ALGORITHMS FOR THE RICCATI EQUATION WITH A NONSINGULAR M-MATRIX*

I. Ivanov ${ }^{\dagger} \quad$ N. Baeva ${ }^{\ddagger}$
DOI https://doi.org/10.56082/annalsarscimath.2023.1-2.205
Dedicated to Dr. Dan Tiba on the occasion of his $70^{t h}$ anniversary

Abstract

We consider different algorithms with linear rate of convergence for computing the minimal nonnegative solution of M-matrix algebraic Riccati equation. The performance of the considered algorithms are illustrated on numerical examples.

MSC: 15A24, 65F45.
keywords: M-matrix, iterative methods, algorithm, convergence rate, nonnegative solution.

1 Introduction

The nonsymmetric algebraic Riccati equations have been the topic of extensive research. These equations arise in many important applications,

[^0]including the total least squares problems, in the Markov chains [7], in the transport theory [3] and many others.

The equation has the form

$$
\begin{equation*}
\mathcal{R}(X):=X C X-X D-A X+B=0 \tag{1}
\end{equation*}
$$

where D, B, C and A are real matrices of dimensions $m \times m, m \times n, n \times m$ and $n \times n$, respectively. The block matrix $K=\left(\begin{array}{cc}A & -C \\ -B & D\end{array}\right)$ is an M-matrix. It is investigated in Bai and coauthors [2], Ma and Lu [10], Guan and Lu [4], Guan [5] and many other authors (see the reference there in).

In addition, nonsymmetric Riccati equation (1) arises in the game theory and more specially from the investigation of the open-loop Nash linear quadratic differential game [1, 12]. A more general problem on connected to the properties of the stabilising solution of the game theoretic algebraic Riccati equation is investigated in $[8,9]$. The solution of practical interest is the minimal nonnegative solution of (1).

There are many numerical methods up to now proposed for the minimal nonnegative solution of (1) with a nonsingular M-matrix. An effective method called alternately linearized implicit iteration method (ALI) was proposed and investigated in [2, 10, 4]. This approach constructs two matrix sequences of nonnegative matrices which converges to the minimal solution. A new alternately linearized implicit iteration method (NALI) for computing the minimal nonnegative solution of (1) is introduced in [4].

Guan [5] has proposed the MALI iterative method: $A=\left(a_{i j}\right), D=$ $\left(d_{i j}\right), X^{(0)}=0 \in R^{n \times n}$. The matrix A is transformed $A=L_{A}-U_{A}$, where L_{A} is the lower triangular part of A and U_{A} is the strictly upper triangular part of A. The matrix D is received the type $D=L_{D}-U_{D}$ in the same way.

The iteration scheme is:

$$
\begin{align*}
& Y^{(k)}\left(\alpha I+L_{D}\right)=\left(\alpha I-A+X^{(k)} C\right) X^{(k)}+X^{(k)} U_{D}+B, \\
& \alpha \geq \max _{i}\left(a_{i i}\right) \\
& \left(\delta I+L_{A}\right) X^{(k+1)}=Y^{(k)}\left(\delta I-D+C Y^{(k)}\right)+U_{A} Y^{(k)}+B, \tag{2}\\
& \delta \geq \max _{i}\left(d_{i i}\right) .
\end{align*}
$$

The convergence analysis of the MALI iteration method and numerical experiments are executed by Guan. Moreover, Ivanov and Yang [11] have
proposed a modification of (2):

$$
\begin{align*}
& Y^{(k)}\left(\gamma I+L_{D}\right)=\left(\gamma I-A+X^{(k)} C\right) X^{(k)}+X^{(k)} U_{D}+B, \tag{3}\\
& (\gamma I+A) X^{(k+1)}=Y^{(k)}\left(\gamma I-D+C Y^{(k)}\right)+B,
\end{align*}
$$

The iteration (3) is an alternative to iteration (2).
Our investigation follows ideas presented of iterative methods by Bai and coauthors [2], Ma and Lu [10], Guan and Lu [4], Guan [5], Ivanov and Yang [11]. We propose a different iterative method to compute the minimal nonnegative solution and derive convergence properties of the new iteration.

