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Abstract

In this study, we provide an alternative approach for computing
the dynamic mode decomposition (DMD) in real-time for streaming
datasets. It is a low-storage method that updates the DMD approx-
imation of a given dynamic as new data becomes available. Unlike
the standard online DMD method, which is applicable only to over-
constrained and full-rank datasets, the new method is applicable for
both overconstrained and underconstrained datasets. The method is
equation-free in the sense that it does not require knowledge of the
underlying governing equations and is entirely data-driven. Several
numerical examples are presented to demonstrate the performance of
the method.
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1 Introduction

The characterization of complex systems finds application in various fields of
the physical, biological, and engineering sciences. As technology advances,
data storage capabilities and data transfer speeds increase, which results
in the generation of massive data sets. This requires the development of
new quantitative methods and data-driven analysis approaches. One such
method is the recently developed Dynamic Mode Decomposition (DMD)
method, which has been established as a leading technique for identifying
spatiotemporal coherent structures from high-dimensional data. Since it was
introduced for the first time by Schmid [1] in the fluid mechanics community,
it has gained popularity and has been applied in many different fields, such
as video processing [2], epidemiology [3], neuroscience [4], financial trading
[5, 6, 7], robotics [8], cavity flows [9, 10] and various jets [11, 12]. For a
review of the DMD literature, we refer the reader to [13, 14, 15]. For some
recent modifications of DMD for non-uniformly sampled data, the higher
order DMD method, parallel implementations of DMD and some derivative
DMD techniques, we we refer to [19, 20, 21, 22, 23, 24, 25, 26].

In this work, we are interested in a recently developed modification of the
DMD method called Online Dynamic Mode Decomposition (Online DMD)
[27], see also [28, 29]. Our goal is to introduce an alternative approach for
implementing the Online DMD method. The aim is to propose a scheme
that extends the standard approach and overcomes the main drawbacks of
the online DMD method.

Among the shortcomings of the standard algorithm are the following
assumptions: the number of snapshots has to be much larger than the state
dimensions, and the data matrix has to be of full rank.

The scheme we will propose here will have the following advantages over
the standard approach:

• The method is applicable to both overconstrained and underconstrained
datasets;

• The approach is applicable to full-rank data as well as to low-rank
datasets;

• In the case of low-rank data sets, it is possible to predefine a maxi-
mum order for truncated or compact SVDs that are performed at each
iteration of the process.

We should note that in the particular case of overconstrained and full-rank



Online dynamic mode decomposition 231

data, the standard online DMD algorithm would be more cost-effective than
the new scheme.

Some advantages of the new scheme compared to the classical DMD
method are:

• The DMD operator can be updated incrementally as new snapshots
become available without storing previous snapshots;

• The SVD performed at each iteration step is of much lower order,
especially for low-rank data.

The outline of the paper is as follows: in the rest of this section, we
give a brief summary of the standard DMD and Online DMD methods.
In Section 2, we introduce and discuss the new approach to Online DMD
method. We then present, in Section 3, numerical examples demonstrating
the new scheme. Conclusions are given in Section 4.

1.1 Dynamic mode decomposition (DMD)

There are many conceptually equivalent but mathematically different defi-
nitions of DMD. In this subsection, we outline the so-called exact Dynamic
Mode Decomposition, following the descriptions in [13, 14].

Given a data set of snapshot pairs

{(xi,yi)}mi=1, where xi,yi ∈ Rn, (1)

spaced a fixed time-interval apart, such that

yi = F (xi), (2)

where F is a map associated with the evolution of a given dynamical system.
In the standard DMD definition the data is given as a single time series, then
for a given snapshot xi, yi = xi+1 is the next snapshot in the time series.
Then, we stack the snapshots as a pair of data sets

X = [x0, . . . ,xm−1] and Y = [x1, . . . ,xm]. (3)

The DMD algorithm seeks the leading eigendecomposition of the best fit
linear operator A ∈ Rn×n such that

Y = AX. (4)
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Equation (4) has a well-known analytical solution in the form

A = Y X†, (5)

where X† is the Moore-Penrose pseudoinverse of X. One possible way to
perform the pseudo-inverse is via SVD

X = UΣV ∗, (6)

where U ∈ Rn×n is unitary, Σ ∈ Rn×m is diagonal, V ∈ Rm×m is uni-
tary. Note that the left singular vectors U represent the modes of proper
orthogonal decomposition (POD) of X [30].

