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Abstract

We consider an abstract problem P in a metric space X which has
a unique solution u ∈ X. Our aim in this current paper is two folds:
first, to provide a convergence criterion to the solution of Problem
P, that is, to give necessary and sufficient conditions on a sequence
{un} ⊂ X which guarantee the convergence un → u in the space X;
second, to find a Tyknonov triple T such that a sequence {un} ⊂ X
is a T -approximating sequence if and only if it converges to u. The
two problems stated above, associated to the original Problem P, are
closely related. We illustrate how they can be solved in three particu-
lar cases of Problem P: a variational inequality in a Hilbert space, a
fixed point problem in a metric space and a minimization problem in a
reflexive Banach space. For each of these problems we state and prove
a convergence criterion that we use to define a convenient Tykhonov
triple T which requires the condition stated above. We also show how
the convergence criterion and the corresponding T -well posedness con-
cept can be used to deduce convergence and classical well-posedness
results, respectively.
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1 Introduction

Convergence results represent an important topic in Functional Analysis,
Numerical Analysis and Partial Differential Equation Theory. The continu-
ous dependence of the solution of a partial differential equation with respect
to the data, the convergence of the solution of a penalty problem to the
solution of the original problem as the penalty parameter converges, the
convergence of the discrete solution to the solution of the continuous prob-
lem when the time step or the discretization parameter converges to zero are
some simple example, among many others. On the other hand, convergence
results abound in the study of various mathematical models in Mechanics,
Physics and Engineering Sciences. The convergence of the solution of a
contact model with a deformable foundation to the solution of a contact
model with a rigid foundation as the stiffness coefficient of the foundation
converges to infinity, the convergence of the solution of a frictional problem
to the solution of a frictionless problem as the coefficient of friction tends to
zero represent two relevant examples, with potential real-world applications.

For all these reasons, a considerable effort was done to obtain conver-
gence results in the study of various mathematical problems including non-
linear equations, inequality problems, inclusions, fixed point problems, op-
timization problems, among others. The literature in the field is extensive.
The corresponding results have been obtained by using various methods
and functional arguments, which differ from problem to problem and from
paper to paper. Nevertheless, most of these convergence results can be
casted in the abstract functional framework we describe below. Consider a
mathematical object P, called generic “problem”, defined in a metric space
(X, d). Problem P could be an equation, a minimization problem, a fixed
point problem, an inclusion or an inequality problem, for instance. We asso-
ciate to Problem P the concept of “solution” which follows from the context
and we assume that P has a unique solution u ∈ X. Then, a convergence
result is a result of the form un → u in X where {un} ⊂ X represents a
given sequence.

Note that in most of the cases, convergence results consists in sufficient
conditions which guarantee the convergence of a specific sequence {un} to
the solution u of the corresponding problem P. They do not describe all
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the sequences which have this property. Therefore, we naturally arrive to
consider the following problem, associated to P.

Problem QP . Given a Problem P with a unique solution u, describe the
convergence of a sequence {un} ⊂ X to the solution u. In the words, provide
necessary and sufficient conditions for the convergence un → u in X, i.e.,
provide a convergence criterion.

Note that Problem QP represents a major issue in the study of conveg-
ence results. Its solution depends on the structure of Problem P and cannot
be provided in this general framework. For this reason, we restrict ourselves
to solve Problem QP in the particular case when P is one of the problems
P1, P2 and P3 that we introduce in the next sections. Providing such a
convergence criterion for problems P i with i = 1, 2, 3 represents our first
aim in this paper.

Well-posedness results for a given problem P represent another impor-
tant topic in Analysis, Numerical Analysis, Partial Differential Equation
Theory, with important applications in Experimental Sciences. The the-
ory of well-posed problems grew up rapidly in the last decades, due to the
very rich literature in the field. Thus, a concept of well-posedness for a
minimization problem was considered in the paper of Tykhonov [19]. A ver-
sion of this concept, known as the Levitin-Polyak well-posedness concept,
was introduced in [9] in the study of constrainted minimization problems.
Various extensions of the Tykhonov and Levitin-Polyak well-posedness con-
cepts have been considered in [2, 3, 11, 12, 13] in the study of variational
and hemivariational inequalities. Well-poseness results for fixed point and
set-valued optimization problems have been obtained in [7, 8] and [4, 5, 6],
respectively. Comprehensive references in the field are the books [1, 10] and,
more recently, [14].