The notation $\mathbf{R}^{r \times s}$ stands for $r \times s$ real matrices and I means an unit $n \times n$ matrix. A matrix $A=\left(a_{i j}\right) \in \mathbf{R}^{m \times n}$ is a nonnegative matrix if the inequalities $a_{i j} \geq 0$ are satisfied for all $1 \leq i \leq m$ and $1 \leq j \leq n$. We use an elementwise order relation. The inequality $P \geq Q(P>Q)$ for $P=\left(p_{i j}\right), Q=\left(q_{i j}\right)$ means that $p_{i j} \geq q_{i j}\left(p_{i j}>q_{i j}\right)$ for all indexes i and j. Define Z-matrices and M-matrices. A matrix $A=\left(a_{i j}\right) \in \mathbf{R}^{n \times n}$ is said to be a Z-matrix if it has nonpositive off-diagonal entries. Any Z-matrix A can be written in the form $A=\alpha I-N$ with N being a nonnegative matrix. Each M-matrix is a Z-matrix with if $\alpha \geq \rho(N)$, where $\rho(N)$ is the spectral radius of N. It is called a nonsingular M-matrix if $\alpha>\rho(N)$ and a singular M-matrix if $\alpha=\rho(N)$.

2 Iterative methods and properties

Here, we consider the another modification of the above iteration (2). Compute

$$
\begin{aligned}
& \alpha \geq \max _{i}\left(a_{i i}\right),\left\{A=\left(a_{i j}\right)\right\}, \quad \beta \geq \max _{i}\left(d_{i i}\right),\left\{D=\left(d_{i j}\right)\right\}, \\
& \gamma=\max \{\alpha, \beta\} .
\end{aligned}
$$

The iteration has the form

$$
\begin{align*}
& Y^{(k)}(\gamma I+D)=\left(\gamma I-A+X^{(k)} C\right) X^{(k)}+B, \\
& \left(\gamma I+L_{A}\right) X^{(k+1)}=Y^{(k)}\left(\gamma I-D+C Y^{(k)}\right)+U_{A} Y^{(k)}+B . \tag{4}
\end{align*}
$$

The iteration start with $X^{(0)}=0 \in R^{n \times n}$. We transform $A=L_{A}-U_{A}$, where L_{A} is the lower triangular part of A and U_{A} is the strictly upper triangular part of A. The iteration (4) is an alternative to iteration (2).

Lemma 1 The matrix sequences $\left\{X^{(k)}, Y^{(k)}\right\}_{k=0}^{\infty}$ are obtained applying iteration ((4)) with initial values $X^{(0)}=0$. Then for any positive k, the following equalities hold:
(i) $\mathcal{R}\left(X^{(k)}\right)=\left(Y^{(k)}-X^{(k)}\right)(\gamma I+D)$,
(ii) $\mathcal{R}\left(Y^{(k)}\right)=\left(\gamma I-A+X^{(k)} C\right)\left(Y^{(k)}-X^{(k)}\right)+\left(Y^{(k)}-X^{(k)}\right) C Y^{(k)}$,
(iii) $\mathcal{R}\left(Y^{(k)}\right)=\left(\gamma I+L_{A}\right)\left(X^{(k+1)}-Y^{(k)}\right)$,
(iv) $\mathcal{R}\left(X^{(k+1)}\right)=\left(X^{(k+1)}-Y^{(k)}\right)\left(\gamma I-D+C Y^{(k)}\right)$ $+\left(U_{A}+X^{(k+1)} C\right)\left(X^{(k+1)}-Y^{(k)}\right)$,
(v) $\mathcal{R}(\hat{X})=\left(Y^{(k)}-\hat{X}\right)(\gamma I+D)+(\gamma I-A+\hat{X} C)\left(\hat{X}-X^{(k)}\right)$ $+\left(\hat{X}-X^{(k)}\right) C X^{(k)}$.
(vi) $\mathcal{R}(\hat{X})=\left(\gamma I+L_{A}\right)\left(X^{(k+1)}-\hat{X}\right)$ $+\left(\hat{X}-Y^{(k)}\right)\left(\gamma I-D+C Y^{(k)}\right)+\left(U_{A}+\hat{X} C\right)\left(\hat{X}-Y^{(k)}\right)$.