If there is no A that exactly satisfies (4), then the choice (5) minimizes
‖AX − Y ‖F , where ‖.‖F is the Frobenius norm. However, it is usually
difficult to derive DMD operator A and compute its eigendecomposition,
because n describes a large number of states (n� 1). Therefore, the DMD
algorithm attempts to perform a low-rank truncation of the data.

To represent A in a low-dimensional way, matrices U, V and Σ are trun-
cated from the first r modes. Then A is projected to the first r POD modes
of X

Ã = U∗r Y VrΣ
−1
r , (7)

where Ur ∈ Rn×r, Σr ∈ Rr×r and Vr ∈ Rr×m. Therefore, we can recon-
struct from Ã the leading nonzero eigenvalues and eigenvectors of A without
explicitly computing A. The eigenvectors of Ã are called DMD modes, and
the eigenvalues of A are the DMD eigenvalues.

Once the DMD modes and eigenvalues are calculated, it is possible to
represent the state of the system in terms of DMD modes and eigenvalues.
As a result, the time evolution of the system can also be predicted. For
more on DMD expansion, different variants of the DMD algorithm and the
connections between DMD and the Koopman operator, see [13, 14].

1.2 Online Dynamic mode decomposition (Online DMD)

Dynamic mode decomposition for streaming datasets is firstly proposed by
Hemati et al. [28], and later in [27] Zhang proposes so-called online DMD.
Another related method using an incremental SVD algorithm is presented
in [29]. Unlike the standard DMD, where matrix A is determined once, in
online DMD, we seek a matrix Ak that varies in time, giving a local linear
model for the dynamics. Given snapshot pairs (xi,yi), defined by (1), for
j = 1, . . . , k, we form matrices

Xk = [x1, . . . ,xk] and Yk = [y1, . . . ,yk] (8)
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which both have dimension n× k. The following assumptions are made:

• The number of snapshots k is large compared with the state dimension
n, i.e., we consider the overconstrained case of the dataset (k > n).

• The matrix Xk has full row rank, i.e. rank(Xk) = n.

The objective of the online DMD method is to provide an alternative way
of computing DMD operator such that it can be updated incrementally as
new snapshots become available without storing previous snapshots. The
approach is based on the following representation:

X†k = XT
k (XkX

T
k )−1,

which is a direct consequence of the upper assumptions.

The algorithm of online DMD proceeds on each iteration as follows:

Algorithm 1: Online DMD method [27]

1. Collect k snapshot pairs (xj ,yj), j = 1, . . . , k, where k > n is large
enough so that rank(Xk) = n, where Xk is given by (8).

2. Compute Ak and Pk from:

Ak = YkX
†
k and Pk = (XkX

T
k )−1

3. When a new snapshot pair (xk+1,yk+1) becomes available, update

Ak+1 = Ak + γk+1(yk+1 −Ak+1xk+1)x
T
k+1Pk

and

Pk+1 = Pk − γk+1Pkxk+1x
T
k+1Pk,

where

γk+1 =
1

1 + xT
k+1Pkxk+1

.
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2 Alternative Online DMD

DMD was originally used in the study of large fluid flow fields, where typi-
cally n � m, i.e., the number of state dimension n is large compared with
the snapshots m. It is worth emphasizing that the online DMD algorithm
relies on an important assumptions: the number of snapshots is much larger
than the state dimension. Besides, the main drawback to the online DMD
is that it requires the data matrix Xk to be of full rank.

To overcome these shortcomings, we propose a different approach for
updating the DMD operator in real time. By analogy to online DMD, given
the first k snapshot pairs (xj ,yj) for j = 1, . . . , k, we form matrices

Xk = [x1, . . . ,xk] and Yk = [y1, . . . ,yk] (9)

which both have dimension n × k. We make no assumptions about the
relation between n and k or about the rank of the matrix Xk here.