A careful analysis of the well-posedness concepts in the literature shows
that they are based on two main ingredients: the existence of a unique
solution for the problem considered and the convergence to it of a special
class of sequences, the so-called approximating sequence. As a consequence
of this remark, a new concept of well-posedness, based on the notion of
Tykhonov triple, was introduced in [20], applied in [16, 17, 18] in the study
of contact and heat transfer problems, and intensively studied in [14]. It has
the merit to extend several classical well-posedness concepts and, for this
reason, we shall use it in this paper. With the notation (X, d) and P above,
together with notation 2X for the set of parts of X, this concept is defined
as follows.
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Definition 1 a) A Tykhonov triple is a mathematical object of the form
T = (I,Ω, C) where I is a given nonempty set, Ω : I → 2X is a set-valued
mapping such that Ω(θ) 6= ∅ for each θ ∈ I and C is a nonempty subset of
sequences with elements in I.

b) Given a Tykhonov triple T = (I,Ω, C), a sequence {un} ⊂ X is called
a T -approximating sequence if there exists a sequence {θn} ∈ C such that
un ∈ Ω(θn) for each n ∈ N.

c) Given a Tykhonov triple T = (I,Ω, C), Problem P is said to be T -
well-posed (or, equivalently, well-posed with T ) if it has a unique solution
and every T -approximating sequence converges in X to this solution.

Note that the concept of approximating sequence above depends on the
Tykhonov triple T and, for this reason, everywhere in this paper we use the
terminology “T -approximating sequence”. As a consequence, the concept
of well-posedness for Problem P is not an intrinsic one, since it depends on
the Tykhonov triple T . For this reason we use the terminology “T -well-
posedness”.

Assume now that Problem P has a unique solution u ∈ X. Then, Defini-
tion 1 c) shows that P is T -well-posed if and only if the following implication
holds:

{un} is a T -approximating sequence =⇒ un → u in X. (1)

Some elementary examples could be easily constructed to show that, even
if Problem P is T -well-posed, the converse of this implication is not valid.
Nevertheless, it follows from (1) that a T -well-posedness result allows us
to identify a class of sequences {un} which converge to the solution u and,
therefore, it provides a partial answer to Problem QP . Moreover, T -well-
posedness results have the merit to indicate that a positive answer to Prob-
lem QP can be obtained by using an appropriate Tykhonov triple. The
comments above lead in a natural way to the following problem, which rep-
resent a major issue in the theory of T -well-posed problems.

Problem Q̃P . Given a Problem P which has a unique solution u ∈ X, find
a Tykhonov triple T such that the following equivalence holds:

{un} is a T -approximating sequence ⇐⇒ un → u in X. (2)

It is easy to see that the following example provides a Tykhonov triple
which satisfies condition (2).
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Example 1 Let T P = (IP ,ΩP , CP) where

IP = R+ = [0,+∞), (3)

ΩP : IP → 2X , ΩP(θ) =
{
ũ ∈ X : d(ũ, u) ≤ θ

}
∀ θ ≥ 0, (4)

CP =
{
{θn} ⊂ IP : θn → 0

}
. (5)

Nevertheless, note that the choice of the Tykhonov triple T P above
is not convenient in applications, since definition (4) uses the solution u
of Problem P which is a priori unknown. A reasonable definition of the
approximating sets Ω(θ) with θ ∈ I would use Problem P itself, or some
of its perturbations, not its solution. For this reason it is important to
introduce Tykhonov triples for which the equivalence (2) holds, but which
are defined without any explicit mention to the solution u of Problem P.

Note that finding such Tykhonov triples is useful for several reasons.
First, it reformulates Problem QP in a rigourous mathematical framework.
Second, it provides an answer to Problem QP stated above. Third, it could
be used to unify the proofs of different convergence results. Finally, it allows
us to deduce a number of classical well-posedness results previously obtained
in the literature. Nevertheless, it is clear that the solution of Problem Q̃P
depends on the structure of the original problem P and cannot be provided
in this general framework. For this reason, we restrict ourselves to solve
Problem Q̃P in the particular case of problems P1, P2 and P3 mentionned
above. Providing such a Tyknonov triple for these problems represents the
second aim of this paper.

The rest of the manuscript is structured as follows. In Sections 2, 3 and
4 we provide answers to Problem QP and Q̃P , in the particular setting of
problems P1, P2 and P3, respectively. More precisely, for each of these
problems we deduce a criterion which allows us to identify all the sequences
{un} ⊂ X which converge to the solution u of the corresponding problem
P i, i = 1, 2, 3. We also provide Tyknonov triples which satisfy condition
(2). We use these ingredients in order to present convergence results and
to recover classical well-posedness results in the study of these problems.
Finally, in Section 5 we provide some concluding remarks.

