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Abstract

The paper deals with the study of solutions for some weak varia-
tional control inequalities of vector type, and the efficient solutions to
the corresponding optimization problem. More exactly, to formulate
and prove the principal results, we consider the Fréchet differentia-
bility, the concept of invex set, and invexity & pseudoinvexity of the
curvilinear integral type functionals which are involved in the study.
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1 Introduction

The concept of efficient solution is fundamental to investigate multi-objective
optimization problems. Geoffrion [1] introduced the notion proper effi-
ciency. Klinger [2] defined improper solutions for multi-objective optimiza-
tion. Also, by considering variational inequalities of vector type, Kazmi [3]
proved several existence results of a weak minimum in a class of problems
with multiple objectives. Approximate solutions have been formulated by
Ghaznavi-Ghosoni and Khorram [4] in order to establish some efficiency
conditions for general multi-objective variational problems.

At the same time, the term of convexity, which plays a crucial role in
variational analysis and optimization, does not cover all the real-life prob-
lems arising in science. Therefore, a generalization for this notion was a
necessary requirement. Thus, Hanson [5] defined the new notion of invex
functions. During this time, other extensions have been considered (see, for
example, preinvexity, quasiinvexity, pseudoinvexity, approximate convexity,
univexity) by authors like Mishra et al. [8], Antczak [6], Ahmad et al. [7]).
In addition, a part of these concepts were transferred in the multidimen-
sional framework (Treanţă [9], Mititelu et al. [10]).

Giannessi [11] established notable theorems for variational-type inequal-
ities. Tiba [16, 17] provided important aspects on the optimal control of el-
liptic equations and nonsmooth distributed parameter systems. Vector vari-
ational inequalities help us to formulate existence results in multi-objective
optimization problems (the reader can consult Ruiz-Garzón et al. [12]). As
a natural continuation of the above-mentioned research papers, Treanţă [13]
investigated a class of variational control inequalities driven by curvilinear
integral type functionals. Also, Kim [14] stated important relations between
multiple objective variational problems and vector variational inequalities.
As a generalization of variational problems in continuous time, the controlled
variational problems were considered in studying many processes in oper-
ations research, economics, and game theory. Thus, Treanţă [18, 19], Jha
et al. [15] formulated conditions of efficiency, modified objective function
method, saddle-point optimality criteria, and well-posedness of multi-time
variational problems generated by multiple/curvilinear integral functionals.
Recently, Treanţă [20] stated some relations of solutions for some variational
control inequalities of vector type, and (proper and efficient) solutions of the
attached multiple objective variational problems. In the current paper, we
introduce weak vector-controlled variational inequalities governed by partial
derivatives of second order and the associated multi-objective variational
control problem driven by path-independent curvilinear integral-type func-



Existence of solutions for variational control inequalities 219

tionals. By considering invex sets, Fréchet differentiability, invexity and
pseudoinvexity attached with the involved integral functionals (which calcu-
late, in physical terms, the mechanical work), we formulate and prove some
connections between solutions of the studied variational control problems.
An application and an example to show the aforementioned class of vector
variational control inequalities is solvable at a point can be consulted in
Treanţă [22].

This study is structured as follows. The preliminaries/auxiliary results
and problem description are given in Section 2; in Section 3, we formu-
late and prove some characterization theorems of solutions for the studied
variational control problems; in Section 4, we give the study’s conclusions.

2 Preliminaries

Let U be a compact set in Rb and U 3 u = (um), m = 1, b, be a multiple
variable of evolution. Consider U ⊃ Γ : u = u(ς), ς ∈ [t0, t1], is a piece-
wise differentiable curve that links the fixed points u1 = (u1

1, . . . , u
b
1), u2 =

(u1
2, . . . , u

b
2) in U . Also, let B be the space of piece-wise differentiable func-

tions h : U → Rv (state variables) and C be the space of piece-wise continu-
ous functions λ : U → Rs (control variables).

Next, let us define a p-dimensional functional driven by curvilinear inte-
grals G : B× C→ Rp,

G(h, λ) =

∫
Γ
gm (u, h(u), hn(u), hγδ(u), λ(u)) dum

=
(∫

Γ
g1
m (u, h(u), hn(u), hγδ(u), λ(u)) dum,

. . . ,

∫
Γ
gpm (u, h(u), hn(u), hγδ(u), λ(u)) dum

)
,

where the vector-valued functions gm = (gζm) : U × Rv × Rvb × Rvb
2 ×

Rs → Rp, m = 1, b, ζ = 1, p, are of C3-class, Dn, n ∈ {1, . . . , b}, is

the total derivative operator, D2
γδ := Dγ(Dδ), hn(u) :=

∂h

∂un
(u), hγδ(u) :=

∂2h

∂uγ∂uδ
(u), and assume the Lagrange 1-form densities

gm =
(
g1
m, . . . , g

p
m

)
: U × Rv × Rvb × Rvb

2 × Rs → Rp, m = 1, b,
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satisfy Dng
ζ
m = Dmg