Proof. The proof is completed by a direct calculation.

Theorem 1 Assume the matrix A is an M-matrix and $B \geq 0, C \geq 0$, and there exists $\mu>0$, such that $(\mu I+A)$ is an M-matrix and $\mu I-A$ is nonpositive. Assume there exist a nonnegative matrix \hat{X}, such that $\mathcal{R}(\hat{X}) \leq$ 0 .

The matrix sequences $\left\{X^{(k)}, Y^{(k)}\right\}_{k=0}^{\infty}$ defined by ((4)) satisfy the following properties:
(i) $\hat{X} \geq X^{(k+1)} \geq Y^{(k)} \geq X^{(k)}$ for $k=0,1, \ldots ;$
(ii) $\quad \mathcal{R}\left(X^{(k)}\right) \geq 0, \quad \mathcal{R}\left(Y^{(k)}\right) \geq 0, \quad \mathcal{R}\left(X^{(k+1)}\right) \geq 0, \quad k=0,1, \ldots$.
(iii) The matrix sequence $\left\{X^{(k)}\right\}_{k=0}^{\infty}$ converges to the nonnegative minimal solution \tilde{X} to the Riccati equation $\mathcal{R}(X)=0$ with $\tilde{X} \leq \hat{X}$.
(iv) The matrix sequence $\left\{X^{(k)}\right\}_{k=0}^{\infty}$ converges to the nonnegative minimal solution \tilde{X} to the Riccati equation $\mathcal{R}(X)=0$ with the property $\tilde{X} \leq \hat{X}$.

Proof. We apply the decomposition of the matrix coefficient $A=L_{A}-$ U_{A}, where L_{A} is the lower triangular part of A and U_{A} is the strictly upper triangular part of A. We remark $U_{A} \geq 0$. We begin with the facts that $(\gamma I+D)^{-1} \geq 0$, and $\left(\gamma I+L_{A}\right)^{-1} \geq 0$. We construct the matrix sequences $\left\{X^{(k)}, Y^{(k)}\right\}_{k=0}^{\infty}$ applying recursive equations (4) with $X^{(0)}=0$ and $\gamma>0$.

For $k=0$ we obtain $Y^{(0)}(\gamma I+D)=B \geq 0$ and thus $Y^{(0)}=B(\gamma I+$ $D)^{-1} \geq 0$. And $Y^{(0)} \geq X^{(0)}=0$. In addition, $\mathcal{R}\left(X^{(0)}\right)=B \geq 0$.

Applying Lemma 1 (ii), we get ($\gamma I-A \geq 0$)

$$
\mathcal{R}\left(Y^{(0)}\right)=(\gamma I-A) Y^{(0)}+Y_{i}^{(0)} C Y^{(0)} \geq 0 .
$$

We compute $X^{(1)}$ applying the recursive equation (4). We have

$$
\left(\gamma I+L_{A}\right) X^{(1)}=W^{(0)} \geq 0,
$$

where

$$
W^{(0)}:=Y^{(0)}\left(\gamma I-D+C Y^{(0)}\right)+U_{A} Y^{(0)}+B .
$$

Since $\left(\gamma I+L_{A}\right)^{-1} \geq 0$, we obtain $X^{(1)}$ is nonnegative.
Applying Lemma 1 (iii), we get

$$
\left(X^{(1)}-Y^{(0)}\right)=\left(\gamma I+L_{A}\right)^{-1} \mathcal{R}\left(Y^{(0)}\right) \geq 0 .
$$