We end this Introduction with a description of the notation we shall use
in this paper. First, in the next sections X will denote either a Hilbert
space, a metric space or a reflexive Banach space. The symbol “→” denotes
both the convergence in X and the convergence in R. All the limits, upper
and lower limits below are considered as n→∞, even if we do not mention
it explicitly. For a sequence {εn} ⊂ IR+ which converges to zero we use
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the short hand notation 0 ≤ εn → 0. When X is a metric space we denote
by d(u, v) the distance between the elements u, v ∈ X and by d(u,K) the
distance between an element u ∈ X to the nonempty subset K ⊂ X, that is

d(u,K) = inf
v∈K

d(u, v). (6)

When X is a reflexive Banach space we use ‖ · ‖X , 0X and IX for the norm,
the zero element and the identity operator of X, respectively. Moreover,
recall that in this case d(u, v) = ‖u− v‖X for all u, v ∈ X and, therefore,

d(u,K) = inf
v∈K
‖u− v‖X . (7)

Finally, when X is a Hilbert space we use (·, ·)X for the inner product of X.
In addition, if K is a nonempty closed convex subset of X we have

d(u,K) = ‖u− PKu‖X (8)

where, here and below, PK : X → K is the projector operator on K.

2 The inequality Problem P1

Everywhere in this section we assume that X is a real Hilbert space endowed
with the inner product (·, ·)X and the associated norm ‖·‖X . We also assume
that K is a nonempty closed convex subset of X and f ∈ X. Then, the
problem we consider is stated as follows.

Problem P1. Find an element u such that

u ∈ K, (u, v − u)X ≥ (f, v − u)X ∀ v ∈ K. (9)

It is well known that this problem has a unique solution, u = PKf .
Moreover, following [1] we recall the following definitions.

Definition 2 a) A sequence {un} is called an approximating sequence for
inequality (9) if there exists a sequence 0 ≤ εn → 0 such that

un ∈ K, (un, v − un)X + εn‖v − un‖X ≥ (f, v − un)X ∀ v ∈ K, n ∈ N.

b) Problem P1 is said to be well-posed in the sense of Tykhonov if any
approximating sequence converges to the solution u.
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c) A sequence {un} ⊂ X is called a generalized (or LP ) approximating
sequence for inequality (9) if there exist two sequences {wn} ⊂ X and {εn} ⊂
R+ such that wn → 0X in X, εn → 0 and, moreover,

un + wn ∈ K, (un, v − un)X + εn‖v − un‖X

≥ (f, v − un)X ∀ v ∈ K, n ∈ N.

d) Problem P1 is said to be well-posed in the sense of Levitin-Polyak if
any generalized approximating sequence converges to the solution u.

The definitions above show that if (9) is well-posedness in the sense of
Levitin-Polyak then it is well-posedness in the sense of Tykhonov, too. Some
simple examples can be constructed in order to see that the converse of this
statement is not true.

Our main result in this section is the following.

Theorem 1 The following statements are equivalent:

un → u in X. (10)

(a) d(un,K)→ 0 ;

(b) there exists 0 ≤ εn → 0 such that

(un, v − un)X + εn(1 + ‖v − un‖X)

≥ (f, v − un)X ∀ v ∈ K, n ∈ N.

(11)

Proof. The proof of Theorem 1 is carried out in three steps, as follows.

Step i). We prove that any sequence {un} ⊂ X which satisfies condition
(11) (b) is bounded. Let n ∈ N. We test in (11) with v = u to see that

(un, u− un)X + εn(1 + ‖u− un‖X) ≥ (f, u− un)X ,

which implies that

(un − u, un − u)X ≤ (u, u− un)X + εn(1 + ‖u− un‖X) + (f, un − u)X

and, moreover,

‖u− un‖2X ≤ (‖u‖X + ‖f‖X + εn)‖u− un‖X + εn.
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Next, we use inequality

x2 ≤ ax+ b =⇒ x ≤ a+
√
b ∀x, a, b ≥ 0 (12)

and the convergence εn → 0 to see that the sequence {‖u−un‖X} is bounded
in R. This implies that the sequence {un} is bounded in X, which concludes
the proof of this step.

Step ii) We prove that (10) implies (11). Assume that (10) holds. Then,
since u ∈ K it follows that d(un,K) ≤ ‖un − u‖X for each n ∈ N, which
implies that (11)(a) holds. To prove (11)(b) we fix n ∈ N and v ∈ K. We
write

(un, v − un)X − (f, v − un)X = (un − u, v − un)X + (u, v − u)X

+(u, u− un)X − (f, v − u)X + (f, un − u)X

and, using (9), we deduce that

(un, v − un)X − (f, v − un)X (13)

≥ (un − u, v − un)X + (u, u− un)X + (f, un − u)X .

