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Abstract

Optimal control problems for the linear heat equation with final
observation and pointwise constraints on the control are considered,
where the control depends only on the time. It is shown that to each
finite number of given switching points, there is a final target such
that the optimal objective value is positive, the optimal control is bang
bang, and has the desired switching structure. The theory is completed
by numerical examples.
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1 Introduction

In this paper, we discuss the construction of parabolic optimal control prob-
lems with time-dependent control, such that the optimal control has a de-
sired switching structure. Our main result is that, for each given set of
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real numbers 0 < s1 < . . . < sk < T , there is a target state such that the
optimal control of the boundary control problem below has the switching
points s1, . . . , sk. Even though the method is constructive, its numerical
application is limited to a small number k of switching points. We present
numerical examples for k = 2, 3.

In the first and main part of the paper, we consider the spatially one-
dimensional optimal boundary control problem

min

∫ 1

0
|y(x, T )− yΩ(x)|2dx (1)

subject to

∂ty(x, t)− ∂xxy(x, t) = 0 in (0, 1)× (0, T )
∂xy(0, t) = 0 in (0, T )

∂xy(1, t) + λ y(1, t) = u(t) in (0, T )
y(x, 0) = 0 in (0, 1),

(2)

and
|u(t)| ≤ 1 a.e. in (0, T ). (3)

Here, T > 0 and λ > 0 are given constants, while yΩ ∈ L2(0, 1) is the
given target state. Let us set for convenience Ω := (0, 1).

Remark 1 For simplicity, the heat equation is given with homogeneous
right-hand side and initial data. All results remain true for the inhomo-
geneous equation ∂ty − ∂xxy = e with initial condition y(·, 0) = y0, where
e ∈ L2(Ω × (0, T )) and y0 ∈ L2(Ω). The only difference is that then the
control-to-state operator S : u 7→ y is affine instead of linear. The necessary
optimality conditions remain true without any change.

Our main question in the first part is the following: How can we construct
the target state yΩ, such that the optimal control has a desired bang-bang
structure while the optimal value of the objective functional is positive?

In what follows, we fix λ = 0 so that the state equation (2) has pure
Neumann boundary conditions. The case λ > 0 will be needed for some
references only. Thanks to the simple Neumann boundary condition, the
weak solution y ∈W (0, T ) = {y ∈ L2(0, T ;H1(Ω)) : ∂ty ∈ L2(0, T ;H1(Ω)′)}
is given by the following Fourier expansion:

y(x, t) = 1 + 2

∞∑
n=1

(−1)n cos(nπx)

∫ t

0
e−n

2π2(t−s)u(s)ds

=

∫ t

0
G(x, 1, t− s)u(s)ds,
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where G : Ω× Ω× [0,∞)→ R is the Green’s function

G(x, ξ, t) = 1 + 2
∞∑
n=1

cos(nπx)cos(nπξ)e−n
2π2t.

For this well-known fact, we refer e.g. to [30], Section 3.2.2, where also the
Green’s function for λ > 0 is contained.

2 Necessary optimality conditions

It is easy to show by a standard weak compactness argument that the op-
timal control problem (1)-(3) has at least one optimal control. Let ū be an
optimal control with associated state ȳ and adjoint state ϕ̄ (throughout the
paper, optimality is indicated by a bar).

The adjoint equation for ϕ̄ is

−∂tϕ(x, t)− ∂xxϕ(x, t) = 0 in (0, 1)× (0, T )
∂xϕ(0, t) = 0 in (0, T )
∂xϕ(1, t) = 0 in (0, T )
ϕ(x, T ) = ȳ(x, T )− yΩ(x) in (0, 1);

(4)

notice that we concentrate on the case λ = 0. The optimal control ū must
obey the variational inequality∫ T

0
ϕ̄(1, t)(u(t)− ū(t)) dt ≥ 0 ∀ |u(·)| ≤ 1. (5)

A simple pointwise discussion yields the equivalent pointwise condition

ū(t) = −sign ϕ̄(1, t) a.e. in (0, T ). (6)

Each of the conditions (5) and (6) is necessary and sufficient for the op-
timality of ū. The sufficiency follows from the convexity of the problem
(1)-(3).