We wish to find an n×n matrix Ak such that AkXk = Yk approximately
holds. We first determine the truncated SVD of Xk

Xk = UkΣkV
∗
k , (10)

where Uk ∈ Rn×r, Vk ∈ Rk×r,Σk ∈ Rr×r and r = min (rank(Xk), rmax).
The parameter rmax is a predefined threshold of truncation rmax ≤ rank(Xk).

Then, using the identity X†k = VkΣ−1k U∗k , we get

Ak = YkX
†
k = YkVkΣ−1k U∗k . (11)

As with the standard DMD approach, we can approximate Ak using the
projected DMD operator

Ãk = U∗kAkUk = U∗kYkVkΣ−1k , (12)

which is of dimension r×r. As we know, it is possible to perform the leading
eigendecomposition of Ak through the eigendecomposition of Ãk.

Suppose we have already computed Ãk (or Ak) for a given dataset. As
time progresses and a new pair of snapshots (xk+1,yk+1) becomes available,
we want to compute the matrix Ak+1 in a less expensive manner than the
standard method (11).

Let us denote the augmented matrices

Xk+1 = [Xk | xk+1] and Yk+1 = [Yk | yk+1]. (13)
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Suppose that the singular value decomposition of Xk+1 has the form

Xk+1 = Uk+1Σk+1V
∗
k+1. (14)

From (14), we can express Vk+1 as

Vk+1 = X∗k+1Uk+1Σ
−∗
k+1. (15)

The updated DMD operator is then given by

Ak+1 = Yk+1X
†
k+1 = Yk+1Vk+1Σ

−1
k+1U

∗
k+1

= Yk+1X
∗
k+1Uk+1Σ

−2
k+1U

∗
k+1.

(16)

Substituting (13) into (16), we obtain

Ak+1 = [Yk | yk+1]

[
X∗k
x∗k+1

]
Uk+1Σ

−2
k+1U

∗
k+1

=
(
YkX

∗
k + yk+1x

∗
k+1

)
Uk+1Σ

−2
k+1U

∗
k+1.

(17)

Using the SVD of Xk in (10), we get

Ak+1 =
(
YkVkΣ∗kU

∗
k + yk+1x

∗
k+1

)
Uk+1Σ

−2
k+1U

∗
k+1. (18)

Then, applying (11) and after some manipulation, the formula for Ak+1

becomes

Ak+1 =
(
AkUkΣ2

kU
∗
k + yk+1x

∗
k+1

)
Uk+1Σ

−2
k+1U

∗
k+1. (19)

The above expression gives a rule for computingAk+1 given Uk,Σk, Uk+1,Σk+1

and the new snapshot pair (xk+1,yk+1).
In what follows, we will show that matrices Uk+1 and Σk+1 can be ex-

pressed from matrices Uk and Σk. Based on this and the expression in (12),
we can also formulate a way to update Ãk.

First, it is easy to verify the following identity

Xk+1 = [Xk | xk+1] = [Uk | xk+1]

[
Σk 0

0T 1

] [
V ∗k 0

0T 1

]
, (20)

where 0 ∈ Rr is a zero vector. To obtain an alternative representation of
the SVD of Xk+1, we will consider two scenarios, depending on whether
xk+1 ∈ range(Uk).
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1) If xk+1 ∈ range(Uk), then the expression

xk+1 = UkU
∗
kxk+1 (21)

is valid. Therefore, Xk+1 can be written

Xk+1 = [Xk | xk+1] = [UkΣk | UkU
∗
kxk+1]

[
V ∗k 0

0T 1

]
= UkBkV̄

∗
k , (22)

where we define

Bk = [Σk | U∗kxk+1] and V̄k =

[
Vk 0

0T 1

]
. (23)

Obviously, the columns of V̄k are orthonormal, and V̄ ∗k V̄k = I.
Assume the compact SVD of the r × (r + 1) matrix Bk has the form