We now use (13) and inequalities

(un − u, v − un)X ≥ −‖un − u‖X‖v − un‖X ,

(u, u− un)X ≥ −‖u‖X‖u− un‖X ,

(f, un − u)X ≥ −‖f‖X‖u− un‖X

to find that

(un, v − un)X − (f, v − un)X + ‖u− un‖X‖v − un‖X

+‖u‖X‖u− un‖X + ‖f‖X‖u− un‖X ≥ 0.

Therefore, with notation

εn = max { ‖u− un‖X , (‖u‖X + ‖f‖X)‖u− un‖X } (14)

we see that

(un, v − un)X + εn(1 + ‖v − un‖X) ≥ (f, v − un)X . (15)
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On the other hand, (14) and assumption (10) show that

εn → 0. (16)

We now combine (15) and (16) to see that condition (11)(b) is satisfied.

Step iii) We prove that (11) implies (10). Assume that (11) holds. Then,
(11)(a) and definition (7) of the distance function show that for each n ∈ N
there exist two elements vn and wn such that

un = vn + wn, vn ∈ K, wn ∈ X, ‖wn‖X → 0. (17)

We fix n ∈ N and use (11)(b) with v = u ∈ K to see that

(un, u− un)X + εn(1 + ‖u− un‖X) ≥ (f, u− un)X . (18)

On the other hand, we use the regularity vn ∈ K in (17) and test with
v = vn in (9) to find that

(u, vn − u)X ≥ (f, vn − u)X . (19)

We now add inequalities (18), (19) to obtain that

(un, u− un)X + (u, vn − u)X + εn(1 + ‖u− un‖X) ≥ (f, vn − un)X . (20)

Next, we use equality un = vn + wn to see that

(un, u− un)X + (u, vn − u)X = (un, u− vn − wn)X + (u− vn, vn − u)X

+(vn, vn − u)X = (u− vn, vn − u)X + (un − vn, u− vn)X − (un, wn)

= (u− vn, vn − u)X + (wn, u− vn)X − (un, wn)

and, therefore, (20) implies that

(u− vn, vn − u)X + (wn, u− vn)X − (un, wn)

+εn(1 + ‖u− vn − wn‖X) + (f, wn)X ≥ 0.

Hence,

‖u− vn‖2X ≤ ‖wn‖X‖u− vn‖X + ‖un‖X‖wn‖X (21)

+εn + εn‖u− vn‖X + εn‖wn‖X + ‖f‖X‖wn‖X .
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On the other hand, assumption (11) and Step i) guarantee that the
sequence {un} is bounded in X. Therefore, there exists D > 0 such that

‖un‖X ≤ D ∀n ∈ N. (22)

We now combine the bounds (21) and (22) to deduce that

‖u− vn‖2X ≤ (‖wn‖X + εn)‖u− vn‖X (23)

+(D + εn + ‖f‖X)‖wn‖X + εn.

Next, we use (23), inequality (12) and the convergences ‖wn‖X → 0, εn → 0
to find that ‖u− vn‖X → 0. This implies that vn → u in X and, using (17)
we deduce that (10) holds, which concludes the proof. �

Note that Theorem 1 provides an answer to Problem QP , in the context
of the variational inequality P1, i.e., in the case when the abstract problem
P is replaced by Problem P1. We now illustrate its use in order to obtain
a well-known convergence result. To this end, we recall that for each λ > 0
there exists an element u ∈ X such that

u+
1

λ
(u− PKu) = f. (24)

Remark 1 The proof of the previous statement is as follows. First, recall
that the projection operator is monotone and nonexpansive, that is,

(PKv1 − PKv2, v1 − v2)X ≥ 0, ‖PKv1 − PKv2‖X ≤ ‖v1 − v2‖X

for all v1, v2 ∈ X. Using these inequalities it follows that for each λ > 0
the operator Aλ : X → X given by Aλv = v + 1

λ(v − PKv) for all v ∈ X is
strongly monotone and Lipschitz continuous, i.e.,

(Aλv1 −Aλv2, v1 − v2)X ≥ ‖v1 − v2‖2X ,

‖Aλv1 −Aλv2‖X ≤
(

1 +
2

λ

)
‖v1 − v2‖X

for all v1, v2 ∈ X. These two properties of Aλ allows us to use a well-
known result (Theorem 1.24 in [15], for instance) to deduce the existence of
a unique solution u = uλ to the nonlinear equation (24), for each λ > 0.

Our convergence result in the study of equation (24) is as follows.
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Corollary 1 Let {λn} be a sequence such that 0 < λn → 0, u = PKf and,
for each n ∈ N, let un ∈ X be the unique element of X such that

un +
1

λn
(un − PKun) = f. (25)

Then, un → u in X.

