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Abstract

We consider different algorithms with linear rate of convergence
for computing the minimal nonnegative solution of M-matrix algebraic
Riccati equation. The performance of the considered algorithms are
illustrated on numerical examples.
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1 Introduction

The nonsymmetric algebraic Riccati equations have been the topic of ex-
tensive research. These equations arise in many important applications,
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including the total least squares problems, in the Markov chains [7], in the
transport theory [3] and many others.

The equation has the form

R(X) := XCX −XD −AX +B = 0 , (1)

where D,B,C and A are real matrices of dimensions m×m,m×n, n×m and

n × n, respectively. The block matrix K =

(
A −C
−B D

)
is an M-matrix.

It is investigated in Bai and coauthors [2], Ma and Lu [10], Guan and Lu
[4], Guan [5] and many other authors (see the reference there in).

In addition, nonsymmetric Riccati equation (1) arises in the game the-
ory and more specially from the investigation of the open-loop Nash linear
quadratic differential game [1, 12]. A more general problem on connected
to the properties of the stabilising solution of the game theoretic algebraic
Riccati equation is investigated in [8, 9]. The solution of practical interest
is the minimal nonnegative solution of (1).

There are many numerical methods up to now proposed for the min-
imal nonnegative solution of (1) with a nonsingular M-matrix. An effec-
tive method called alternately linearized implicit iteration method (ALI)
was proposed and investigated in [2, 10, 4]. This approach constructs two
matrix sequences of nonnegative matrices which converges to the minimal
solution. A new alternately linearized implicit iteration method (NALI) for
computing the minimal nonnegative solution of (1) is introduced in [4].

Guan [5] has proposed the MALI iterative method: A = (aij), D =
(dij), X

(0) = 0 ∈ Rn×n. The matrix A is transformed A = LA − UA, where
LA is the lower triangular part of A and UA is the strictly upper triangular
part of A. The matrix D is received the type D = LD − UD in the same
way.

The iteration scheme is:

Y (k)(αI + LD) = (αI −A+X(k)C)X(k) +X(k)UD +B ,

α ≥ maxi (aii)

(δI + LA)X(k+1) = Y (k)(δI −D + CY (k)) + UAY
(k) +B ,

δ ≥ maxi (dii) .

(2)

The convergence analysis of the MALI iteration method and numerical
experiments are executed by Guan. Moreover, Ivanov and Yang [11] have
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proposed a modification of (2):

Y (k)(γI + LD) = (γI −A+X(k)C)X(k) +X(k)UD +B ,

(γI +A)X(k+1) = Y (k)(γI −D + CY (k)) +B , .
(3)

The iteration (3) is an alternative to iteration (2).

Our investigation follows ideas presented of iterative methods by Bai
and coauthors [2], Ma and Lu [10], Guan and Lu [4], Guan [5], Ivanov and
Yang [11]. We propose a different iterative method to compute the minimal
nonnegative solution and derive convergence properties of the new iteration.

The notation Rr×s stands for r × s real matrices and I means an unit
n × n matrix. A matrix A = (aij) ∈ Rm×n is a nonnegative matrix if
the inequalities aij ≥ 0 are satisfied for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
We use an elementwise order relation. The inequality P ≥ Q(P > Q) for
P = (pij), Q = (qij) means that pij ≥ qij(pij > qij) for all indexes i and
j. Define Z-matrices and M-matrices. A matrix A = (aij) ∈ Rn×n is said
to be a Z-matrix if it has nonpositive off-diagonal entries. Any Z-matrix A
can be written in the form A = αI−N with N being a nonnegative matrix.
Each M-matrix is a Z-matrix with if α ≥ ρ(N), where ρ(N) is the spectral
radius of N . It is called a nonsingular M-matrix if α > ρ(N) and a singular
M-matrix if α = ρ(N).

2 Iterative methods and properties

Here, we consider the another modification of the above iteration (2). Com-
pute

α ≥ maxi (aii), {A = (aij)} , β ≥ maxi (dii), {D = (dij)} ,

γ = max{α, β} .

The iteration has the form

Y (k)(γI +D) = (γI −A+X(k)C)X(k) +B ,

(γI + LA)X(k+1) = Y (k)(γI −D + CY (k)) + UAY
(k) +B .

