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Abstract

We consider different algorithms with linear rate of convergence
for computing the minimal nonnegative solution of M-matrix algebraic
Riccati equation. The performance of the considered algorithms are
illustrated on numerical examples.
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1 Introduction

The nonsymmetric algebraic Riccati equations have been the topic of ex-
tensive research. These equations arise in many important applications,
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including the total least squares problems, in the Markov chains [7], in the
transport theory [3] and many others.
The equation has the form

R(X):= XCX—-XD—-AX+B=0, (1)

where D, B, C and A are real matrices of dimensions m xm, m xn,nxm and

A -
-B D
It is investigated in Bai and coauthors [2], Ma and Lu [10], Guan and Lu
[4], Guan [5] and many other authors (see the reference there in).

n X n, respectively. The block matrix K = is an M-matrix.

In addition, nonsymmetric Riccati equation (1) arises in the game the-
ory and more specially from the investigation of the open-loop Nash linear
quadratic differential game [1, 12]. A more general problem on connected
to the properties of the stabilising solution of the game theoretic algebraic
Riccati equation is investigated in [8, 9]. The solution of practical interest
is the minimal nonnegative solution of (1).

There are many numerical methods up to now proposed for the min-
imal nonnegative solution of (1) with a nonsingular M-matrix. An effec-
tive method called alternately linearized implicit iteration method (ALI)
was proposed and investigated in [2, 10, 4]. This approach constructs two
matrix sequences of nonnegative matrices which converges to the minimal
solution. A new alternately linearized implicit iteration method (NALI) for
computing the minimal nonnegative solution of (1) is introduced in [4].

Guan [5] has proposed the MALI iterative method: A = (a;5),D =
(dij),X(O) =0 € R™"™. The matrix A is transformed A = L4 — Uy, where
L 4 is the lower triangular part of A and Uy is the strictly upper triangular
part of A. The matrix D is received the type D = Lp — Up in the same
way.

The iteration scheme is:

Y (al + Lp) = (ol — A+ X®C) Xk + X®yp + B,
a > maz; (ai;)

(6T + LA)XD =y (5T — D+ CY®) 4+ U,Y*® + B,
d > max; (di) .

(2)

The convergence analysis of the MALI iteration method and numerical
experiments are executed by Guan. Moreover, Ivanov and Yang [11] have
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proposed a modification of (2):

YO NI+ Lp)= (I - A+ XPO)X®) + XFyy 4+ B,
(v + AXED —y® (v - D4+ CY®)) + B,

The iteration (3) is an alternative to iteration (2).

Our investigation follows ideas presented of iterative methods by Bai
and coauthors [2], Ma and Lu [10], Guan and Lu [4], Guan [5], Ivanov and
Yang [11]. We propose a different iterative method to compute the minimal
nonnegative solution and derive convergence properties of the new iteration.

The notation R"™* stands for r x s real matrices and I means an unit
n X n matrix. A matrix A = (a;;) € R™*" is a nonnegative matrix if
the inequalities a;; > 0 are satisfied for all 1 < ¢ < mand 1 < j < n.
We use an elementwise order relation. The inequality P > Q(P > Q) for
P = (pij),Q = (gij) means that p;; > ¢;;(pi; > gi;) for all indexes i and
j. Define Z-matrices and M-matrices. A matrix A = (a;;) € R™" is said
to be a Z-matrix if it has nonpositive off-diagonal entries. Any Z-matrix A
can be written in the form A = af — N with N being a nonnegative matrix.
Each M-matrix is a Z-matrix with if o > p(IV), where p(IN) is the spectral
radius of N. It is called a nonsingular M-matrix if & > p(N) and a singular
M-matrix if a = p(V).

2 Iterative methods and properties

Here, we consider the another modification of the above iteration (2). Com-
pute

a > max; (ai;), {A = (ai;)}, B =max; (diy),{D = (di)} ,
v = maz{a, B} .

The iteration has the form
YOI+ D)= (yI - A+ XWC)x® 1 B,

(4)
AL+ L)XED =y® (4,7 —D4+CY®)+ U, Y® + B

The iteration start with X(© = 0 € R"*". We transform A = L4 — Ua,
where L, is the lower triangular part of A and Uy is the strictly upper
triangular part of A. The iteration (4) is an alternative to iteration (2).



208 I. Ivanov, N. Baeva

Lemma 1 The matriz sequences ~{X(I‘3),Y(k)}>z":0 are obtained applying it-
eration ((4)) with initial values X©©) = 0. Then for any positive k , the
following equalities hold:

i) Rx®) = (Y® - X®)(+I+ D),

(i) RY®)= (71— A+ XP0O)(Y® — xRy 4 (v — xE)Hoy®k)
(iii) R(Y™W) = (71 + La)(X*FD — y(®) |

(iv) R(X*HD) = (XD —y Ry (41 — D + CY®)
+(Ua + XEEDC) (X EHD — y(k))

(V) R(X) =® - X+ D)+ (41 — A+ XC)(X — Xk
+(X = XEHox*)

(vi) R(X) = (3] + La)(X*D — X)
(X =YE)Y(yI =D+ CYW) 4 (Us + XO)(X —Y®)),

Proof. The proof is completed by a direct calculation.