Proof. Fix n ∈ N and v ∈ K. We use (25) to see that

(un, v − un)X +
1

λn
(un − PKun, v − un)X = (f, v − un)X . (26)

Then, since

(un − PKun, v − un)X = (un − PKun − v + PKv, v − un)X

= (PKv − PKun, v − un)− ‖v − un‖2X

≤ ‖PKv − PKun‖X‖v − un‖X − ‖v − un‖2X ≤ 0,

we deduce from (26) that

(un, v − un)X ≥ (f, v − un)X .

This implies that condition (11)(b) holds with εn = 0. Moreover, Step i)
in the proof of Theorem 1 implies that there exists M > 0 which does not
depend on n such that

‖un‖X ≤M. (27)

We now use (25) and the bound (27) to deduce that

‖un − PKun‖X = λn‖f − un‖X ≤ λn
(
‖f‖X + ‖un‖X

)
≤ λn

(
‖f‖X +M

)
.

This inequality, combined with (8) and the convergence λn → 0, shows that
d(un,K) → 0. We deduce from here that condition (11)(a) holds, too. It
follows now from Theorem 1 that un → u in X, which ends the proof. �

We now turn to the T -well-posedness of Problem P1 and, to this end,
we consider the Tykhonov triple T 1 = (I1,Ω1, C1) where

I1 = R+ = [0,+∞),

Ω : I1 → 2X , Ω1(θ) =
{
ũ ∈ X : d(ũ,K) ≤ θ,

(ũ, v − ũ)X + θ(1 + ‖v − ũ‖X) ≥ (f, v − ũ)X ∀ v ∈ K
}
∀ θ ≥ 0,

C1 =
{
{θn} : 0 ≤ θn → 0

}
.
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We use Theorem 1 and Definition 1 to see that, with the choice T 1

above, equivalence (2) holds. This shows that the Tykhonov triple T 1 solves
Problem Q̃P1 . It represents an alternative to the Tykhonov triple introduced
in Example 1 and has the advantage that no reference to the solution u of
(9) is made in its statement.

A direct consequence of these results is the following.

Corollary 2 Problem P1 is Tyknonov and Levitin-Polyak well-posed.

Proof. We use Definition 2 to see that any approximating sequence as well
as any generalized approximating sequence is a T 1-approximating sequence.
Corollary 2 is now a direct consequence of the T 1-well posedness of Problem
P1, guaranteed by equivalence (2). �

We end this section with two elementary examples which show that, in
the study of Problem P1, there exist generalized approximating sequences
which are not approximating sequences and T 1-approximating sequences
which are not generalized approximating sequences.

Example 2 Consider Problem P in the particular case X = R, K = [0, 1],
f = 1 and note that its solution is u = PKf = 1. Let {un} ⊂ R be the
sequence given by un = 1 + 1

n for all n ∈ N. Then {un} is not an approx-
imating sequence since condition un ∈ K for each n ∈ N is not satisfied.
Nevertheless, {un} is a generalized approximating sequence since conditions
in Definition 2 c) hold with wn = − 1

n and εn = 1
n , for all n ∈ N.

Example 3 Consider Problem P in the particular case X = R, K = [0, 1]
and f = 2. The solution of this problem is u = PKf = 1. Let {un} ⊂ R
be the sequence given by un = 1 − 1

n for all n ∈ N. Then un → u and,
therefore {un} is a T 1–approximating sequence. Nevertheless, {un} is not
a generalized approximating sequence. Indeed assume that there exists 0 ≤
εn → 0 such that, for all n ∈ N, the inequality below holds:

un(v − un) + εn|v − un| ≥ f(v − un) ∀ v ∈ [0, 1].

We now fix n ∈ N, take v = 1 − 1
2n in the previous inequality and use

equalities un = 1 − 1
n , f = 2 to deduce that εn ≥ 1 + 1

n , which contradicts
the convergence εn → 0.
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3 The fixed point problem P2

Unless it is specified explicitely, everywhere in this section we assume that
(X, d) is a complete metric space, K a closed subset of X and Λ : K → K.
Then, the problem we consider is stated as follows.

Problem P2. Find an the element u such that

u ∈ K, Λu = u. (28)

We assume that Problem P2 has a unique solution. It is well-known that
this is the case when Λ is a contraction, i.e.,

there exists α ∈ [0, 1) such that d(Λu,Λv) ≤ αd(u, v) ∀u, v ∈ X. (29)

We now follow [1, 7] and recall the following definitions.