Bk = ŨkΣ̃kṼ
∗
k , (24)

where Ũk ∈ Rr×r is unitary, Ṽk ∈ R(r+1)×r is semi-unitary, and Σ̃k ∈ Rr×r

is diagonal. Then, from (22) and (24), it follows

Uk+1 = UkŨk, Σk+1 = Σ̃k (and Vk+1 = V̄kṼk). (25)

Now, we can express the reduced order matrix Ãk+1 = U∗k+1AkUk+1 as

Ãk+1 = Ũ∗k

(
ÃkΣ2

k + U∗kyk+1x
∗
k+1Uk

)
ŨkΣ−2k+1. (26)

2) If xk+1 6∈ range(Uk).

Let us define
zk+1 = (I − UkU

∗
k )xk+1

and
ur+1 =

zk+1

‖zk+1‖
.

By using the identity

UkU
∗
kxk+1 + ur+1‖zk+1‖ = xk+1,

it follows the expression

Xk+1 = [Uk | ur+1]

[
Σk U∗kxk+1

0T ‖zk+1‖

] [
V ∗k 0

0T 1

]
= ŪkB̄kV̄

∗
k , (27)
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where we define

Ūk = [Uk | ur+1] and B̄k =

[
Σk U∗kxk+1

0T ‖zk+1‖

]
. (28)

Assume the compact SVD of the (r + 1)× (r + 1) matrix B̄k has the form

B̄k = ŨkΣ̃kṼ
∗
k , (29)

where Ũk, Ṽk ∈ R(r+1)×(r+1) are unitary, and Σ̃k ∈ R(r+1)×(r+1) is diagonal.
Then from (27) and (29) it follows that

Uk+1 = ŪkŨk, Σk+1 = Σ̃k (and Vk+1 = V̄kṼk). (30)

We can express the reduced order matrix Ãk+1 = U∗k+1Ak+1Uk+1 as

Ãk+1 = U∗k+1

(
AkUkΣ2

kU
∗
k + yk+1x

∗
k+1

)
Uk+1Σ

−2
k+1, (31)

and hence

Ãk+1 = Ũ∗k

(
Ū∗kAkUkΣ2

kU
∗
k Ūk + Ū∗kyk+1x

∗
k+1Ūk

)
ŨkΣ−2k+1, (32)

which is an (r + 1)× (r + 1) matrix.
An equivalent representation of Ãk+1 using the expression (28) is:

Ãk+1 = Ũ∗k

([
U∗kAkUkΣ2

k

u∗r+1AkUkΣ2
k

]
U∗k Ūk + Ū∗kyk+1x

∗
k+1Ūk

)
ŨkΣ−2k+1, (33)

which yields

Ãk+1 = Ũ∗k

([
ÃkΣ2

k 0

u∗r+1YkVkΣk 0

]
+ Ū∗kyk+1x

∗
k+1Ūk

)
ŨkΣ−2k+1, (34)

where we have used (11) and the identity U∗k Ūk = [I | 0].
In the particular case of yi = xi+1 for i = 1, . . . , k, from the orthogonality

of ur+1 and x2, . . . ,xk, it follows

u∗r+1Yk = [0, . . . , 0,u∗r+1xk+1].

Therefore
u∗r+1YkVk = (u∗r+1xk+1)v

lr
k ,

where vlr
k is the last row of matrix Vk. From the SVD of Xk, it follows

V ∗k = Σ−1k U∗kXk,
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which yields the last column of V ∗k(
vlr
k

)∗
= Σ−1k U∗kxk.

Then the expression (34) takes the form

Ãk+1 = Ũ∗k

([
ÃkΣ2

k 0

b∗k 0

]
+ Ū∗kyk+1x

∗
k+1Ūk

)
ŨkΣ−2k+1, (35)

where
b∗k = (u∗r+1xk+1)x

∗
kUkΣ−∗k Σk and yk+1 = xk+2.