According to Lemma 1 (iv) we induce

$$
\begin{aligned}
\mathcal{R}\left(X^{(1)}\right)= & \left(X^{(1)}-Y^{(0)}\right)\left(\gamma I-D+C Y^{(0)}\right) \\
& +\left(U_{A}+X^{(1)} C\right)\left(X^{(1)}-Y^{(0)}\right) \geq 0
\end{aligned}
$$

because $U_{A} \geq 0, \gamma I-D \geq 0, X^{(1)} \geq Y^{(0)} \geq X^{(0)}$.
In order to prove $\hat{X} \geq X^{(1)}$ we consider equality Lemma 1 (v)

$$
\mathcal{R}(\hat{X})=\left(Y^{(0)}-\hat{X}\right)(\gamma I+D)+(\gamma I-A+\hat{X} C) \hat{X} \geq 0
$$

Note that $\gamma I-A \geq 0$ and then:

$$
\left(Y^{(0)}-\hat{X}\right)=H^{(0)}(\gamma I+D)^{-1} \leq 0
$$

because

$$
H^{(0)}:=\mathcal{R}(\hat{X})-(\gamma I-A+\hat{X} C) \hat{X} \leq 0
$$

Thus $\hat{X} \geq Y^{(0)}$. Moreover, applying equality Lemma 1 (vi) we obtain

$$
\begin{gathered}
\left(\gamma I+L_{A}\right)\left(X^{(1)}-\hat{X}\right)=\mathcal{R}(\hat{X})-\left(\hat{X}-Y^{(0)}\right)\left(\gamma I-D+C Y^{(k)}\right) \\
-\left(U_{A}+\hat{X} C\right)\left(\hat{X}-Y^{(0)}\right) .
\end{gathered}
$$

We infer $\hat{X} \geq X^{(1)}$.
So, we have proved inequalities (i) - (ii) for $k=0$.
We assume that the inequalities (i) - (ii) hold for $k=0,1, \ldots, r$. We know matrices $X^{(r+1)}$ with the properties:

$$
\hat{X} \geq X^{(r+1)} \geq Y^{(r)} \geq X^{(r)}
$$

and

$$
\mathcal{R}\left(X^{(r)}\right) \geq 0, \quad \mathcal{R}\left(Y^{(r)}\right) \geq 0 . \mathcal{R}\left(X^{(r+1)}\right) \geq 0
$$

We will prove the inequalities (i) - (ii) for $k=r+1$.
We compute $Y^{(r+1)}$ via (4), i.e.

$$
Y^{(r+1)}=\left[\left(\gamma I-A+X^{(r+1)} C\right) X^{(r+1)}+B\right](\gamma I+D)^{-1} \geq 0
$$

According to Lemma 1 (i) we extract

$$
Y^{(r+1)}-X^{(r+1)}=\mathcal{R}\left(X^{(r+1)}\right)(\gamma I+D)^{-1} \geq 0
$$

From Lemma 1 (ii), we conclude

$$
\begin{aligned}
& \mathcal{R}\left(Y^{(r+1)}\right)=\left(\gamma I-A+X^{(r+1)} C\right)\left(Y^{(r+1)}-X^{(r+1)}\right) \\
& \quad+\left(Y^{(r+1)}-X^{(r+1)}\right) C Y^{(r+1)} \geq 0
\end{aligned}
$$

We compute $X^{(r+2)}$ via the second equation of (4). Consider the equality (iii) of Lemma 1 for $k=r+1$. We write down:

$$
X^{(r+2)}-Y^{(r+1)}=\left(\gamma I+L_{A}\right)^{-1} \mathcal{R}\left(Y^{(r+1)}\right) \geq 0
$$

Next, we apply of Lemma 1 (iv) for

$$
\begin{gathered}
\mathcal{R}\left(X^{(r+2)}\right)=\left(X^{(r+2)}-Y^{(r+1)}\right)\left(\gamma I-D+C Y^{(r+1)}\right) \\
+\left(U_{A}+X^{(r+2)} C_{i}\right)\left(X^{(r+2)}-Y^{(r+1)}\right) \geq 0
\end{gathered}
$$