(4)

The iteration start with X(0) = 0 ∈ Rn×n. We transform A = LA − UA,
where LA is the lower triangular part of A and UA is the strictly upper
triangular part of A. The iteration (4) is an alternative to iteration (2).
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Lemma 1 The matrix sequences {X(k), Y (k)}∞k=0 are obtained applying it-
eration ((4)) with initial values X(0) = 0. Then for any positive k , the
following equalities hold:

(i) R(X(k)) = (Y (k) −X(k))(γI +D) ,

(ii) R(Y (k)) = (γI −A+X(k)C)(Y (k) −X(k)) + (Y (k) −X(k))CY (k) ,

(iii) R(Y (k)) = (γI + LA)(X(k+1) − Y (k)) ,

(iv) R(X(k+1)) = (X(k+1) − Y (k))(γI −D + CY (k))

+(UA +X(k+1)C)(X(k+1) − Y (k)) ,

(v) R(X̂) = (Y (k) − X̂)(γI +D) + (γI −A+ X̂C)(X̂ −X(k))

+(X̂ −X(k))CX(k) .

(vi) R(X̂) = (γI + LA)(X(k+1) − X̂)

+(X̂ − Y (k))(γI −D + CY (k)) + (UA + X̂C)(X̂ − Y (k)) .

Proof. The proof is completed by a direct calculation.

Theorem 1 Assume the matrix A is an M-matrix and B ≥ 0, C ≥ 0 ,
and there exists µ > 0, such that (µI + A) is an M-matrix and µI − A is
nonpositive. Assume there exist a nonnegative matrix X̂, such that R(X̂) ≤
0 .

The matrix sequences {X(k), Y (k)}∞k=0 defined by ((4)) satisfy the follow-
ing properties:

(i) X̂ ≥ X(k+1) ≥ Y (k) ≥ X(k) for k = 0, 1, . . .;

(ii) R(X(k)) ≥ 0 , R(Y (k)) ≥ 0 , R(X(k+1)) ≥ 0 , k = 0, 1, . . . .

(iii) The matrix sequence {X(k)}∞k=0 converges to the nonnegative min-
imal solution X̃ to the Riccati equation R(X) = 0 with X̃ ≤ X̂.

(iv) The matrix sequence {X(k)}∞k=0 converges to the nonnegative min-
imal solution X̃ to the Riccati equation R(X) = 0 with the property X̃ ≤ X̂.
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Proof. We apply the decomposition of the matrix coefficient A = LA−
UA, where LA is the lower triangular part of A and UA is the strictly upper
triangular part of A. We remark UA ≥ 0. We begin with the facts that
(γI +D)−1 ≥ 0, and (γI + LA)−1 ≥ 0. We construct the matrix sequences
{X(k), Y (k)}∞k=0 applying recursive equations (4) with X(0) = 0 and γ > 0.

For k = 0 we obtain Y (0)(γI + D) = B ≥ 0 and thus Y (0) = B(γI +
D)−1 ≥ 0 . And Y (0) ≥ X(0) = 0 . In addition, R(X(0)) = B ≥ 0 .

Applying Lemma 1 (ii), we get (γI −A ≥ 0)

R(Y (0)) = (γI −A)Y (0) + Y
(0)
i CY (0) ≥ 0 .

We compute X(1) applying the recursive equation (4). We have

(γI + LA)X(1) = W (0) ≥ 0 ,

where
W (0) := Y (0)(γI −D + CY (0)) + UAY

(0) +B .

Since (γI + LA)−1 ≥ 0, we obtain X(1) is nonnegative.
Applying Lemma 1 (iii), we get

(X(1) − Y (0)) = (γI + LA)−1R(Y (0)) ≥ 0 .

According to Lemma 1 (iv) we induce

R(X(1)) = (X(1) − Y (0))(γI −D + CY (0))

+(UA +X(1)C)(X(1) − Y (0)) ≥ 0 ,

because UA ≥ 0, γ I −D ≥ 0, X(1) ≥ Y (0) ≥ X(0).
In order to prove X̂ ≥ X(1) we consider equality Lemma 1 (v)

R(X̂) = (Y (0) − X̂)(γI +D) + (γI −A+ X̂C)X̂ ≥ 0 .

Note that γI −A ≥ 0 and then:

(Y (0) − X̂) = H(0) (γI +D)−1 ≤ 0 ,

because
H(0) := R(X̂)− (γI −A+ X̂C)X̂ ≤ 0 .

Thus X̂ ≥ Y (0) . Moreover, applying equality Lemma 1 (vi) we obtain

(γI + LA)(X(1) − X̂) = R(X̂)− (X̂ − Y (0))(γI −D + CY (k))

−(UA + X̂C)(X̂ − Y (0)) .
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We infer X̂ ≥ X(1) .
So, we have proved inequalities (i) - (ii) for k = 0.
We assume that the inequalities (i) - (ii) hold for k = 0, 1, . . . , r. We

know matrices X(r+1) with the properties:

X̂ ≥ X(r+1) ≥ Y (r) ≥ X(r) ,

and

R(X(r)) ≥ 0 , R(Y (r)) ≥ 0 .R(X(r+1)) ≥ 0 .

