rmi)), m1 and m2 being positive
integers; ψ : ∆ × Rm1 × Rm2 → R; ψ(·, z1, z2) is measurable on ∆ for
all z1 ∈ Rm1 and z2 ∈ Rm2 ; there exists z0 ∈ L2(∆;Rm2) such that
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for any z ∈ L2(∆;Rm1), ψ(·, z(·), z0(·)) ∈ L1(∆); ψ(x, z1, ·) is locally
Lipschitz continuous on Rm2 for any z1 ∈ Rm1 and a.e. x ∈ ∆; and for
some non-negative constants c and αψ1 , αψ2 , a.e. on ∆,

|∂ψ(·, z1, z2)| ≤ c (1 + |z1|Rm1 + |z2|Rm2 ) ∀ z1 ∈ Rm1 , z2 ∈ Rm2 ,
(39)

ψ0(w1, z1; z2 − z1) + ψ0(w2, z2; z1 − z2)

≤ αψ,1|z1 − z2|2Rm2 + αψ,2|w1 − w2|Rm1 |z1 − z2|Rm2

∀w1, w2 ∈ Rm1 , z1, z2 ∈ Rm2 . (40)

For the well-posedness of Problem 7, we have the following analogue of
Theorem 6.

Theorem 8 Assume H(KV ), H(KQ), H(A), H(b), H(Φ)2, H(ψ)2, H(f),
and

αΦ + αψ,1‖γ2‖2 + αψ,2‖γ1‖ ‖γ2‖ < mA. (41)

Moreover, assume either

KQ is bounded,

or

KQ is unbounded; KV is a subspace of V ; for any u ∈ V ,
Φ(u, ·) : V → R is Lipschitz continuous on KV ; there exists a
constant c such that∣∣ψ0(w, u; v)

∣∣ ≤ c (1 + |w|Rm1 + |u|Rm2 ) |v|Rm2 ∀w ∈ Rm1 , u, v ∈ Rm2 ;

and the inf-sup condition (12) holds.

Then, Problem 7 has a solution (u, p) ∈ KV ×KQ and the first component
u of a solution is unique. Moreover, the solution component u depends
Lipschitz continuously on f .

Proof. Let

Ψ(w, u) = I∆(ψ(γ1w, γ2u)), w, u ∈ V.

Then by [14, Theorem 3.47], Ψ: V × V → R is locally Lipschitz continuous
with respect to its second argument, and

Ψ0(w, u; v) ≤ I∆(ψ0(γ1u, γ2u; γ2v)). (42)
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So

Ψ0(w1, v1; v2 − v1) + Ψ0(w2, v2; v1 − v2)

≤ I∆(ψ0(γ1w1, γ2v1; γ2v2 − γ2v1) + ψ0(γ1w2, γ2v2; γ2v1 − γ2v2))

≤ I∆(αψ,1|γ2(v1 − v2)|2Rm2 + αψ,2|γ1(w1 − w2)|Rm1 |γ2(v1 − v2)|Rm2 )

≤ αψ,1‖γ2‖2‖v1 − v2‖2V + αψ,2‖γ1‖ ‖γ2‖ ‖w1 − w2‖V ‖v1 − v2‖V .

Thus, H(Ψ)2 is valid with αΨ,1 = αψ,1‖γ2‖2 and αΨ,2 = αψ,2‖γ1‖ ‖γ2‖. Also,

Ψ0(w, u; v) ≤ I∆(c (1 + |γ1w|Rm1 + |γ2u|Rm2 ) |γ2v|Rm2 )

≤ c (1 + ‖w‖V + ‖u‖V ) ‖v‖V .

Applying Theorem 6, we know that Problem 5 has a solution (u, p) ∈ KV ×
KQ and the first component u of a solution is unique. By (42), (u, p) ∈
KV ×KQ is also a solution of Problem 7.

Uniqueness of the solution component u, as well as the Lipschitz contin-
uous dependence of u on f , can be proved similarly as that in the proof of
Theorem 6.