Thus $\mathcal{R}\left(X^{(r+2)}\right) \geq 0$.
In order to prove $\hat{X} \geq X^{(r+2)}$ we consider equality Lemma 1 (v)

$$
\begin{aligned}
\mathcal{R}(\hat{X}) & =\left(Y^{(r+1)}-\hat{X}\right)\left(\gamma I+L_{D}\right) \\
+ & (\gamma I-A+\hat{X} C)\left(\hat{X}-X^{(r+1)}\right)-\left(\hat{X}-X^{(r+1)}\right)\left(U_{D}+C X^{(r+1)}\right)
\end{aligned}
$$

Note that $\gamma I-A \geq 0, U_{D} \geq 0$, . Then

$$
Y^{(r+1)}-\hat{X}=H^{(r+1)}\left(\gamma I+L_{D}\right)^{-1} \leq 0
$$

because $H^{(r+1)} \leq 0$, and

$$
\begin{aligned}
& H^{(r+1)}:=\mathcal{R}(\hat{X})-(\gamma I-A+\hat{X} C)\left(\hat{X}-X^{(r+1)}\right) \\
& \quad-\left(\hat{X}-X^{(r+1)}\right)\left(U_{D}+C X^{(r+1)}\right)
\end{aligned}
$$

Thus $\hat{X} \geq Y^{(r+1)}$.
Further on, taking into account Lemma 1 (vi) we obtain

$$
X_{i}^{(r+2)}-\hat{X}_{i}=\left(\gamma_{i} I_{n}+L_{A_{i}}\right)^{-1} T_{i}^{(r+1)} \leq 0
$$

because $T_{i}^{(r+1)} \leq 0$, and

$$
\begin{aligned}
T_{i}^{(r+1)} & :=\mathcal{R}_{i}\left(\hat{X}_{1}, \ldots, \hat{X}_{s}\right)-\left(\hat{X}_{i}-Y_{i}^{(r+1)}\right)\left(\gamma_{i} I_{n}-D_{i}+C_{i} Y_{i}^{(r+1)}\right) \\
& -\left(U_{A_{i}}+\hat{X}_{i} C_{i}\right)\left(\hat{X}_{i}-Y_{i}^{(r+1)}\right)-\sum_{j \neq i} e_{i j}\left(\hat{X}_{j}-Y_{j}^{(r+1)}\right), \quad i=1, \ldots, s .
\end{aligned}
$$

We infer $\hat{X} \geq X^{(r+2)}$.
Hence, the induction process has been completed. Thus the matrix sequence $\left\{X^{(k)}\right\}_{k=0}^{\infty}$ are nonnegative, monotonically increasing and bounded from above by (\hat{X} (in the elementwise ordering). We denote $\lim _{k \rightarrow \infty}\left(X^{(k)}\right)=$ (\tilde{X}). By taking the limits in (4) it follows that (\tilde{X}) is a solution of $\mathcal{R}(X)=0$ with the property $\tilde{X} \leq \hat{X}$.

Assume there is another solution \tilde{Z} with $\tilde{Z} \leq \tilde{X}$. There exists sufficiently large index r such that $X^{(r+1)} \geq \tilde{Z} \geq Y^{(r)} \geq X^{(r)}$.

Applying Lemma 1 (vi) for $\hat{X}=\tilde{Z}$, we get

$$
\begin{gathered}
0=\left(\gamma I+L_{A}\right)\left(X^{(r+1)}-\tilde{Z}\right)+\left(\tilde{Z}-Y^{(r)}\right)\left(\gamma I-D+C Y^{(r)}\right) \\
+\left(U_{A}+\tilde{Z} C\right)\left(\tilde{Z}-Y^{(r)}\right)
\end{gathered}
$$

We rewrite

$$
\left(\gamma I+L_{A}\right)\left(X^{(r+1)}-\tilde{Z}\right)=Q^{(r)}
$$

The matrix $Q^{(r)}$ is nonnegative because $\tilde{Z} \geq Y^{(r)}$. Thus $X^{(r+1)}-\tilde{Z}$ is nonnegative, which is contradiction with the assumption $X^{(r+1)} \geq \tilde{Z}$. We infer the solution \tilde{X} is the minimal one.