ζ
n, m, n = 1, b, m 6= n, ζ = 1, p. Also, we consider the

following hypotheses:

σ = ε⇔ σζ = εζ , σ ≤ ε⇔ σζ ≤ εζ ,

σ < ε⇔ σζ < εζ , σ � ε⇔ σ ≤ ε, σ 6= ε, ζ = 1, p,

for all σ =
(
σ1, · · · , σp

)
, ε =

(
ε1, · · · , εp

)
in Rp.

Now, let us define the following variational control problem with mixed
constraints

(P) min
(h,λ)

{
G(h, λ) =

∫
Γ
gm (u, h(u), hn(u), hγδ(u), λ(u)) dum

}
subject to (h, λ) ∈ F ,

where

G(h, λ) =

∫
Γ
gm (u, h(u), hn(u), hγδ(u), λ(u)) dum

=
(∫

Γ
g1
m (u, h(u), hn(u), hγδ(u), λ(u)) dum,

. . . ,

∫
Γ
gpm (u, h(u), hn(u), hγδ(u), λ(u)) dum

)
=
(
G1(h, λ), . . . , Gp(h, λ)

)
and

F =
{

(h, λ) ∈ B× C | Y (u, h(u), hn(u), hγδ(u), λ(u)) ≤ 0,

A (u, h(u), hn(u), hγδ(u), λ(u)) := hγδ(u)− T (u, h(u), hn(u), λ(u)) = 0,

h|u=u1,u2 = given, hn|u=u1,u2 = given
}
.

Previous, we have considered A = (Aι) : U ×Rv×Rvb×Rvb
2×Rs → Rt, ι =

1, t, Y = (Y r) : U ×Rv ×Rvb×Rvb
2 ×Rs → Ra, r = 1, a, are some C2-class

functions.

Definition 1. The pair (h0, λ0) ∈ F is said to be efficient solution of (P)
if there exists no other (h, λ) ∈ F satisfying G(h, λ) � G(h0, λ0), or, for at
least one ζ, we have Gζ(h, λ)−Gζ(h0, λ0) ≤ 0 with strict inequality.

Definition 2. The pair (h0, λ0) ∈ F is said to be weak efficient solution
in (P) if there exists no other (h, λ) ∈ F satisfying G(h, λ) < G(h0, λ0), or
Gζ(h, λ)−Gζ(h0, λ0) < 0, (∀)ζ = 1, p.
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In the following, in accordance with Treanţă [20, 21] and by using Saun-
ders’s multi-index notation (Saunders [23]), we consider a vector-valued
functional of curvilinear integral type (assumed to be path-independent)

K : B× C→ Rp, K (h, λ) =

∫
Γ
κm (u, h(u), hn(u), hγδ(u), λ(u)) dum.

Definition 3. The functional K is called invex at
(
h0, λ0

)
∈ B × C with

respect to ρ and µ if there exist

ρ : U × (Rv × Rs)2 → Rv,

ρ = ρ
(
u, h(u), λ(u), h0(u), λ0(u)

)
=
(
ρi
(
u, h(u), λ(u), h0(u), λ0(u)

))
, i = 1, v,

of C2-class with ρ
(
u, h0(u), λ0(u), h0(u), λ0(u)

)
= 0, (∀)u ∈ U , ρ(u1) =

ρ(u2) = 0 and
µ : U × (Rv × Rs)2 → Rs,

µ = µ
(
u, h(u), λ(u), h0(u), λ0(u)

)
=
(
µj
(
u, h(u), λ(u), h0(u), λ0(u)

))
, j = 1, s,

of C0-class with µ
(
u, h0(u), λ0(u), h0(u), λ0(u)

)
= 0, (∀)u ∈ U , µ(u1) =

µ(u2) = 0, such that

K (h, λ)−K
(
h0, λ0

)
≥
∫

Γ

[∂κm
∂h

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
ρ

+
∂κm
∂hn

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dnρ

]
dum

+
1

x(γ, δ)

∫
Γ

[
∂κm
∂hγδ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dγδρ

]
dum

+

∫
Γ

[
∂κm
∂λ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
µ

]
dum,

for (h, λ) ∈ B× C.

Definition 4. In Definition 3, if we replace ≥ with >, and consider (h, λ) 6=(
h0, λ0

)
, we obtain the strictly invexity of K at

(
h0, λ0

)
∈ B×C with respect

to ρ and µ.