The fixed-point argument in the proof of Theorems 6 and 8 naturally
leads to a convergent iterative procedure for approximating the solutions of
Problems 5 and 7 by solving a sequence of problems in the form of Problem
1 or Problem 2. Take Problem 7 as an example. We can introduce the
following iterative method:

Initialization. Choose an arbitrary u0 ∈ KV .

Iteration. For n ≥ 1, find (un, pn) ∈ KV ×KQ such that

〈Aun, v − un〉+ b(v − un, pn) + Φ(un, v)− Φ(un, un)

+ I∆(ψ0(γ1un−1, γ2un; γ2v − γ2un)) ≥ 〈f, v − un〉 ∀ v ∈ KV , (43)

b(un, q − pn) ≤ 0 ∀ q ∈ KQ. (44)

Then under the assumptions stated in Theorem 8, we have the conver-
gence ([1, Section 5.1]):

lim
n→∞

‖un − u‖V = 0,

where u is the first solution component of Problem 7.
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4 Application in study of a Bingham type fluid
flow

In this section we consider a mixed hemivariational-variational inequality
that models a Bingham type fluid flow under non-smooth non-monotone
slip boundary condition. Such a problem is studied in [20] in which the
existence of a solution is shown by applying an abstract surjectivity result
for pseudomonotone operators, and the solution existence result concerns
about the unknown velocity field only. The results developed in the previous
section allows us to conclude the solution existence for both the velocity field
u and the pressure field p, and the uniqueness of u.

Let Ω ⊂ Rd be the domain occupied by the fluid, d ≤ 3. Assume Ω is a
Lipschitz domain so that the unit outward normal vector ν = (ν1, · · · , νd)T
exists a.e. on the boundary ∂Ω. For an Rd-valued function u on the bound-
ary, its normal and tangential components are uν = u ·ν and uτ = u−uνν,
respectively. Denote by Sd the space of second order symmetric tensors on
Rd or, equivalently, the space of symmetric matrices of order d. For an Sd-
valued function σ on the boundary, we call σν = ν ·σν and στ = σν−σνν
the normal and tangential components of σ on the boundary. We have the
identities:

u · v = uνvν + uτ · vτ , (45)

(σν) · v = σνvν + στ · vτ . (46)

We adopt the summation convention over a repeated index. The indices
i and j range between 1 and d. The canonical inner products and norms on
Rd and Sd are

u · v = uivi, |v| ≡ |v|Rd = (v · v)1/2 for all u = (ui), v = (vi) ∈ Rd,

σ : τ = σijτij , |σ| ≡ |σ|Sd = (σ : σ)1/2 for all σ = (σij), τ = (τij) ∈ Sd.

Denote by u the velocity field of the fluid. The quantity ε(u) = (∇u+
(∇u)T )/2 is the deformation rate tensor or the rate of deformation tensor.
In the Bingham type fluid considered in this paper, the constitutive relation
is of the form

S ∈ 2µ ε(u) + ∂(g |ε(u)|) in Ω (47)

between the extra stress tensor S = (Sij) : Ω → Sd and the velocity strain
tensor ε(u). Here µ > 0 is the viscosity coefficient, g ≥ 0 is the plasticity
threshold, and ∂ stands for the convex subdifferential. The relation (47) can
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be equivalently written as

S = 2µ ε(u) + ξ, ξ ∈ ∂(g |ε(u)|) in Ω. (48)

By the definition of the convex subdifferential, ξ ∈ ∂(g |ε(u)|) is equivalent
to

|ξ| ≤ g, ξ = g
ε(u)

|ε(u)|
if ε(u) 6= 0.