The theorem is proved.

3 Algorithms

The considered iterative methods have a linear convergence rate. We present algorithms which realize the iterations on Matlab.

Algorithm 1 presents iteration (2) using Matlab's commands.
Algorithm 1.

1. Input the coefficients A, B, C, D and compute $R E S B=\operatorname{norm}(B)$.
2. Choose tolerance tol $=1.0 e-14$ and $n \times n$ initial matrix $X 0=0$, normRE=1.
3. Compute $L A=\operatorname{tril}(A), U A=L A-A, L D=\operatorname{tril}(D), U D=L D-D$.
4. Compute $\alpha=\max _{i}\left(a_{i i}\right), \delta=\max _{i}\left(d_{i i}\right)$.
5. Compute $a \operatorname{Im} A=\alpha I-A, d \operatorname{Im} D=\delta I-D$.
6. Compute $Z=\operatorname{inv}(\alpha I+L D) T=\operatorname{inv}(\delta I+L A)$.
7. Define the loop while normRE $>$ tol
$\mathrm{Y} 0=\left(\left(\operatorname{aImA}+\mathrm{X} 0^{*} \mathrm{C}\right)^{*} \mathrm{X} 0+\mathrm{X} 0 * \mathrm{UD}+\mathrm{B}\right)^{*} \mathrm{Z}$
$\mathrm{X} 0=\mathrm{T}^{*}\left(\mathrm{Y} 0^{*}\left(\mathrm{dImD}+\mathrm{C}^{*} \mathrm{Y} 0\right)+\mathrm{UA}^{*} \mathrm{Y} 0+\mathrm{B}\right)$
normRE $=\operatorname{norm}\left(X 0{ }^{*} \mathrm{C}^{*} \mathrm{X} 0-\mathrm{A}^{*} 10-\mathrm{X} 0 * \mathrm{D}+\mathrm{B}\right) / \mathrm{RESB}$

END Algorithm 1

Algorithm 2 explains how to realize iteration (4).

Algorithm 2.

1. Input the coefficients A, B, C, D and compute $R E S B=\operatorname{norm}(B)$.
2. Choose tolerance tol $=1.0 e-14$ and $n \times n$ initial matrix $X 0=0$, normRE=1.
3. Compute $\alpha=\max _{i}\left(a_{i i}\right), \delta=\max _{i}\left(d_{i i}\right), \gamma=\max (\alpha, \delta)$.
4. Compute $a \operatorname{Im} A=\gamma I-A, d \operatorname{Im} D=\gamma I-D$.
5. Compute $L A=\operatorname{tril}(A), U A=L A-A, Z=\operatorname{inv}(\gamma I+D) T=$ $\operatorname{inv}(\gamma I+L A)$.
6. Define the loop while normRE $>$ tol
$\mathrm{Y} 0=\left((\operatorname{aIm} \mathrm{A}+\mathrm{X} 0 * \mathrm{C})^{*} \mathrm{X} 0+\mathrm{B}\right)^{*} \mathrm{Z}$
$\mathrm{X} 0=\mathrm{T}^{*}\left(\mathrm{Y} 0^{*}\left(\mathrm{dImD}+\mathrm{C}^{*} \mathrm{Y} 0\right)+\mathrm{UA}^{*} \mathrm{Y} 0+\mathrm{B}\right)$
normRE $=\operatorname{norm}\left(\mathrm{X} 0 * \mathrm{C}^{*} \mathrm{X} 0-\mathrm{A}^{*} 10-\mathrm{X} 0^{*} \mathrm{D}+\mathrm{B}\right) / \mathrm{RESB}$

END Algorithm 2

We can introduce a mixed algorithm depending on the bigger value of α and δ.