Definition 5. The functional K is called pseudoinvex at
(
h0, λ0

)
∈ B × C

with respect to ρ and µ if there exist

ρ : U × (Rv × Rs)2 → Rv,
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ρ = ρ
(
u, h(u), λ(u), h0(u), λ0(u)

)
=
(
ρi
(
u, h(u), λ(u), h0(u), λ0(u)

))
, i = 1, v,

of C2-class with ρ
(
u, h0(u), λ0(u), h0(u), λ0(u)

)
= 0, (∀)u ∈ U , ρ(u1) =

ρ(u2) = 0 and
µ : U × (Rv × Rs)2 → Rs,

µ = µ
(
u, h(u), λ(u), h0(u), λ0(u)

)
=
(
µj
(
u, h(u), λ(u), h0(u), λ0(u)

))
, j = 1, s,

of C0-class with µ
(
u, h0(u), λ0(u), h0(u), λ0(u)

)
= 0, (∀)u ∈ U , µ(u1) =

µ(u2) = 0, such that
K (h, λ)−K

(
h0, λ0

)
< 0

involves∫
Γ

[∂κm
∂h

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
ρ

+
∂κm
∂hn

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dnρ

]
dum

+
1

x(γ, δ)

∫
Γ

[
∂κm
∂hγδ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dγδρ

]
dum

+

∫
Γ

[
∂κm
∂λ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
µ

]
dum < 0,

or, in an equivalent manner,∫
Γ

[∂κm
∂h

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
ρ

+
∂κm
∂hn

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dnρ

]
dum

+
1

x(γ, δ)

∫
Γ

[
∂κm
∂hγδ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dγδρ

]
dum

+

∫
Γ

[
∂κm
∂λ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
µ

]
dum ≥ 0

⇒ K (h, λ)−K
(
h0, λ0

)
≥ 0,

for (h, λ) ∈ B× C.

Invex and/or pseudoinvex functionals of curvilinear integral type can be
seen in Treanţă [21].

Definition 6. (Treanţă [20]) The subset ∅ 6= X×Q ⊂ B×C is named invex
with respect to ρ and µ if

(h0, λ0) + ν
(
ρ
(
u, h, λ, h0, λ0

)
, µ
(
u, h, λ, h0, λ0

))
∈ X× Q

for any ν ∈ [0, 1] and (h, λ), (h0, λ0) ∈ X× Q.
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For establishing some characterization results of (P), we formulate the
next weak variational control inequalities of vector type: find (h0, λ0) ∈ F
so that there exists no (h, λ) ∈ F satisfying

(WV I)

(∫
Γ

[
∂g1

m

∂h

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
ρ

]
dum

+

∫
Γ

[
∂g1

m

∂λ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
µ

]
dum

+

∫
Γ

[
∂g1

m

∂hn

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dnρ

]
dum

+
1

x(γ, δ)

∫
Γ

[
∂g1

m

∂hγδ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dγδρ

]
dum,

. . . ,

∫
Γ

[
∂gpm
∂h

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
ρ

]
dum

+

∫
Γ

[
∂gpm
∂λ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
µ

]
dum

+

∫
Γ

[
∂gpm
∂hn

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dnρ

]
dum

+
1

x(γ, δ)

∫
Γ

[
∂gpm
∂hγδ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dγδρ

]
dum

)
< 0.

An application and an example to illustrate the aforementioned class of
variational control inequalities of vector type is solvable at a point can be
consulted in Treanţă [22].

3 Main results

This part of our study establishes the characterization theorems for the
variational control problem (P) and weak variational control inequalities of
vector type (WV I).

A sufficient condition for (h0, λ0) ∈ F to become a solution to (WV I) is
provided by the next theorem.

Theorem 1. Let F be an invex set, assume that (h0, λ0) ∈ F is a weak
efficient solution in (P), and each Gζ(h, λ), ζ = 1, p, is Fréchet differentiable
at the point (h0, λ0) ∈ F . Then the pair (h0, λ0) is solution to (WV I).
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Proof. Since, by hypothesis, (h0, λ0) ∈ F is a weak efficient solution to (P),
thus, there exists no other (h, λ) ∈ F with G(h, λ) < G(h0, λ0), or, in an
equivalent way,

Gζ(h, λ)−Gζ(h0, λ0) < 0, (∀)ζ = 1, p. (1)

Also, since F ⊂ B × C is an invex set, for ν ∈ [0, 1], it results (z, w) =
(h0, λ0) + ν

(
ρ
(
u, h, λ, h0, λ0

)
, µ
(
u, h, λ, h0, λ0

))
∈ F . In consequence, by

using (1), we get that there exists no other feasible solution (h, λ) ∈ F such
that G(z, w) < G(h0, λ0), or, in an equivalent way,