Definition 3 A sequence {un} is called an approximating sequence for Prob-
lem P2 if {un} ⊂ K and d(Λun, un) → 0. Problem P2 is well-posed in the
sense of Tykhonov (or, equivalently, is Tykhonov well-posed) if there exists a
unique element u ∈ K such that Λu = u and every approximating sequence
converges to u in X.

We now provide two elementary examples.

Example 4 Let X = K = R, p ∈ N and let Λu = u2p+1 + u − 1 for any
u ∈ R. Then, Problem P2 is Tykhonov well-posed.

Example 5 Let X = K = R and let

Λu =

{
u4 if u < 0,

2− 3u if u ≥ 0.

Then, problem P2 is ill-posed. Indeed, the only fixed point of Λ is u = 1
2 , but

the sequence {− 1
n} is an approximating sequence which does not converge to

u.

Our main result in this section is the following.

Theorem 2 Assume that (29) holds and let {un} ⊂ X. Then, the following
statements are equivalent:

un → u in X. (30){
there exists a sequence {vn} ⊂ K such that

d(un, vn)→ 0 and d(Λvn, vn)→ 0, as n→∞.
(31)
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Proof. Assume that (30) holds. Then, is easy to see that condition (31)
holds with the sequence {vn} given by vn = u, for each n ∈ N.

Conversely, assume that (31) holds. We use equality Λu = u in (28) and
assumption (29) to see that

d(vn, u) ≤ d(vn,Λvn) + d(Λvn,Λu) ≤ d(vn,Λvn) + αd(vn, u),

which implies that

d(vn, u) ≤ 1

1− α
d(vn,Λvn).

Therefore, since
d(un, u) ≤ d(un, vn) + d(vn, u),

we deduce that

d(un, u) ≤ d(un, vn) +
1

1− α
d(vn,Λvn).

We now use assumption (31) to obtain the convergence (30), which ends the
proof. �

Note that Theorem 2 provides an answer to Problem QP2 . We now
illustrate its use in order to obtain a well-known convergence result.

Corollary 3 Let X be a normed space, K ⊂ X a closed convex set, Λ :
K → X a contraction, {an} ⊂ [α0, 1] with α0 ∈ (0, 1] and let {un} be the
sequence of Mann iterations defined by

un+1 = (1− an)un + anΛun ∀n ∈ N. (32)

Then un → u in X.

Proof. We use (29) to write

‖Λun − un‖X ≤ ‖Λun − Λun−1‖X + ‖Λun−1 − un‖X

≤ α‖un − un−1‖X + ‖Λun−1 − un‖X ,

then we use (32) to substitute un, twice, in order to see that

‖Λun − un‖X ≤
(
1 + (α− 1)an−1

)
‖Λun−1 − un−1‖X ,

for any n ∈ N. This implies that

‖Λun − un‖X ≤
(
1 + (α− 1)an−1

)
· · ·
(
1 + (α− 1)a0

)
‖Λu0 − u0‖X



322 M. Sofonea, D.A. Tarzia

for any n ∈ N. Using now the inequalities 0 ≤ 1 + (α− 1)ak ≤ 1 + (α− 1)α0

with k = 0, 1, 2, . . . , n− 1 we find that

‖Λun − un‖X ≤
(
1 + (α− 1)α0

)n‖Λu0 − u0‖X ,
for any n ∈ N. Note that 0 ≤ 1 + (α− 1)α0 < 1 and, therefore, the previous
inequality implies that ‖Λun − un‖X → 0. We now use Theorem 2 with
vn = un to conclude the proof. �

Remark 2 Note that for an = a ∈ (0, 1] the Mann iteration (32) reduces to
Krasnoselski iteration

un+1 = (1− a)un + aΛun ∀n ∈ N. (33)

and for a = 1 the Krasnoselski iteration (33) reduces to Picard iteration

un+1 = Λun ∀n ∈ N. (34)

We conclude from Corollary 3 the convergence of all sequences defined by
iterations (33) and (34).

We now turn to the T -well-posedness of Problem P2 and, to this end,
we consider the Tykhonov triple T 2 = (I2,Ω2, C2) where

I2 = K × R+,

Ω : I2 → 2X , Ω(θ) =
{
ũ ∈ X : d(ũ, v) ≤ ε, d(Λv, v) ≤ ε

}
∀ θ = (v, ε) ∈ I2,

C2 =
{
{θn} = {(vn, εn)} ⊂ I2 : d(Λvn, vn)→ 0, 0 ≤ εn → 0

}
.

We use Theorem 2 and Definition 1 to see that that, with the choice T 2

above, equivalence (2) holds. This shows that the Tykhonov triple T 2 solves
Problem Q̃P2 . It represents an alternative to the Tykhonov triple introduced
in Example 1 and has the advantage that no reference to the solution u of
Problem P2 is made in its statement.