Algorithm for an alternative online DMD

For convenience, we consider a time series of data xi with k + 1 snapshots
organized in the following two data matrices

Xk = [x1, . . . ,xk] and Yk = [x2, . . . ,xk+1]. (36)

Then, we compute the truncated SVD of Xk = UkΣkV
∗
k as in (10), where

r = rank(Xk) is the truncation value, and compute the matrix Ãk =
U∗kYkVkΣ−1k as in (12). For each new data point xk+2 the first task is to
determine whether the basis contained in Uk should be expanded. To do so,
the residual zk+1 = xk+1−UkU

∗
kxk+1 is computed, and if ‖zk+1‖/‖xk+1‖ is

greater than some pre-specified tolerance ε, then we expand Uk by append-
ing zk+1/‖zk+1‖. A single iteration of the algorithm can be summarized, as
follows:

Algorithm 2: Alternative online DMD method

Input: Matrices Ãk, Uk,Σk, scalar rmax, last 3 snapshots xk,xk+1,xk+2.

Output: Matrices Ãk+1, Uk+1,Σk+1.

Compute zk+1 = (I − UkU
∗
k )xk+1 and proceed:

If ‖zk+1‖/‖xk+1‖ < ε :

1. Construct the matrix

Bk = [Σk | U∗kxk+1].

2. Compute the compact SVD

Bk = ŨkΣ̃kṼ
∗
k .
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3. Compute the left singular vectors and singular values of Xk+1

Uk+1 = UkŨk and Σk+1 = Σ̃k.

4. If the DMD modes are required, compute spectral decomposition of

Ãk+1 = Ũ∗k

(
ÃkΣ2

k + U∗kyk+1x
∗
k+1Uk

)
ŨkΣ−2k+1.

If wj is the j-th eigenvector of Ã, then Uk+1wj is j-th DMD mode.

Else If ‖zk+1‖/‖xk+1‖ ≥ ε :

1. Construct the matrix

B̄k =

[
Σk U∗kxk+1

0T ‖zk+1‖

]
.

2. Compute the truncated SVD

B̄k = ŨkΣ̃kṼ
∗
k ,

with truncation value: min
(
rank(B̄k), rmax

)
.

3. Compute the left singular vectors and singular values of Xk+1

Uk+1 = ŪkŨk, and Σk+1 = Σ̃k ,

where

Ūk = [Uk | ur+1] , and ur+1 =
zk+1

‖zk+1‖
.

4. If the DMD modes are required, compute spectral decomposition of

Ãk+1 = Ũ∗k

([
ÃkΣ2

k 0

b∗k 0

]
+ Ū∗kyk+1x

∗
k+1Ūk

)
ŨkΣ−2k+1,

where

b∗k = (u∗r+1xk+1)x
∗
kUkΣ−∗k Σk and yk+1 = xk+2.

If wj is the j-th eigenvector of Ã, then Uk+1wj is j-th DMD mode.
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In practice, the snapshot data is often corrupted by noise. Therefore, in
many cases, the data matrix X can be decomposed into a low-rank compo-
nent that contains the signal and a high-rank component that contains the
noise, which results in rank(X) ∼ min(n,m). Thus, during the execution
of the algorithm, the dimensionality of the basis Uk can grow progressively
(at Step 3), even if the streaming data is from low-rank dynamics. In these
cases, we can use a predefined threshold for truncation of rmax (i.e., the max-
imum number of retained POD modes). Parameter rmax is set as an input
parameter in Algorithm 2. In this way, at each iteration step of the process,
only the leading rmax number of basis vectors and their corresponding eigen-
values are preserved. This is achieved by retaining the first rmax columns of
Ũk and the first rmax diagonal elements of Σ̃k, at Step 2 of Algorithm 2.

Computational complexity of Algorithm 2.