For g = 0 and µ(·) a positive constant, the constitutive relation (47) reduces
to that for a Newtonian fluid. The total stress tensor is

σ = S(ε(u))− p I, (49)

where p is the pressure variable, and I is the d× d identity matrix.
The Stokes equations for the fluid flow is

−divS +∇p = f in Ω, (50)

where the divergence of S is a vector-valued function divS = (Sij,j) : Ω →
Rd, f is a given density function. The fluid is assumed to be incompressible,

divu = 0 in Ω, (51)

where divu = ui,i is a scalar-valued function. To describe the boundary
conditions, we split the boundary Γ as

Γ = ΓD ∪ ΓS

such that ΓD and ΓS are non-empty, mutually disjoint open subsets of Γ.
We specify the homogeneous Dirichlet boundary condition on ΓD:

u = 0 on ΓD; (52)

and a no-leak slip boundary condition of friction type on ΓS :

uν = 0, −στ ∈ kτ (|uτ |) ∂ψτ (uτ ) on ΓS . (53)

The classical formulation of the problem is to find a velocity field u and
a pressure field p such that (47) and (50)–(53) are satisfied. The problem
will be studied in a mixed weak formulation. For convenience, we will use
the same symbols for the function spaces, operators and functionals as in
the previous sections for the abstract problems, e.g., V , Q, A, b, Φ, ψ. We
will use the space

V =
{
v ∈ H1(Ω;Rd) | v = 0 on ΓD, vν = 0 on ΓS

}
(54)
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for the velocity variable. The trace of v ∈ V on the boundary is denoted by
the same symbol v. Since |ΓD| > 0, Korn’s inequality holds (cf. [16, p. 79]):
for some constant c > 0,

‖v‖H1(Ω;Rd) ≤ c ‖ε(v)‖L2(Ω;Sd) ∀v ∈ V.

Consequently, the expression ‖v‖V = ‖ε(v)‖L2(Ω;Sd) defines a norm on V ,
which is equivalent to the standard norm ‖v‖H1(Ω;Rd) on V .

Let λ0 > 0 be the smallest eigenvalue of the eigenvalue problem

u ∈ V,
∫

Ω
ε(u) : ε(v) dx = λ

∫
ΓS

uτ · vτ ds ∀v ∈ V.

Then we have the trace inequality

‖vτ‖L2(Γτ ;Rd) ≤ λ
−1/2
0 ‖v‖V ∀v ∈ V. (55)

The space for the pressure variable is

Q = L2
0(Ω) =

{
q ∈ L2(Ω) | IΩ(q) = 0

}
. (56)

Recall that IΩ(q) stands for the integral of q over Ω.
To derive the weak formulation, assume there exist u ∈ V and p ∈ Q,

sufficiently smooth, that satisfy the equations (47) and (50)–(53). Let v ∈ V
be an arbitrary function, also sufficiently smooth. We multiply the equation
(50) by v and integrate over Ω:

−
∫

Ω
divS · v dx+

∫
Ω

(∇p) · v dx =

∫
Ω
f · v dx. (57)

Integrate by part,∫
Ω

divS · v dx =

∫
Γ
(Sν) · v ds−

∫
Ω
S : ε(v) dx,∫

Ω
(∇p) · v dx =

∫
Γ
pv · ν ds−

∫
Ω
p divv dx.

Then from (57),∫
Γ
−(σν) · v ds+

∫
Ω

[S : ε(v)− p divv] dx =

∫
Ω
f · v dx. (58)

Applying the homogeneous boundary value conditions from (52) and
(53), with the use of (45) amd (46), we derive from (58) that∫

ΓS

−στ · vτds+

∫
Ω

[S : ε(v)− p divv] dx =

∫
Ω
f · v dx. (59)
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Then apply the second part of the boundary condition from (53),∫
ΓS

−στ · vτds ≤
∫

ΓS

kτ (|uτ |)ψ0
τ (uτ ;vτ ) ds.

So from (59) with v replaced by (v − u), we have∫
Ω
S : ε(v − u) dx−

∫
Ω
p div(v − u) dx+

∫
ΓS

kτ (|uτ |)ψ0
τ (uτ ;vτ − uτ ) ds

≥
∫

Ω
f · (v − u) dx.

Now make use of (48),∫
Ω
S : ε(v − u) dx

= 2µ

∫
Ω
ε(u) · ε(v − u) dx+

∫
Ω
ξ · ε(v − u) dx

≤ 2µ

∫
Ω
ε(u) · ε(v − u) dx+

∫
Ω
g (|ε(v)| − |ε(u)|) dx.