We end this section with a direct consequence of these results.

Corollary 4 Problem P2 is Tyknonov well-posed.

Proof. We use Definition 3 to see that any approximating sequence is a
T 2-approximating sequence. Corollary 4 is now a direct consequence of the
T 2-well posedness of Problem P2, guaranteed by equivalence (2). �
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4 The minimization problem P3

Unless specified explicitly, everywhere below we assume that (X, ‖ · ‖X) is
a reflexive Banach space and we use the symbol “⇀” to represent the weak
convergence in X. Let K ⊂ X and J : X → R. Then, the problem we
consider in this section is stated as follows.

Problem P3 . Find an element u such that

u ∈ K, J(u) ≤ J(v) ∀ v ∈ K. (35)

We assume that Problem P3 has a unique solution. It is well-known that
this is the case when{

K is a nonempty closed convex subset of X and

J : X → R a strongly convex lower semicontinuous function.
(36)

The unique solvability of Problem P3 under condition (36) follows from a
version of the Weierstrass theorem. Let

ω = min
v∈K

J(v). (37)

Then, we follow [1, 9, 19] and recall the following definitions.

Definition 4 a) A sequence {un} is called a minimizing sequence for Prob-
lem P3 if {un} ⊂ K and J(un)→ ω.

b) Problem P3 is well-posed in the sense of Tykhonov (or, equivalently,
is Tykhonov well-posed) if there exists a unique element u ∈ K such that
J(u) = ω and every minimizing sequence {un} ⊂ K converges in X to u,
i.e,.

J(un)→ ω =⇒ un → u in X.

c) The sequence {un} is a generalized (or LP ) minimizing sequence for
Problem P3 if

un ∈ X, J(un)→ ω, d(un,K)→ 0.

d) Problem P3 is well-posed in the sense of Levitin-Polyak (or, equiva-
lently, is Levitin-Polyak well-posed) if it has a unique solution u ∈ K and
any LP -minimizing sequence {un} converges in X to u.

We now provide two elementary examples which illustrate the previous
definition.
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Example 6 Let X = K = R and let J(u) = u2 for all u ∈ R. Then,
Problem P3 (constructed with these data) is Tykhonov well-posed.

Example 7 Let X = K = R and let

J(u) =

{
(u+ 1)2 if u ≤ 0,

u2 if u > 0.

Then, the corresponding problem P2 is ill-posed. Indeed, the only minimum
point of J is u = −1 but the sequence { 1n} is a minimizing sequence which
does not converge to u.

It is easy to see that every minimizing sequence for Problem P3 is an
LP -minimizing sequence. Therefore, the Levitin-Polyak well-posedness of
Problem P3 implies its Tykhonov well-posedness. The converse fails to be
true as it follows from the following example.

Example 8 Let X = R2, K = R × {0}, J(x, y) = x2 − (x4 + x)y2 and
consider the generalized minimizing sequence {un} ⊂ R2 where un = (n, 1n),
for each n ∈ N. Then, it is easy to see that the corresponding Problem P3

is Tykhonov well-posed but is not Letivin-Polyak well-posed.

Our main result in this section is the following.

Theorem 3 Assume (36), let {un} ⊂ X and denote by u the solution of
Problem P3, that is u ∈ K and J(u) = ω. Then, the following statements
are equivalent :

un → u in X. (38)

d(un,K)→ 0 and J(un)→ ω, as n→∞. (39)

Proof. Assume (38). Then (7) and the continuity of J , guaranteed by
assumption (36), imply that (39) holds.

As now that (39) holds. Then, the convergence d(un,K)→ 0 guarantees
that there exists two sequences {vn} ⊂ X and {wn} ⊂ X such that

vn ∈ K, un = vn + wn ∀n ∈ N, ‖wn‖X → 0 as n→∞. (40)

Moreover,
J(un)→ J(u). (41)
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We claim that the sequence {vn} is bounded in X. Arguing by con-
tradiction, if {vn} is not bounded then, passing to a subsequence still de-
noted by {vn}, we can assume that ‖vn‖X → ∞. Using now (40) we write
‖vn‖X = ‖un − wn‖X ≤ ‖un‖X + ‖wn‖X , which implies that ‖un‖X → ∞.
Therefore, using the coercivity of J guaranteed by assumption (36), we de-
duce that J(un)→∞, which contradicts (41).