We will prove the inequalities (i) - (ii) for k = r + 1.
We compute Y (r+1) via (4), i.e.

Y (r+1) = [(γI −A+X(r+1)C)X(r+1) +B] (γI +D)−1 ≥ 0 .

According to Lemma 1 (i) we extract

Y (r+1) −X(r+1) = R(X(r+1))(γI +D)−1 ≥ 0 .

From Lemma 1 (ii), we conclude

R(Y (r+1)) = (γI −A+X(r+1)C)(Y (r+1) −X(r+1))

+(Y (r+1) −X(r+1))CY (r+1) ≥ 0 ,

We compute X(r+2) via the second equation of (4). Consider the equality
(iii) of Lemma 1 for k = r + 1. We write down:

X(r+2) − Y (r+1) = (γI + LA)−1R(Y (r+1)) ≥ 0 .

Next, we apply of Lemma 1 (iv) for

R(X(r+2)) = (X(r+2) − Y (r+1))(γI −D + CY (r+1))

+(UA +X(r+2)Ci)(X
(r+2) − Y (r+1)) ≥ 0 .

Thus R(X(r+2)) ≥ 0 .
In order to prove X̂ ≥ X(r+2) we consider equality Lemma 1 (v)

R(X̂) = (Y (r+1) − X̂)(γI + LD)

+(γI −A+ X̂C)(X̂ −X(r+1))− (X̂ −X(r+1))(UD + CX(r+1)) .

Note that γI −A ≥ 0 , UD ≥ 0 , . Then

Y (r+1) − X̂ = H(r+1) (γI + LD)−1 ≤ 0 ,
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because H(r+1) ≤ 0, and

H(r+1) := R(X̂)− (γI −A+ X̂C)(X̂ −X(r+1))

−(X̂ −X(r+1))(UD + CX(r+1)) .

Thus X̂ ≥ Y (r+1) .

Further on, taking into account Lemma 1 (vi) we obtain

X
(r+2)
i − X̂i = (γiIn + LAi)

−1 T
(r+1)
i ≤ 0 ,

because T
(r+1)
i ≤ 0, and

T
(r+1)
i := Ri(X̂1, . . . , X̂s)− (X̂i − Y (r+1)

i )(γiIn −Di + CiY
(r+1)
i )

−(UAi + X̂iCi)(X̂i − Y (r+1)
i )−

∑
j 6=i eij(X̂j − Y (r+1)

j ) , i = 1, . . . , s .

We infer X̂ ≥ X(r+2) .

Hence, the induction process has been completed. Thus the matrix se-
quence {X(k)}∞k=0 are nonnegative, monotonically increasing and bounded
from above by (X̂ (in the elementwise ordering). We denote limk→∞(X(k)) =
(X̃). By taking the limits in (4) it follows that (X̃) is a solution of R(X) = 0
with the property X̃ ≤ X̂.

Assume there is another solution Z̃ with Z̃ ≤ X̃. There exists sufficiently
large index r such that X(r+1) ≥ Z̃ ≥ Y (r) ≥ X(r) .

Applying Lemma 1 (vi) for X̂ = Z̃, we get

0 = (γI + LA)(X(r+1) − Z̃) + (Z̃ − Y (r))(γI −D + CY (r))

+(UA + Z̃C)(Z̃ − Y (r)) .

We rewrite

(γI + LA)(X(r+1) − Z̃) = Q(r) .

The matrix Q(r) is nonnegative because Z̃ ≥ Y (r). Thus X(r+1) − Z̃ is
nonnegative, which is contradiction with the assumption X(r+1) ≥ Z̃. We
infer the solution X̃ is the minimal one.

The theorem is proved.
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3 Algorithms

The considered iterative methods have a linear convergence rate. We present
algorithms which realize the iterations on Matlab.

Algorithm 1 presents iteration (2) using Matlab’s commands.

Algorithm 1.

1. Input the coefficients A,B,C,D and compute RESB = norm(B).

2. Choose tolerance tol = 1.0e − 14 and n × n initial matrix X0 = 0,
normRE=1.

3. Compute LA = tril(A) , UA = LA−A ,LD = tril(D) , UD = LD−D.

4. Compute α = maxi (aii), δ = maxi (dii).

5. Compute aImA = αI −A, dImD = δI −D .

6. Compute Z = inv(αI + LD) T = inv(δI + LA).

7. Define the loop

while normRE > tol

Y0=((aImA + X0*C)*X0 + X0*UD + B)*Z

X0 = T*(Y0*(dImD + C*Y0) + UA*Y0 + B)

normRE = norm(X0*C*X0-A*10-X0*D+B)/RESB

END Algorithm 1

Algorithm 2 explains how to realize iteration (4).

Algorithm 2.