In view of (6), for given ϕ̄, the optimal control is uniquely determined
in the points t, where ϕ(1, t) 6= 0, while (6) does not provide explicit infor-
mation on ū in the set {t ∈ [0, T ] : ϕ̄(1, t) = 0}. It is interesting and well
known that only two cases can happen:

In the first, ϕ̄ is the zero function. In this case, the target yΩ is reached
by the optimal state, i.e. we have ‖ȳ(·, T )− yΩ‖L2(0,1) = 0.
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In the second, it holds ‖ȳ(·, T ) − yΩ‖L2(0,1) > 0, the target cannot be
reached under the constraints (3). Then the function t 7→ ϕ̄(1, t) can have
at most countably many zeros that may accumulate only at t = T . In
other words, in any subinterval [0, T − τ ] with 0 < τ < T , the function
t 7→ ϕ̄(1, t) has only finitely many zeros. The proof is based on the fact that
t 7→ ϕ̄(1, t) can be extended to a holomorphic function on the complex set
{z ∈ C : Re(z) < T}; we refer to [12].

Definition 1 (Switching point) If the function t 7→ ϕ̄(1, t) changes its
sign in s ∈ (0, T ), then s is called a switching point of ū.

We recall the celebrated bang-bang principle:

Theorem 1 (Bang-Bang Principle) Let ū be an optimal control of the
parabolic boundary control problem (1)-(3) with associated state ȳ and as-
sociated adjoint state ϕ̄. If ‖ȳ(·, T ) − yΩ‖L2(0,1) > 0, then |ū(t)| = 1 holds
a.e. on (0, T ). The optimal control has at most countably many switching
points that can accumulate only at t = T . All switching points are zeros of
the function t 7→ ϕ̄(1, t), t ∈ [0, T ].

For the proof, the reader is referred to [12], one of the earliest references
for this result. The theorem and the proof can also be found in [30, Section
3.2.4]. The bang-bang principle is also known for more general distributed
and boundary control problems for partial differential equations in higher
dimension, see also Section 6. A short survey is given in Section 7. In the
control theory for ordinary differential equations, this principle has a much
longer history, we refer only to the textbook [18].

For given yΩ, the following simple question arises: Does the associated
optimal control have finitely or infinitely many switching points? There is
an example in [24] for problem (1)-(3) with λ = 1: The target function is

yΩ(x) =
1

2
(1− x2).

Numerical computations deliver an optimal control with exactly one switch-
ing point. Is this the only one? In [6], this is confirmed by quite tedious
estimates. Students of the author tested the function yΩ(x) = 1

2(1 − x).
Here, more switching points were computed. Is their number finite?

To the best knowledge of the author, there is no general result that
answers the question whether, for a given yΩ, the number of switching points
of the associated optimal control is finite or not. The author does also not
have such a result.
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Instead, in this paper we reverse the question: How to construct the
target yΩ such that the optimal control ū has finitely many and prescribed
switching points s1, . . . , sk. It will be shown that to each positive integer
k and each set of real numbers 0 < s1 < . . . < sk < T , a target state yΩ

exists such that the associated optimal control has switching points exactly
in s1, . . . , sk. This method can be numerically implemented for small k.

Currently, there is an active research on optimal control problems for
PDEs without Tikhonov regularization term, where optimal controls are
expected to be bang-bang. Under suitable assumptions on the zero set of
the adjoint states, the stability of optimal controls with respect to certain
perturbations of the problem can be shown and finite element error estimates
become possible, cf. [3, 5]. Therefore, test examples are useful, where these
assumptions are satisfied. This paper is a contribution to this issue for
parabolic equations.

To the best knowledge of the author, an example where the optimal
control has infinitely many switching points is not yet known. This seems
to be a difficult and open problem.

3 Main idea of the construction

We want to construct a target yΩ, such that the optimal control ū has the
switching points

0 < s1 < . . . < sk < T,

and
ū(t) = (−1)i+1, t ∈ [si−1, si), i = 1, . . . , k + 1. (7)

Here we have set s0 = 0, sk+1 = T . Notice that then ū starts with 1,

ū(t) = 1 in [0, s1). (8)

A trivial way of constructing a problem with a given ū as optimal solution is
obtained by setting yΩ = yū, where yū denotes the state associated with ū.
Then, the adjoint state is identically zero and, according to our definition,
switching points do not exist. This is, what we do not have in mind.

From now on, the switching points si and their number k are given and
ū is the control defined above, based on s1, . . . , sk. The condition (6) is
sufficient for optimality of ū. Therefore, having found an yΩ and a control
ū with adjoint state ϕ̄ that obey (6), then ū is optimal.