Summarizing, we arrive at the following mixed hemivariational-variational
inequality: find u ∈ V and p ∈ Q such that

〈Au,v − u〉+ b(v − u, p) + Φ(v)− Φ(u) + IΓS (kτ (|uτ |)ψ0
τ (uτ ;vτ − uτ ))

≥
∫

Ω
f · (v − u) dx ∀v ∈ V, (60)

b(u, q) = 0 ∀ q ∈ Q, (61)

where the operator A : V → V ∗, the bilinear form b : V × Q → R, and the
functional Φ: V → R are defined by

〈Au,v〉 = 2µ

∫
Ω
ε(u) : ε(v) dx ∀u,v ∈ V, (62)

b(v, q) =

∫
Ω
q divv dx ∀v ∈ V, q ∈ Q, (63)

Φ(v) =

∫
Ω
g |ε(v)| dx ∀v ∈ V. (64)

Note that the operator A : V → V ∗ is Lipschitz continuous and strongly
monotone, with the respective constants MA = 2µ and mA = 2µ. The bi-
linear form b : V ×Q→ R is bilinear and bounded, and the inf-sup condition
is valid ([19]):

sup
v∈V0

b(v, q)

‖v‖V
≥ αb‖q‖Q ∀ q ∈ Q, (65)
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where V0 = H1
0 (Ω)d. For the functional defined by (64), Φ(u,v) = Φ(v)

depends on only one argument; obviously, Φ: V → R is convex and contin-
uous, and (7) holds with αΦ = 0. We now introduce conditions on kτ and
ψτ .

• H(kτ ): kτ : ΓS ×R+ → R; kτ (·, r) is measurable on Γτ for all r ∈ R+;
kτ (x, ·) is Lipschitz continuous with a Lipschitz constant Lkτ for a.e.
x ∈ ΓS ; and there exist constants 0 < kτ,0 ≤ kτ,1 such that kτ,0 ≤
kτ (x, r) ≤ kτ,1 for all r ∈ R+ and a.e. x ∈ ΓS .

• H(ψτ ): ψτ : ΓS×Rd → R; ψτ (·, z) is measurable on ΓS for all z ∈ Rd;
there exists z0 ∈ L2(ΓS ;Rd) such that ψτ (·, z0(·)) ∈ L1(ΓS); ψτ (x, ·)
is Lipschitz continuous with a Lipschitz constant Lψτ for a.e. x ∈ ΓS ;
and there exists a constant mψτ ≥ 0 such that

ψ0
τ (x, z1; z2 − z1) + ψ0

τ (x, z2; z1 − z2) ≤ mψτ |z1 − z2|2Rd
∀ z1, z2 ∈ Rd, a.e. x ∈ ΓS . (66)

Since ψτ (x, ·) is Lipschitz continuous with a Lipschitz constant Lψτ , we
have

|ψ0
τ (x, z1; z2)| ≤ Lψτ |z2|Rd ∀ z1, z2 ∈ Rd, a.e. x ∈ ΓS . (67)

Theorem 9 Assume H(kτ ), H(ψτ ), and

(LkτLψτ + kτ,1mψτ )λ−1
0 < 2µ. (68)

Then there is a solution (u, p) ∈ V ×Q to the problem (60)–(61); the solution
component u is unique and it depends Lipschitz continuously on f .

Proof. The problem defined by (60)–(61) is of the form Problem 7 with
the space V defined in (54), the space Q defined in (56), KV = V , KQ = Q,
∆ = ΓS , m1 = m2 = d, and γ1 and γ2 are the trace operator of the tangential
component on ΓS :

γ1v = γ2v = vτ |Γτ ∀v ∈ V.
We have verified most of the conditions stated in Theorem 8, and let us

verify the rest of the conditions. We have

‖γ1‖ = ‖γ2‖ = λ
−1/2
0 .