Now, since the sequence {vn} is bounded in X, using the reflexivity of
X we deduce that there exist an element ũ ∈ X and a subsequence of the
sequence {vn}, again denoted by {vn}, such that

vn ⇀ ũ in X. (42)

Recall that K is a closed convex subset of X. Then K is weakly closed and,
since {vn} ⊂ K, the convergence (42) implies that

ũ ∈ K. (43)

Moreover, (40) and (42) show that

un ⇀ ũ in X. (44)

We now use inequality J(u) ≤ J(v) for all v ∈ K, regularity (43), the weak
lower semicontinuity of J and the convergences (44), (41) to see that

J(u) ≤ J(ũ) ≤ lim inf J(un) = J(u).

We conclude from there that ũ is a solution to Problem P3 and, by the
uniqueness of the solution, we have ũ = u.

A careful analysis based on the arguments above reveals the fact that any
weakly convergent subsequence of the sequence {vn} converges to the same
limit u. On the other hand, the sequence {vn} is bounded in X. Therefore,
using a standard argument we find that the whole sequence {vn} converges
weakly in X to u. This implies that the whole sequence {un} converges
weakly in X to u. Therefore, for each n ∈ N we have

J(u) ≤ lim inf J
(un + u

2

)
≤ lim supJ

(un + u

2

)
. (45)

On the other hand, the convexity of J guarantees that

J
(un + u

2

)
≤ 1

2
J(un) +

1

2
J(u)
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and, using (41), we deduce that

lim supJ
(un + u

2

)
≤ J(u). (46)

We now combine the inequalities (45) and (46) to find that

J
(un + u

2

)
→ J(u). (47)

Finally, by the strong convexity of J we deduce that

m

4
‖un − u‖2X ≤

1

2

(
J(un)− J

(un + u

2

))
+

1

2

(
J(u)− J

(un + u

2

))
with some m > 0. We pass to the limit in this inequality and use the
convergences (41) and (47) to deduce that un → u in X which concludes
the proof. �

Note that Theorem 3 provides an answer to Problem QP3 and, therefore,
it can be used to prove various convergence results.

We now turn to the T -well-posedness of Problem P3 and, to this end,
we consider the Tykhonov triple T 3 = (I3,Ω3, C3) where

I3 = R+ = [0,+∞),

Ω3 : I3 → 2X , Ω3(θ) =
{
ũ ∈ X : d(ũ,K) ≤ θ, |J(ũ)− ω| ≤ θ

}
∀ θ ≥ 0,

C3 =
{
{θn} : 0 ≤ θn → 0

}
.

We use Theorem 3 and Definition 1 to see that that equivalence (2)
holds. This shows that, in the context of Problem P3, the Tykhonov triple
T 3 solves Problem Q̃P3 . It represents an alternative to the Tykhonov triple
introduced in Example 1.

We end this section with a direct consequence of these results.

Corollary 5 Assume (36). Then, Problem P3 is Tyknonov and Levitin-
Polyak well-posed.

Proof. We use Definition 4 to see that any minimizing sequence for Problem
P3 is an LP -minimizing sequence for P3 and any LP -minimizing sequence
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for P3 is a T 3-approximating sequence. Corollary 4 is now a direct conse-
quence of the T 3-well posedness of Problem P3. �

We end of this section with the remark that any T 3-approximating se-
quence is an LP -minimizing sequence for Problem P3 and conversely. This
proves that, in the study of Problem P3, the T 3- and the Levitin-Polyak
well-posedness concepts are equivalent. Therefore, Theorem 3 shows that,
under assumption (36), the Levitin-Polyak well-posedness concept is an op-
timal well-posedness concept in the study of Problem P3, in the sense that
a sequence {un} ⊂ X converges to the solution of Problem P3 if and only if
it is an LP–minimization sequence. Note that this property does not hold
if we skip assumption (36). An evidence of this statement is provided by
Example 8.

5 Conclusions

In this paper we were interested to convergence and well-posedness results
in the study of an abstract problem P, asumed to have a unique solution.
We identified two problems related to this issues: the problem of finding
a convergence criterion to the solution u of Problem P and the problem
of finding a Tykhonov triple T such that the set of T -approximating se-
quences coincides with the set of convergences sequences to u. We solved
these problems in the particular setting of a variational inequality, a fixed
point problem and a minimization problem. To this end we used various
arguments, depending on the structure of each problem. Our conclusion
is that the obtained results strongly depend on the framework and the as-
sumption we use. We also presented exemples and applications in the study
of the considered problems.

Our results in this paper deserve to be extended in the study of a large
class of nonlinear problems P, including elliptic and evolutionary variational
inequalities, hemivariational inequalities, inclusions and saddle point, for in-
stance. Considering such problems under various assumptions would give
rise to interesting convergence and well-posedness results, with various appli-
cations in Mechanics and Enginering Sciences. A first step on this direction
was made in the recent book [14].
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