In the more complex case (second part of Algorithm 2), the computational
cost of each iteration is dominated by the computation of truncated SVD
of the (r + 1) × (r + 1) matrix B̄k, with a computational cost of O(r3). In
addition, at each iteration, a matrix multiplication is required to calculate
Uk+1 = ŪkŨk, which costs O(nr(r+ 1)). Also, at each step, a vector zk+1 =
xk+1 − Uk(U∗kxk+1) is calculated, which requires two multiplications of a
vector with a matrix, with a computational cost of O(2nr). Therefore, the
computational cost of each iteration is O(nr(r + 3) + r3) when the DMD
modes and eigenvalues are not required.

If DMD modes are required, then the r × r matrix Ãk+1 and its eigen-
decomposition are calculated. After a suitable conversion, matrix Ãk+1 re-
quires three matrix multiplications of square (r+ 1)× (r+ 1) matrices, one
matrix multiplication of square r × r matrices, seven vector matrix mul-
tiplications (including the computation of b∗k) and a rank-one matrix of
order r + 1, with computational cost: O((r + 1)3), O(r3), O(n(r + 1)) and
O((r + 1)2), respectively. The computational cost of eigendecomposition of
matrix Ãk+1 is O((r + 1)3). Finally, calculating DMD modes Uk+1wj re-
quires O(n(r+1)2). Therefore, the total complexity for the DMD calculation
is ∼ O(n(r + 1)(r + 2) + 3r3), where the low degree terms are omitted.

In total, if the DMD modes and eigenvalues are desired after every it-
eration, the computational cost of Algorithm 2 is O(nr(2r + 7) + 4r3) per
iteration, where r is the order of the effective rank of X.

In terms of storage, the algorithm requires the matrices Ãk, Uk,Σk,
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scalar rmax and last three snapshot vectors, with a total of O(n(r+3)+r2 +
r+1) entries. From what has been stated so far, it follows that Algorithm 2
will be computationally and memory efficient when r � n and r � m. In
addition, it does not require previous snapshots to be stored, thus making
it useful for applications with large datasets or data streams with large m.

3 Numerical illustrations

In this section, we illustrate the introduced algorithm for calculating alter-
native online DMD. We also compare alternative online DMD against results
from standard DMD. The standard online DMD method (Algorithm 1) is
not applicable to the examples considered because m > n (i.e. the systems
are overdetermined). The simulations are performed in MATLAB (R2013a)
on a personal computer equipped with a 2.2 GHz Intel Core i3 processor.

Example 1. An illustrative example of a toy problem
We consider a simple example of incrementally updated DMD on a toy

problem to demonstrate the online DMD algorithm introduced above. In
this example, we have an arbitrary n-dimensional dynamical system with
two characteristic frequencies. A total of m snapshot pairs are measured
sequentially and are subject to additive zero-mean Gaussian noise

xj = v1 cos(2πf14tj) + v2 cos(2πf24tj)+
v3 sin(2πf14tj) + v4 sin(2πf24tj) +N (c),

(37)

where vi ∈ Rn are random state directions, f1, f2 ∈ R are the characteristic
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Figure 1: Spatiotemporal dynamics of signal defined by (39) (left panel) and
first 10 singular values of the generated data (right panel).
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frequencies, 4t is the time sampling and N (c) ∈ Rn is the independent
identically distributed zero-mean Gaussian noise with covariance c ∈ R.

For the simulation, we set the parameters as follows: n = 200, m = 100,
f1 = 5.2, f2 = 1, 4t = 0.01 and c = 0.01. We define the vectors vi and N (c)
using the built-in function randn in MATLAB using the following syntax

vi = randn(n, 1) and N (c) = c ∗ randn(n, 1). (38)

The 3D visualization of the dynamics is illustrated in Fig. 1.
The singular values of data matrix X, illustrated in Fig. 1, show that

the data can be adequately represented by the rank-four (r = 4) approxima-
tion. We initialize the alternative online DMD algorithm by the first three
snapshots (k = 2), i.e., the initial matrices Xk and Yk have the form:

Xk = [x1,x2] and Yk = [x2,x3].

We performed both methods with a rank reduction of r = 4 and with
different numbers of snapshots in the interval of 50 to 100. All runs of both
algorithms yield the same frequencies and DMD eigenvalues shown in Fig.2.
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Figure 2: The two characteristic frequencies computed by standard DMD
and alternative online DMD (left panel). The DMD eigenvalues computed
by standard DMD (’o’) and alternative online DMD (’+’). (right panel).