The condition (40) is verified as follows:

ψ(w, z) = kτ (|w|)ψτ (z),

ψ0(w, z1; z2) = kτ (|w|)ψ0
τ (z1; z2).
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Write

ψ0(w1, z1; z2 − z1) + ψ0(w2, z2; z1 − z2)

= kτ (|w1|)ψ0
τ (z1; z2 − z1) + kτ (|w2|)ψ0

τ (z2; z1 − z2)

= kτ (|w1|)
[
ψ0
τ (z1; z2 − z1) + ψ0

τ (z2; z1 − z2)
]

+ [kτ (|w2|)− kτ (|w1|)]ψ0
τ (z2; z1 − z2),

and bound the expression by

kτ,1mψτ |z1 − z2|2Rd + LkτLψτ |w1 −w2|Rd |z1 − z2|Rd .

So (40) is satisfied with αψ1,1 = kτ,1mkτ and αψ1,2 = LkτLψτ . Hence, the
smallness condition (41) for the problem (60)–(61) is (68).

By applying Theorem 8, we know that the problem (60)–(61) has a so-
lution (u, p) ∈ V ×Q, u being unique and depending Lipschitz continuously
on f .

In general, it seems difficult to have/prove the uniqueness of the solution
component p. We explore the uniqueness of p next.

Proposition 1 Keep the assumptions stated in Theorem 9. Let (u, p) ∈
V ×Q be a solution of the problem (60)–(61). Suppose |ε(u)| ≥ c0 for some
constant c0 > 0, a.e. on Ω. Then the solution component p ∈ Q is unique.

Proof. Suppose (u, p1), (u, p2) ∈ V × Q both solve the problem. In (60)
with p replaced by p1, we substitute v ∈ V by u± v, v ∈ V0, to obtain

〈Au,v〉+ b(v, p1) + Φ(u+ v)− Φ(u) ≥
∫

Ω
f · v dx,

− 〈Au,v〉 − b(v, p1) + Φ(u− v)− Φ(u) ≥ −
∫

Ω
f · v dx.

Then,

b(v, p1) ≥
∫

Ω
f · v dx+ Φ(u)− Φ(u+ v)− 〈Au,v〉,

b(v, p1) ≤
∫

Ω
f · v dx+ Φ(u− v)− Φ(u)− 〈Au,v〉.

The same inequalities hold with p1 replaced by p2. Thus, for the term

b(v, p1 − p2) = b(v, p1)− b(v, p2),
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we find the bound

|b(v, p1 − p2)| ≤ Φ(u+ v) + Φ(u− v)− 2 Φ(u) ∀v ∈ V0. (69)

For any λ > 0 and any v ∈ C∞0 (Ω)d, we replace v by λv in (69) to obtain

|b(v, p1 − p2)| ≤ g

λ

∫
Ω

(|ε(u) + λ ε(v)|+ |ε(u)− λ ε(v)| − 2 |ε(u)|) dx.

(70)
For λ > 0 small, we have

|ε(u) + λ ε(v)| = |ε(u)|+ λ
ε(u) · ε(v)

|ε(u)|
+O(λ2),

|ε(u)− λ ε(v)| = |ε(u)| − λ ε(u) · ε(v)

|ε(u)|
+O(λ2).

Then from (70),

|b(v, p1 − p2)| ≤ O(λ) ∀v ∈ C∞0 (Ω)d.

We now take the limit λ→ 0+ to obtain

b(v, p1 − p2) = 0 ∀v ∈ C∞0 (Ω)d.

Since C∞0 (Ω)d is dense in V0, we deduce that

b(v, p1 − p2) = 0 ∀v ∈ V0.

Apply the inequality (65),

αb‖p1 − p2‖Q ≤ sup
v∈V0

b(v, p1 − p2)

‖v‖V
= 0.

Therefore, p1 = p2, i.e., the solution component p is unique.

We can introduce the following iteration procedure:
Initialization. Choose an arbitrary u0 ∈ V .
Iteration. For n ≥ 1, find (un, pn) ∈ V ×Q such that

〈Aun,v − un〉+ b(v − un, pn) + Φ(v)− Φ(un)

+ IΓS (kτ (|un−1,τ |)ψ0
τ (un,τ ;vτ − un,τ )) ≥

∫
Ω
f · (v − un) dx ∀v ∈ V,

b(un, q) = 0 ∀ q ∈ Q.

Then, under the assumptions stated in Theorem 9, we have the conver-
gence

un → u in V.
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