We proceed as follows: First, we define

y0
Ω = yū(·, T ). (9)
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Then we have yū(·, T )− y0
Ω = 0. Next, we set

yΩ = y0
Ω + z, (10)

where z is to be constructed. Associated with z, we define ψz as the unique
solution of the auxiliary adjoint equation

−∂tψ(x, t)− ∂xxψ(x, t) = 0 in (0, 1)× (0, T )
∂xψ(0, t) = 0 in (0, T )
∂xψ(1, t) = 0 in (0, T )
ψ(x, T ) = −z(x) in (0, 1).

(11)

In view of (9) and (10), ψz obeys the final condition

ψz(x, T ) = −z(x) = yū(x, T )− y0
Ω(x)− z(x) = yū(x, T )− yΩ(x). (12)

Therefore, we will have ψz = ϕ̄. To match the sign condition (6) for the
given ū, the function z must obey the following properties:

• In (0, T ), ψz(1, t) = 0 if and only if t ∈ {s1, . . . , sk},

• sign ψz(1, t) = (−1)i in (si−1, si).

The last requirement needs ψz(1, t) < 0 in (0, s1).
Moreover, we want to have a switching structure that is stable with

respect to certain perturbations of the problem. Therefore, we require

∂tψ(1, si) 6= 0, i = 1, . . . k.

The auxiliary adjoint state ψz is given by the following expansion:

ψz(x, t) =

∫ 1

0
G(x, ξ, T − t)(−z(ξ)) dξ

=−
∫ 1

0

(
1 + 2

∞∑
n=1

cos(nπx) cos(nπξ)e−n
2π2(T−t)

)
z(ξ) dξ

=−
∫ 1

0
z(ξ) dξ −

∞∑
n=1

√
2 cos(nπx)e−n

2π2(T−t)
∫ 1

0

√
2 cos(nπξ)z(ξ)dξ

=−
∞∑
n=0

(vn, z)L2(0,1)vn(x)e−n
2π2(T−t), (13)

where
v0 ≡ 1 and vn(x) =

√
2 cos(nπx), n ≥ 1,
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denote the normalized eigenfunctions of ∂xx subject to the given homoge-
neous Neumann conditions. The system {vn}n≥0 is complete and orthonor-
mal in L2(0, 1).

In view of these findings, the problem of constructing an optimal con-
trol problem with a desired optimal bang-bang control ū boils down to the
construction of a suitable function z. This is the issue of the next section.

4 Construction of z

We use the ansatz

z(x) = 1 +
k∑

n=1

αn cos(nπx) (14)

with α1, . . . , αk to be determined. By orthonormality, we have∫ 1

0
1 · z(x) dx = 1,

and, thanks to
∫ 1

0 cos2(nπx) dx = 1/2,∫ 1

0
cos(nπx)z(x) dx =

1

2
αn.

Therefore,

−ψz(1, t) =

∫ 1

0
z(ξ)

(
1 + 2

∞∑
n=1

cos(nπ1) cos(nπξ)e−n
2π2(T−t)

)
dξ

= 1 + 2

k∑
n=1

(−1)n
1

2
αne

−n2π2(T−t)

= 1 +

k∑
n=1

(−1)nαne
−n2π2(T−t). (15)

Then the conditions ψz(1, si) = 0, i = 1, . . . , k, lead to the following linear
inhomogeneous system for (α1, . . . αk):

k∑
n=1

(−1)n+1αne
−n2π2(T−si) = 1, i = 1, . . . , k. (16)
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Let us define for convenience βn = (−1)n+1αn. Then (16) reads

k∑
n=1

βne
−n2π2(T−si) = 1, i = 1, . . . k, (17)

for the unknowns β1, . . . , βk. Notice that the numbers si, i = 1, . . . , k, are
given as desired switching points. The following questions will be answered
in the next section:

(i) Does the linear system (17) have a unique solution (β1, . . . , βk)?

(ii) If (β1, . . . , βk) is a solution of (17), are s1, . . . , sk the only zeros of the
function t 7→

∑k
n=1 βne

−n2π2(T−t)?

(iii) Is the derivative of this function nonzero in any of the points s1, . . . , sk?

Prior to the discussion of existence and uniqueness of (β1, . . . , βk), let us
briefly consider the determinant of the system matrix of (17) and define

λi = e−π
2(T−si).