1. Input the coefficients A,B,C,D and compute RESB = norm(B).

2. Choose tolerance tol = 1.0e − 14 and n × n initial matrix X0 = 0,
normRE=1.

3. Compute α = maxi (aii), δ = maxi (dii) , γ = max(α, δ).

4. Compute aImA = γI −A, dImD = γI −D .

5. Compute LA = tril(A) , UA = LA − A , Z = inv(γI + D) T =
inv(γI + LA).

6. Define the loop

while normRE > tol

Y0=((aImA + X0*C)*X0 + B)*Z

X0 = T*(Y0*(dImD + C*Y0) + UA*Y0 + B)

normRE = norm(X0*C*X0-A*10-X0*D+B)/RESB

END Algorithm 2

We can introduce a mixed algorithm depending on the bigger value of α
and δ.

We apply iterations (4) and (3) to construct next Algorithm 3.

Algorithm 3.

1. Input the coefficients A,B,C,D and compute RESB = norm(B).



Linear convergence rate algorithms 213

2. Choose the tolerance value tol = 1.0e − 14 and n × n initial matrix
X0 = 0, normRE=1.

3. Compute α = maxi (aii), δ = maxi (dii) , γ = max(α, δ).

4. Compute aImA = γI −A, dImD = γI −D .

5. If γ = α then

Compute LD = tril(D) , UD = LD −D , Z = inv(αI + LD) T =
inv(δI +A).

Apply iteration (3)

else

Compute LA = tril(A) , UA = LA − A , Z = inv(γI + D) T =
inv(γI + LA).

Apply iteration (4)

END Algorithm 3

Additional experiments with bigger size of matrix coefficients.

4 Numerical Experiments

We provide experiments wit different matrix coefficients with small dimen-
sion (n = 2, 3). Numerical experiments are executed on the computer with
Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz.

Example 1. We introduce an example with the 2×2 matrix coefficients.
Using Matlab’s notation we introduce the matrices:

A=[3 -1; -1 3];

D=[102 -100; -100 102];

C=[1.2 0.9; 1.0 0.65];

B=C;

Example 2. The 2× 2 matrix coefficients are:

A=[3 -1; -1 3];

D=[102 -100; -100 102];

C=[0.97 0.6; 1.2 0.79];

A=[3 -1; -1 3];

B=ksi*C; (for different values of ksi).

Example 3. The 3× 3 matrix coefficients are:

A=[65 -2 -0.18;-2 65 -0.9; -0.18 -0.9 65];

D=[202 -140 -98; -140 202 -101; -98 -101 202];

C=[15 2 1; 2 12 4; 1 4 15];

B=ksi*C; (for different values of ksi).

Example 4. The 3× 3 matrix coefficients are:
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D=[65 -2 -0.18;-2 65 -0.9; -0.18 -0.9 65];

A=[202 -140 -98; -140 202 -101; -98 -101 202];

C=[15 2 1; 2 12 4; 1 4 15];

B=ksi*C; (for different values of ksi).

Table 1. tol = 1.0e− 14 , 1000 runs

Algorithm 1 Algorithm 2

Example 1

γ = It CPU It CPU

1162 4.01s 1188 4.0s

Example 2, ksi=1.0

δ 845 2.8s 860 2.8s

Example 2, ksi=1.27

δ 4174 14.7s 4298 14.3s

Example 3, ksi=1.0

δ 483 2.4s 462 2.3s

Example 3, ksi=1.03

δ 1492 7.6s 1430 6.9s

Example 4, ksi=1.03

α 1495 7.7s 1936 9.4s

Applying Algorithm 3 to Example 4 we obtain 1429 iteration steps and
CPU time of 7.1s. Algorithm 3 pays this computational price to obtain the
minimal nonnegative solution of R(X) = 0.

Example 5. [2] The matrix coefficients A,B,C and D are n×n matrices
and we compute them as follows:

A = D = tridiag (−I, T,−I),

are block tridiagonal matrices. The matrix C is

C =
1

50
tridiag (1, 2, 1)

is a tridiagonal matrix and B = SD + AS − SCS, i.e. S is the minimal
nonnegative solution of R(X) = 0. We take e the vector of units and
compute S

S =
1

50
eeT .



Linear convergence rate algorithms 215

In addition, the m×m, (n = m2) matrix T is

T = tridiag (−1, 4 +
200

(m+ 1)2
,−1) .

Computational experiment to compute the minimal nonnegative solution
gives the results described in Table 2.

Table 2. tol = 1.0e− 14 , 1000 runs

Algorithm 1 Algorithm 2 Algorithm 3

m It CPU It CPU It CPU

8 25 10.2s 22 9.8s 22 9.4s

12 52 159.7s 44 165.0s 44 143.0s

Results from experiments show the effectiveness of the considered ap-
proach.
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