We apply iterations (4) and (3) to construct next Algorithm 3.
Algorithm 3.

1. Input the coefficients A, B, C, D and compute $R E S B=\operatorname{norm}(B)$.
2. Choose the tolerance value tol $=1.0 e-14$ and $n \times n$ initial matrix $X 0=0$, normRE=1.
3. Compute $\alpha=\max _{i}\left(a_{i i}\right), \delta=\max _{i}\left(d_{i i}\right), \gamma=\max (\alpha, \delta)$.
4. Compute $a \operatorname{Im} A=\gamma I-A, d \operatorname{Im} D=\gamma I-D$.
5. If $\gamma=\alpha$ then

Compute $L D=\operatorname{tril}(D), U D=L D-D, Z=\operatorname{inv}(\alpha I+L D) T=$ $\operatorname{inv}(\delta I+A)$.

Apply iteration (3)
else
Compute $L A=\operatorname{tril}(A), U A=L A-A, Z=\operatorname{inv}(\gamma I+D) T=$ $\operatorname{inv}(\gamma I+L A)$.

Apply iteration (4)
END Algorithm 3
Additional experiments with bigger size of matrix coefficients.

4 Numerical Experiments

We provide experiments wit different matrix coefficients with small dimension $(n=2,3)$. Numerical experiments are executed on the computer with Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz .

Example 1. We introduce an example with the 2×2 matrix coefficients. Using Matlab's notation we introduce the matrices:
$\mathrm{A}=[3-1 ;-13]$;
$\mathrm{D}=[102-100 ;-100102]$;
$\mathrm{C}=\left[\begin{array}{lll}1.2 & 0.9 ; & 1.0 \\ 0.65\end{array}\right] ;$
$\mathrm{B}=\mathrm{C}$;
Example 2. The 2×2 matrix coefficients are:
$\mathrm{A}=\left[\begin{array}{lll}3 & -1 ; & -1\end{array}\right]$;
$\mathrm{D}=[102-100 ;-100102]$;
$\mathrm{C}=\left[\begin{array}{lll}0.97 & 0.6 ; 1.2 & 0.79\end{array}\right]$;
$\mathrm{A}=[3-1 ;-13]$;
$\mathrm{B}=\mathrm{ksi}{ }^{*} \mathrm{C}$; (for different values of ksi).
Example 3. The 3×3 matrix coefficients are:
$\mathrm{A}=[65-2-0.18 ;-265-0.9 ;-0.18-0.965]$;
$\mathrm{D}=[202-140-98 ;-140202-101 ;-98-101202]$;
$\mathrm{C}=\left[\begin{array}{lll}15 & 2 & 1 ; \\ 2 & 12 & 4 ; \\ 1 & 4 & 15\end{array}\right]$;
$\mathrm{B}=\mathrm{ksi}^{*} \mathrm{C}$; (for different values of ksi).
Example 4. The 3×3 matrix coefficients are:
$\mathrm{D}=[65-2-0.18 ;-265-0.9 ;-0.18-0.965]$;
$\mathrm{A}=[202-140-98 ;-140202-101 ;-98-101202]$;
$\mathrm{C}=[1521 ; 2124 ; 1415]$;
$\mathrm{B}=\mathrm{ksi}{ }^{*} \mathrm{C}$; (for different values of ksi).
Table 1. tol $=1.0 e-14,1000$ runs

Applying Algorithm 3 to Example 4 we obtain 1429 iteration steps and CPU time of 7.1 s . Algorithm 3 pays this computational price to obtain the minimal nonnegative solution of $R(X)=0$.