Then the system (17) can be written in the equivalent form

k∑
n=1

βn λ
n2

i = 1, i = 1, . . . , k.

The determinant of the matrix A = [λn
2

i ], i, n = 1, . . . , k, is the generalized
Vandermonde determinant

detA =

∣∣∣∣∣∣∣∣∣
λ1 λ

4
1 λ9

1 . . . λ
k2
1

λ2 λ
4
2 λ9

2 . . . λ
k2
2

. . .

λk λ
4
k λ9

k . . . λ
k2

k

∣∣∣∣∣∣∣∣∣ . (18)

Many papers were contributed to generalized Vandermonde determinants.
Nevertheless, it is difficult to establish a general solution formula for the
determinant above as it is known for the classical Vandermonde determinant.
While this is fairly easy for k ≤ 4, it becomes difficult for larger k.

Therefore, to show that the linear system (17) is uniquely solvable, we
apply a different but fairly standard method. It was used in [18] for the
proof of bang-bang properties of time optimal controls for linear ordinary
differential equations. We finally obtain that the generalized Vandermonde
determinant (18) does not vanish. This is done in the next section.
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5 Discussion of the questions (i)-(iii)

First, we consider the well-posedness of the system (17), i.e. we answer
question (i). Let us assume that the system (17) were not uniquely solv-
able. Then the associated homogeneous system has at least one non-trival
solution, i.e. there is a nonzero vector (β1, . . . , βk), such that

k∑
n=1

βne
−n2π2(T−si) = 0, i = 1, . . . , k. (19)

Lemma 1 For every nonzero vector (β1, . . . , βk) ∈ Rk, and any sequence of
real numbers σ1 < . . . < σk the function t 7→

∑k
n=1 βne

−σn(T−t) has at most
k − 1 zeros.

Proof. We proceed by induction. For k = 1 and β1 6= 0, the function
t 7→ β1e

−σ1(T−t) does not vanish, hence there is no zero. This confirms the
claim for k = 1.

Assume now that the claim is true up to k = m, m ∈ N, but not for
k = m+ 1. Then there are a non-zero vector (β1, . . . , βm+1) and a sequence
σ1 < . . . < σm+1 such that the function t 7→

∑m+1
n=1 βne

−σn(T−t) has at least
m+ 1 zeros.

Then we multiply this function by eσ1(T−t) that does never vanish. The
resulting function

f(t) = β1 +
m+1∑
n=2

βne
−(σn−σ1)(T−t)

has the same zeros as before σ1 < . . . < σm+1. By the theorem of Rolle, the
derivative f ′ must have at least m zeros. We have

f ′(t) =

m+1∑
n=2

βn(σn − σ1)e−(σn−σ1)(T−t) =

m∑
n=1

β̃ne
−σ̃n(T−t)

with numbers β̃n, σ̃n that satisfy the assumption of the induction. The sum
has m summands and is covered by our claim for k = 1, . . . ,m. So it should
have at most m− 1 zeros. This is a contradiction. �

Lemma 2 For each positive k ∈ N and all numbers s1 < . . . < sk, the
inhomogeneous linear system (17) has a unique solution (β1, . . . , βk).
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Proof. Let us assume that (19) has a nontrivial solution. Then the function
t 7→

∑k
n=1 βne

−n2π2(T−t) has the zeros s1 < . . . < sk. In view of Lemma 1,
this is only possible for β1 = . . . = βk = 0 in contrary to the assumption.
Therefore the homogeneous system (19) has only the trivial solution and its
system matrix A = [e−n

2π2(T−si)], i, n = 1, . . . , k, is regular. Consequently,
the linear system (17) has a unique solution (β1, . . . , βk).

�

Let now (β1, . . . , βk) be the unique solution of (17). Then the function
t 7→ −1 +

∑k
n=1 βne

−n2π2(T−t) has the zeros s1, . . . , sk. We show that its
derivative in these points does not vanish.

Lemma 3 Let (β1, . . . , βk) be the unique solution of the system (17). Then
the derivative of the function f : t 7→ −1 +

∑k
n=1 βne

−n2π2(T−t) does not
vanish in its zeros s1, . . . , sk. Therefore, f changes the sign in s1, . . . , sk.

Proof. Assume that in at least one of the zeros, say in sj , the function f ′

vanishes,

f ′(sj) = 0.