Gζ(z, w)−Gζ(h0, λ0) < 0, (∀)ζ = 1, p. (2)

Furthermore, by (2) and taking into account that each Gζ(h, λ), ζ = 1, p, is
Fréchet differentiable at (h0, λ0) ∈ F , we get there exists no other (h, λ) ∈ F
with∫

Γ

[∂gζm
∂h

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
ρ

+
∂gζm
∂λ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
µ
]
dum

+

∫
Γ

[
∂gζm
∂hn

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dnρ

]
dum

+
1

x(γ, δ)

∫
Γ

[
∂gζm
∂hγδ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dγδρ

]
dum < 0

for all ζ = 1, p, and this completes the proof.

The next result, by using the weak variational control inequality of vector
type (WV I), gives us a characterization of weak efficient solutions for (P).

Theorem 2. Let (h0, λ0) ∈ F be a solution to (WV I), each Gζ(h, λ), ζ =
1, p, is pseudoinvex and Fréchet differentiable at (h0, λ0) ∈ F . Then (h0, λ0)
is a weak efficient solution to (P).

Proof. Let us consider, by contrary, that (h0, λ0) ∈ F is a solution of (WV I)
but it is not a weak efficient solution to (P). Therefore, there exists (h, λ) ∈
F satisfying, for all ζ = 1, p, the following inequality

Gζ(h, λ)−Gζ(h0, λ0) < 0.
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Since each Gζ(h, λ), ζ = 1, p, is pseudoinvex and Fréchet differentiable at
(h0, λ0) ∈ F , we obtain

∫
Γ

[∂gζm
∂h

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
ρ

+
∂gζm
∂λ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
µ
]
dum

+

∫
Γ

[
∂gζm
∂hn

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dnρ

]
dum

+
1

x(γ, δ)

∫
Γ

[
∂gζm
∂hγδ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dγδρ

]
dum < 0,

for (h, λ) ∈ F and ζ = 1, p. This is in contradiction with (h0, λ0) ∈ F is a
solution of (WV I).

Finally, we formulate a sufficient condition such that a weak efficient
solution of (P) becomes an efficient solution of (P).

Theorem 3. Consider (h0, λ0) ∈ F is a weak efficient solution in (P), each
integral Gζ(h, λ), ζ = 1, p, is strictly invex and Fréchet differentiable at
(h0, λ0) ∈ F , and F is an invex set. Then (h0, λ0) is an efficient solution
to (P).

Proof. Let assume, by contrary, that (h0, λ0) ∈ F is a weak efficient solution
to (P) but it is not an efficient solution to (P). Thus, there exists (h, λ) ∈ F
with G(h, λ) � G(h0, λ0), or, for at least one ζ, the relation

Gζ(h, λ)−Gζ(h0, λ0) ≤ 0, (∀)ζ = 1, p, (3)

is with strict inequality.

Since each integral Gζ(h, λ), ζ = 1, p, is Fréchet differentiable and
strictly invex at (h0, λ0) ∈ F with respect to ρ and µ, we can write

Gζ(h, λ)−Gζ(h0, λ0) >

∫
Γ

[
∂gζm
∂h

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
ρ

]
dum

(4)
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+

∫
Γ

[
∂gζm
∂λ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
µ

]
dum

+

∫
Γ

[
∂gζm
∂hn

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dnρ

]
dum

+
1

x(γ, δ)

∫
Γ

[
∂gζm
∂hγδ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dγδρ

]
dum

for any (h, λ) 6= (h0, λ0) ∈ F and ζ = 1, p. By (3) and (4), it results there
exists (h, λ) ∈ F satisfying∫

Γ

[∂gζm
∂h

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
ρ

+
∂gζm
∂λ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
µ
]
dum

+

∫
Γ

[
∂gζm
∂hn

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dnρ

]
dum

+
1

x(γ, δ)

∫
Γ

[
∂gζm
∂hγδ

(
u, h0(u), h0

n(u), h0
γδ(u), λ0(u)

)
Dγδρ

]
dum < 0,

for all ζ = 1, p. Therefore, (h0, λ0) ∈ F is not a solution in (WV I). Now,
according to Theorem 3.1, we obtain (h0, λ0) ∈ F isn’t a weak efficient
solution to (P). The proof is now complete.

4 Conclusions

In this paper, motivated by its physical significance (mechanical work), we
investigated the solutions for some weak variational control inequalities of
vector type, and the efficient solutions to the corresponding optimization
problem. More exactly, to formulate and prove the principal results, we
have considered the Fréchet differentiability, the concept of invex set, and
invexity & pseudoinvexity of the curvilinear integral type functionals which
are involved in the study.
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