Example 5. [2] The matrix coefficients A, B, C and D are $n \times n$ matrices and we compute them as follows:

$$
A=D=\operatorname{tridiag}(-I, T,-I)
$$

are block tridiagonal matrices. The matrix C is

$$
C=\frac{1}{50} \text { tridiag }(1,2,1)
$$

is a tridiagonal matrix and $B=S D+A S-S C S$, i.e. S is the minimal nonnegative solution of $R(X)=0$. We take e the vector of units and compute S

$$
S=\frac{1}{50} e e^{T}
$$

In addition, the $m \times m,\left(n=m^{2}\right)$ matrix T is

$$
T=\operatorname{tridiag}\left(-1,4+\frac{200}{(m+1)^{2}},-1\right)
$$

Computational experiment to compute the minimal nonnegative solution gives the results described in Table 2.

Table 2. tol $=1.0 e-14,1000$ runs

	Algorithm 1		Algorithm 2		Algorithm 3	
m	$I t$	CPU	$I t$	CPU	$I t$	CPU
8	25	10.2 s	22	9.8 s	22	9.4 s
12	52	159.7 s	44	165.0 s	44	143.0 s

Results from experiments show the effectiveness of the considered approach.

5 Acknowledgements

The authors thank to prof. Ivan Ivanov for his comments and useful suggestions for improving the manuscript.

References

[1] T. Azevedo-Perdicoulis, G. Jank, Linear Quadratic Nash Games on Positive Linear Systems, European Journal of Control, 11:1-13, 2005.
[2] Z.-Z. Bai, X.-X. Guo, and S.-F. Xu, Alternately linearized implicit iteration methods for the minimal nonnegative solutions of the nonsymmetric algebraic Riccati equations, Numer. Linear Algebra Appl., 13 (2006), 655-674.
[3] J. Juang and W.-W. Lin, Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices, SIAM J. Matrix Anal. Appl., 20 (1999), 228243.
[4] J. Guan and L. Lu, New alternately linearized implicit iteration for Mmatrix algebraic Riccati equations, J. Math. Study, 50 (2017), 54-64.
[5] J. Guan, Modified alternately linearized implicit iteration method for M-matrix algebraic Riccati equations, Applied Mathematics and Computation, 347 (2019) 442-448.
[6] C.-H. Guo and A. Laub, On the iterative solution of a class of nonsymmetric algebraic Riccati equations, SIAM J. Matrix Anal. Appl., 22(2) (2000), 376-391.
[7] C.-H. Guo, On algebraic Riccati Equations Associated with M-Matrices, Linear Algebra Appl., 439(10) (2013), 2800-2814.
[8] V. Dragan and I. G. Ivanov, A numerical procedure to compute the stabilising solution of game theoretic Riccati equations of stochastic control, International Journal of Control, 84(4) (2011), 783-800.
[9] V. Dragan and I. G. Ivanov, Computation of the stabilizing solution of game theoretic Riccati equation arising in stochastic H_{∞} control problems, Numerical Algorithms, 57(3) (2011), 357-375.
[10] C. Ma, and H. Lu, Numerical Study on Nonsymmetric Algebraic Riccati Equations, Mediterranean Journal of Mathematics, 13(6) (2016), 49614973.
[11] Ivan G. Ivanov, H. Yang, An effective approach to solve a nonsymmetric algebraic Riccati equation, Innovativity in Modeling and Analytics Journal of Research 6 (2021), pages 7-14, http://imajor.info/JDA/vol6.html
[12] V. Tanov, Iterative Solution of the Nonsymmetric Nash-Riccati Equations, Innovativity in Modeling and Analytics Journal of Research, 4 (2019), pages 38-43, http://imajor.info/JDA/vol4.html

[^0]: *Accepted for publication on March 28-th, 2023
 ${ }^{\dagger}$ iwelin.ivanow@shu.bg Konstantin Preslavsky University of Shumen, Kolej Dobrich, Dobrich,
 ${ }^{\ddagger}$ n. baeva@nvna.eu Nikola Vaptsarov Naval Academy, 73 , Vasil Drumev Str., Varna 9002, Bulgaria, Paper written with financial support of the Bulgarian Ministry of Education and Science under the National Program "Young Scientists and Postdoctoral Students - 2"