We have

f ′(t) =

k∑
n=1

βnn
2π2e−n

2π2(T−t). (20)

Thanks to the theorem of Rolle, f ′ has at least k − 1 zeros located strictly
between the zeros s1, . . . , sk. Moreover, by the assumption of the proof, it
has the additional zero sj . Therefore, f ′ would have at least k zeros. This
is a contradiction to Lemma 1. �

The proof of the previous Lemma also answers question (ii):

Lemma 4 Let (β1, . . . , βk) be the unique solution of (17). Then the points
s1, . . . , sk are the only zeros of the function f : t 7→ −1+

∑k
n=1 βne

−n2π2(T−t).

Proof. Assume that f has an additional zero s∗. Then its derivative f ′,
given by (20) would have at least k zeros. However, thanks to Lemma 1, f ′

can only have k− 1 zeros (notice that the form of f ′ fits to Lemma 1). This
is a contradiction. �

Summary of the construction. For given desired numbers 0 < s1 <
. . . sk < T , we want to find a desired state yΩ such that the optimal boundary
control ū of (1)-(3) has the form (6). Then we proceed as follows:
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1. Compute the vector (α1, . . . , αk) as the solution of the inhomogeneous
linear system (16). Thanks to Lemma 2, this vector exists, is unique
and nonzero.

(Lemma 2 ensures this for (β1, . . . , βk); we set αn = (−1)n+1βn, n = 1, . . . , k.)

2. Define z by (14).

(Then the solution ψz of the adjoint equation (11) is given by the expansion

(13) and its negative trace at the boundary x = 1 has the form (15). By

construction, the function f : t 7→ ψz(1, t) has the zeros s1, . . . , sk. Thanks

to Lemma 4, these are the only zeros of t 7→ ψz(1, t) in [0, T ]. Moreover,

Lemma 3 ensures that ∂tψz(1, si) 6= 0, i = 1, . . . , k. Since s1, . . . , sk are

the only zeros of ψz(1, t), this function has constant sign in (si−1, si) and

alternates the sign in the zeros.)

3. Compute y0
Ω = yū(·, T ) and fix yΩ by

yΩ = y0
Ω + z.

4. If ψz(1, t) > 0 on (0, s1), then substitute −z for z in (14).

(Otherwise, ū would not obey (8).)

The adjoint state associated with ū is ϕ̄ that solves the adjoint equation
(4) with terminal data yū(·, T ) − yΩ. By (12), the auxiliary adjoint state
ψz solves the same equation with the same terminal datum, hence we have
ϕ̄ = ψz. Therefore, ū obeys the necessary optimality conditions with the
constructed yΩ. Because the conditions are also sufficient, ū is optimal.

This construction is numerically implementable, at least for small num-
bers k. For large n, the terms e−n

2π2(T−t) become very small for t < T . This
is an obstacle for the numerical use. However, the construction provides the
following existence result:

Theorem 2 For each positive integer k and every selection of numbers 0 <
s1 < . . . < sk < T , there is a desired target yΩ ∈ C[0, 1], such that the
optimal control ū of the problem (1)-(3) is bang-bang with switching points
s1, . . . , sk and has the form (7),(8). In view of the bang-bang property, the
optimal control is unique.

The proof of uniqueness is standard, we refer to [18] or [30].
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Example 1 We select T = 1, k = 2, s1 = 3/4, s2 = 7/8. Then the system
(16) is equivalent to

α1e
5−π

2

4 − α2e
5−π2

= e5

α1e
−π

2

8 − α2e
−π

2

2 = 1.
(21)

To avoid cancellations, we multiplied the first equation of (16) by e5.
The numerical solution of (21) is α1 = 12.00339596, α2 = 346.9945248.

The associated adjoint function ψz(1, t) is illustrated in Fig. 1

Figure 1: Function t 7→ ψz(1, t) for Example 1 (left) and Example 2 (right)

To complete the example, we have to set up ū by (7), to compute yū by
solving the state equation (2) and to set yΩ = yū(x, T ) + z(x). Then the
solution of (1)-(3) is ū.

The need to solve the partial differential equation (2) for the given ū is
certainly a disadvantage, because it is the source of an additional numerical
error. In Example 4, we use a slightly different idea avoiding that problem.