To make quantitative comparisons among alternative online DMD and
standard DMD, we compute the l2-norm of the difference between the spatial
modes extracted by the two algorithms. We compute the residual errors as
follows: erri = ‖φDMD(i)− φaltDMD(i)‖ for i = 1, 2, 3, 4, where φDMD and
φaltDMD denotes the DMD modes computed by both algorithms. The error
values for two cases, at 50 and 100 snapshots, are shown in Table 1.
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] snapshots err1 err2 err3 err4

m = 50 0.0052 0.0052 0.0042 0.0042

m = 100 0.0024 0.0024 0.0010 0.0010

Table 1: Residual errors erri = ‖φDMD(i)− φaltDMD(i)‖.

Example 2. Spatiotemporal dynamics of two signals
To demonstrate the alternative online DMD algorithm, we consider an

example of two mixed spatio-temporal signals. The signal of interest is

X(t) = f1(x, t) + f2(x, t), (39)

where the individual spatiotemporal signals are

f1(x, t) = sech(x + 3)ei2.3t and f2(x, t) = 2sech(x)tanh(x)ei2.8t.

The mixed signal and the individual spatiotemporal signals are illus-
trated in Fig. 3 (a)-(c). The two frequencies present are ω1 = 2.3 and
ω2 = 2.8, which have distinct spatial structures. From the singular value
depiction of data matrix X in Fig. 3(d), it follows that the rank-two (r = 2)
approximation can adequately represent the data.

For the simulation, we use n = 400 spatial coordinates in the interval
[−10, 10] and m = 200 temporal ones in [0, 4π]. The first three snapshots
were used to initialize the alternative online DMD algorithm, i.e., the initial
values of the matrices Xk and Yk in (36) each contain two columns (k = 2).

The two algorithms, standard DMD and alternative online DMD, are
applied to different numbers of snapshots in the interval of 50 to 200. All
runs of both algorithms yield the same DMD modes and DMD eigenvalues
shown in Fig.4.

We compute the discrete-time DMD eigenvalues with both algorithms,
as shown in Fig. 4

λ1 = 0.9844 + 0.1759i and λ2 = 0.9895 + 0.1447i.

Observe that the eigenvalues computed by the alternative online DMD algo-
rithm agree with those identified by standard DMD. As we know, continuous-
time DMD eigenvalues are related to discrete-time eigenvalues by

ωi = ln(λi)/4t,
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Figure 3: Spatiotemporal dynamics of two signals (a) f1(x, t), (b) f2(x, t),
and mixed signal in (c) X = f1 + f2. Singular values of X are shown in
(d).
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Figure 4: Firts two DMD modes: true modes, modes extracted by standard
DMD and modes extracted by Alternative online DMD (left panel). Discrete-
time DMD eigenvalues (right panel)

where 4t is the time spacing between snapshot pairs, in which we get the
exact frequencies of oscillation ω1 = 2.3 and ω2 = 2.8.

The rank-2 approximations by alternative online DMD and standard
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DMD for three different numbers of snapshots are shown in Figures 5-7.
It can be seen that the DMD modes obtained by both methods coincide
perfectly with the exact DMD modes.

Figure 5: Reconstruction with m = 100 snapshots.

Figure 6: Reconstruction with m = 150 snapshots.

Figure 7: Reconstruction with m = 200 snapshots.

4 Conclusion

The aim of this study was to present a new alternative approach for execut-
ing online dynamic mode decomposition. We have introduced and analyzed
a new algorithm, an alternative procedure that is applicable in the case of
low-rank data. We have demonstrated the performance of the presented
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algorithms with numerical examples. From the obtained results, we can
conclude that the introduced approach gives identical results with those of
the standard online DMD method. The presented results show that the in-
troduced algorithm can be used for both unconstrained and overconstrained
data. The approach does not require the data to be of full rank, suggesting
possibilities in various application areas.
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