Theorem 1 allows the existence of infinitely many switching points. The
question arises, if there exists an optimal control problem of the form (1)-
(3) where the optimal control has infinitely many switching points. This is
equivalent to the question of existence of z ∈ L2(0, 1) such that the function
t 7→ ψz(1, t) defined by (11) has infinitely many zeros in [0, T ] (accumulating
necessarily at t = T ). To the best knowledge of the author, an associated
example or even the proof of existence is not yet known.
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Example 2 We take T = 1, k = 3, s1 = 8/9, s2 = 17/18, s3 = 26/27.
After equilibrating the linear 3 × 3-system (16), we find α1 = 3.375290066,
α2 = 10.35044926, α3 = 28.36129127. The function ψz(1, t) is presented in
the right-hand side of Fig. 1.

6 Extension to distributed and boundary control
in higher dimensions

We considered the simplest 1D boundary control problem, where the control
naturally depends on t only. In distributed control problems with N =
dim(Ω) ≥ 1 or boundary control problems with N ≥ 2, the control depends
on (x, t) so that the concept of switching points does not directly apply.
However, it is useful for controls of the form

u(x, t) :=

m∑
i=1

wi(x)ui(t)

with fixed functions wi : Ω → R (for distributed control) or wi : ∂Ω → R
(for boundary control). Then the switching structure of the controls ui is
of interest. We mention, e.g., Glashoff and Weck [13] for boundary control
or the recent paper [22] for time-optimal distributed control. Both papers
investigate the switching structure of optimal controls.

In principle, the constructive method of the preceding sections can be
extended to such problems. We do not aim at a detailed discussion of this
issue. Rather than, let us concentrate on distributed control problems in a
smooth bounded domain Ω ⊂ RN , N ≥ 1, with control

u(x, t) := w(x)u(t)

with fixed w ∈ L2(Ω) and control u ∈ L∞(0, T ). We consider the problem

min

∫
Ω
|y(x, T )− yΩ(x)|2 dx (22)

subject to

∂ty(x, t)−∆xy(x, t) = w(x)u(t) in Ω× (0, T )
y(x, t) = 0 in ∂Ω× (0, T )
y(x, 0) = 0 in Ω,

(23)

and
|u(t)| ≤ 1 a.e. in (0, T ). (24)
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Here, we impose homogeneous Dirichlet boundary conditions on y. The
treatment for Neumann or Robin boundary conditions is analogous.

For each u ∈ L∞(0, T ) and fixed w ∈ L2(Ω), the initial-boundary value
problem (23) has a unique solution yu ∈ W (0, T ). It has the semigroup
representation

y(x, t) =

∫ t

0

∫
Ω
G(x, ξ, t− s)w(ξ)u(s)dξ ds

with the Green’s function

G(x, ξ, t) =
∞∑
n=1

vn(x)vn(ξ)e−µ
2
nt.

The numbers µn, n = 1, . . . ,∞, are the eigenvalues of the Laplace operator
−∆x subject to homogeneous Dirichlet boundary conditions; {vn}n=1,...,∞
is the associated orthonormal system of eigenfunctions in L2(Ω). Therefore,
we have

y(x, T ) =
∞∑
n=1

vn(x)

∫
Ω
vn(ξ)w(ξ) dξ︸ ︷︷ ︸

wn

∫ T

0
e−µ

2
n(T−s)u(s) ds

=

∞∑
n=1

wn vn(x)

∫ T

0
e−µ

2
n(T−s)u(s) ds =: (Su)(x),

where S : L2(0, T )→ L2(Ω), u 7→ y, is the linear and continuous control-to-
state operator.

Its adjoint operator S∗ : L2(Ω)→ L2(0, T ) is represented by

(S∗d)(t) =
∞∑
n=1

wn e
−µ2n(T−t)

∫
Ω
d(ξ)vn(ξ) dξ.

Switching points of an optimal control ū with state ȳ are now related to the
zeros of the function

f : t 7→
∞∑
n=1

wn e
−µ2n(T−t)

∫
Ω
d(x)vn(ξ) dξ, (25)

where d(x) = ȳ(x, T )− yΩ(x).
Following the method of Section 4, we set yΩ = yū(·, T ) + z and consider

the auxiliary adjoint function

ψz(t) = (S∗(−z))(t).
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For z, we use the ansatz

z(x) =
k∑
j=1

αjvnj (x),

where k ≥ 2 and {vnj} is a selection of eigenfunctions such that all associ-
ated eigenvalues are mutually different. Instead of developing an associated
theory that is similar to that of the previous sections, we explain the method
by an example.

Example 3 We consider the case N = 2 in the rectangle Ω = (0, π)×(0, π).
The normalized eigenfunctions of −∆ = −∂2

x1−∂
2
x2 are {sin(nx1) sin(mx2)}

with associated eigenvalues n2 +m2, n,m = 1, . . .∞. With x = (x1, x2), the
first 4 eigenfunctions and eigenvalues are

v1(x) = sin(x1) sin(x2), µ1 = 2,
v2(x) = sin(2x1) sin(x2), µ2 = 5,
v3(x) = sin(x1) sin(2x2), µ3 = 5,
v4(x) = sin(2x1) sin(2x2), µ3 = 8,

and the next are sin(3x1) sin(x2), sin(x1) sin(3x2) with eigenvalue 10. We
refer e.g. to [20] or [28, Sect. 19.5.2].

We fix T = 1, w(x) = x1x2, the control having the form x1x2 u(t). Our
aim is to find a desired final state yΩ such that the optimal control ū has
switching points in s1 = 3/4, s2 = 7/8, i.e.

ū(t) =


1, 0 ≤ t ≤ 3/4,
−1, 3/4 < t ≤ 7/8,

1, 7/8 < t ≤ 1.
(26)

We use the ansatz

z(x) = 1 · v1(x) + α1v2(x) + α2v4(x),

because µ2 = µ3 is a multiple eigenvalue. To establish the linear system for
(α1, α2), we first need the numbers w1, w2, w4. From∫ π

0
ξ sin(nξ) dξ =

(−1)n+1π

n
,

we find

w1 =

∫ π

0

∫ π

0
x1x2 sin(x1) sin(x2) dx =

(∫ π

0
r sin(r)dr

)2

= π2
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and analogously

w2 = −π
2

2
, w4 =

π2

4
.

Thanks to s1 = 3/4, s2 = 7/8, the system for (α1, α2) is

w2e
−25/4α1 + w4e

−64/4α2 = −w1e
−4/4

w2e
−25/8α1 + w4e

−64/8α2 = −w1e
−4/8.

We insert the values for wi, i = 1, 2, 4, and multiply the first equation by
−4e8/π2, the second by −4/π2. In this way, we arrive at

2e1.75α1 − e−8α2 = 4e7

2e−3.125α1 − e−8α2 = 4e−0.5.

The numerical solution is α1 = 383.8524883, α2 = 93317.33956. From (25)
we find that the function (S∗z)(t) should have the zeros 3/4 and 7/8. By
orthogonality, we find

(−S∗z)(t) = −π2 e−4(1−t) +
π2

2
e−25(1−t)α1 −

π2

4
e−64(1−t)α2.

In view of the very different growth of the appearing exponential functions,
we plot the function 4

π2 e
32(1−t)(−S∗z)(t) in [0.73, 0.9] in Fig. 2. The func-

tion t 7→ (−S∗z)(t) is negative on [0, 0.75), hence it complies with the re-
quirement ū(t) = 1 on [0, 0.75). We have

z(x1, x2) = sin(x1) sin(x2) +α1 sin(2x1) sin(x2) +α2 sin(2x1) sin(2x2). (27)

In view of (9) and (10), the desired final target yΩ is

yΩ(x1, x2) = yū(x1, x2, T ) + z(x1, x2),

where yū is the state associated with ū(t) = sign (S∗z)(t).

The construction of Example 3 has one difficulty: yΩ is not given ex-
plicitely. To find yū, we have to solve the partial differential equation (23)
for ū defined in (26). This is the source of a numerical error that can be
avoided by the following trick: Instead of the state equation (23), we con-
sider the optimal control problem for the inhomogeneous equation

∂ty(x, t)−∆xy(x, t) = e(x, t) + w(x)u(t) in Ω× (0, T )
y(x, t) = 0 in ∂Ω× (0, T )
y(x, 0) = y0(x) in Ω

(28)
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Figure 2: Example 3, function t 7→ − 4
π2 e

32(1−t)(S∗z)(t) in [0.73, 0.9]

with fixed L2-functions e and y0. The theory of necessary optimality condi-
tions for the problem (22), (28), (24) remains unchanged, because e and y0

do neither appear in the adjoint equation nor in the variational inequality.
They only influence the computation of yū. Therefore, we can proceed as
follows: In addition to the desired ū, we fix a desired ȳ. Then we adapt e
and y0 such that ȳ and ū fit together, i.e. ȳ = yū. This avoids the numerical
solution of the state equation.

Example 4 We adopt all data from Example 3, but we consider the dis-
tributed optimal control problem of this section with the state equation (28)
substituted for (23). For the desired optimal state we fix

ȳ(x1, x2, t) = et sin(x1) sin(x2).

Clearly, ȳ obeys the homogeneous Dirichlet boundary conditions. To match
the initial condition, we have to set y0 = ȳ(·, 0), i.e.

y0(x1, x2) = sin(x1) sin(x2).

Finally, we find e by inserting ȳ and ū in (28),

e(x1, x2, t) = (∂t −∆)ȳ(x1, x2, t)− x1x2ū(t),

where ū is defined by (26). For yΩ, we obtain

yΩ(x1, x2) = ȳ(x1, x2, T ) + z(x1, x2)
= eT sin(x1) sin(x2) + sin(x1) sin(x2) + α1 sin(2x1) sin(x2)

+α2 sin(2x1) sin(2x2).
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Remark 2 Compared with the 1D boundary control problem of Section 1,
distributed control problems of higher-dimensional boundary control prob-
lems are more difficult to investigate. In particular, we can have vanishing
coefficients wn and multiple eigenvalues. Therefore, an extension of the the-
ory of the preceding sections becomes more technical. Here, we do not aim
at proving associated counterparts of Theorem 2.

Boundary control. Boundary control problems for the equation

∂ty(x, t)−∆xy(x, t) = 0 in Ω× (0, T )
∂νy(x, t) + λy(x, t) = w(x)u(t) in ∂Ω× (0, T )

y(x, 0) = 0 in Ω

can be treated in a similar way (∂ν denotes the outward normal derivative
on ∂Ω). We only mention the integral representation

y(x, t) =

∫ t

0

∫
∂Ω
G(x, ξ, t− s)w(ξ)u(s)dS(ξ)ds,

where dS is the surface measure on ∂Ω. Moreover, we refer to [13].

7 Short survey on related references

In the early paper [12], a proof of the bang-bang principle for problems of
the type (1)-(3) is given, we refer also to [36] for the minimization of the
supremum norm ‖y(·, T ) − yΩ‖L∞(Ω). An extension to higher-dimensional
parabolic boundary control problems is discussed in [13]. Numerical meth-
ods are investigated in [10, 14, 32]. One of the first numerical examples was
presented in [24]. The computed optimal control had one switching point. In
[6], it was proved that the optimal control has exactly one switching point,
indeed.

If in the problem (1)-(3) the supremum norm ‖y(·, T ) − yΩ‖L∞(Ω) is
minimized for given yΩ ∈ L∞(Ω), then the optimal control has a finite
number of switching points. This quite spectacular result was proved in
[15]. Later, an alternative and slightly simpler proof was given in [11].

The bang-bang principle for time-optimal control problems with evolu-
tion equations was discussed in many papers, we only mention [7, 25, 17,
19, 16, 34]. For a certain class of distributed parabolic time-optimal control
problems, a result on the number of switching points was recently published
in [22].
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Many facts on the bang-bang principle for different types of optimal and
time-optimal parabolic control problems are presented in the books [8, 9,
27, 33, 21, 30]. The bang-bang principle for semilinear parabolic optimal
control problems is discussed in [23, 26, 35].

For certain mixed control-state constraints, a generalized bang-bang
principle was shown, first in [29] for the problem (1)-(2) with λ = 1 and
the constraints 0 ≤ u(t) ≤ c+ y(1, t). It was extended to other problems in
[1, 2, 17].

In [31], bang-bang properties are discussed for sparse optimal controls.
Here, the term µ‖u‖L1(0,T ), µ > 0, is added to the objective functional (1).
Another interesting direction of research are second order sufficient opti-
mality conditions for optimal controls of problems with semilinear elliptic
equations, where optimal bang-bang controls can be expected, see [3, 5, 4].
They can be applied to the perturbation analysis of associated optimal con-
trol problems.

Acknowledgement. The author thanks A.F.M. ter Elst (University of
Auckland) and J. Rehberg (WIAS Berlin) for a helpful discussion on the
problem of the infinite bang-bang principle.
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