Theorem 1 Assume the matrix A is an M-matriz and B > 0,C > 0,
and there exists 1 > 0, such that (uI + A) is an M-matriz and pl — A is
nonpositive. Assume there exist a nonnegative matriz X, such that R(X) <
0.

The matriz sequences {X®) Y (R)}e0 - defined by ((4)) satisfy the follow-
1ng properties:

(i) X>XED>yE > XE for k=0,1,...;

i) RX®E) >0, RY®)>0, RXE*D)Y>0, k=0,1,....

(iii) The matriz sequence {X )2 converges to the nonnegative min-
imal solution X to the Riccati equation R(X) =0 with X < X.

(iv)  The matriz sequence {X )22 ) converges to the nonnegative min-
imal solution X to the Riccati equation R(X) = 0 with the property X < X.
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Proof. We apply the decomposition of the matrix coefficient A = L4 —
Uy, where L4 is the lower triangular part of A and Uy is the strictly upper
triangular part of A. We remark Uy > 0. We begin with the facts that
(yI + D)1 >0, and (yI + L)™' > 0. We construct the matrix sequences
{xX®), Y(k)}zoz0 applying recursive equations (4) with X =0 and v > 0.

For k = 0 we obtain YO (yI + D) = B > 0 and thus Y(© = B(yI +
D)1 >0.And Y > X© = 0. In addition, R(X®) =B > 0.

Applying Lemma 1 (ii), we get (v — A > 0)

ROY D) = (77 — A)Y© + v Oy © > 0.
We compute X 1) applying the recursive equation (4). We have
(vI+ L )XH =w® >0,

where

WO . =yOnr - D4+ cY®) 4+ U.v® 4+ B.

Since (v + L4)~! > 0, we obtain X is nonnegative.
Applying Lemma 1 (iii), we get

(XW —yO)y = (3T + L) TRY D) > 0.
According to Lemma 1 (iv) we induce
R(XD) = (XM vy Oy~ — D+ CY©)
+HUa+ XD (XD -y ®) >0,

because Uy > 0,~ 1 —p > O,X(l) > y (0) > x(0),
In order to prove X > X we consider equality Lemma 1 (v)

R(X) = (YO = X)(yI+ D)+ (yI - A+ XC)X > 0.
Note that vI — A > 0 and then:
(YO -X)=H" (yI+ D)™ <0,

because X R R
HY = R(X)- (I - A+ XO)X <0.

Thus X > Y(©) . Moreover, applying equality Lemma 1 (vi) we obtain

(VI + L) (XD - X) =R(X) — (X =Y O)(yI — D+ CY®)
—(Ua+ XC) X —Y ),
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We infer X > x 1)

So, we have proved inequalities (i) - (ii) for k = 0.

We assume that the inequalities (i) - (ii) hold for £ = 0,1,...,7. We
know matrices X "t with the properties:

X > x (r+1) > y (") > x (™) 7

and
RXM)y >0, RYM >0RXCD)>0.

We will prove the inequalities (i) - (ii) for k =r + 1.
We compute Y"1 via (4), i.e.

YD) = (v — A+ XDy x (4D 4 Bl (v + D)t > 0.
According to Lemma 1 (i) we extract
y o) — x0+D) — g(x DY (y1 4+ D)~ > 0.
From Lemma 1 (ii), we conclude

R(y(r+1)) — (’71 _ A+X(T+1)0)(y(r+1) _ X(r+1))
+(y(r+1) _ X(r+1))0y(r+1) >0,

We compute X "+2) via the second equation of (4). Consider the equality
(iii) of Lemma 1 for k = r 4+ 1. We write down:

X0+ _y ) — (41 4 L)L R(YTTD) > 0.
Next, we apply of Lemma 1 (iv) for
R(XT+2)) = (X(42) _ y(+))(y] — D 4 CY+D)
(U + XD ) (X042 y D)) > 0

Thus R(X+2)) > 0.
In order to prove X > X(+2) we consider equality Lemma 1 (v)

R(X) =Y+ — X)(vI + Lp)
H(y T — A+ XO)(X — X)) — (X — X0+D)(Up + CXO+D) .
Note that v — A >0, Up >0, . Then

Y(T+1) _X _ H(T’-‘rl) (,YI+LD)—1 S 07
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because H(+1) < 0, and

HOHD .= R(X) — (v] — A+ XCO)(X — X (D)
—(X = X)) (Up + CX D).

Thus X > Y(+D
Further on, taking into account Lemma 1 (vi) we obtain

X(T+2) _ Xz _ (’YzIn + LAi)fl ]ﬂi(r‘f‘l) < O7

(2

because T." Y <0, and

(2

T = Ry(Xy,. ., X)) — (X = YY) (il — D + YY)
_(UAi + chl)(Xl - Yz'(TH)) - Zj;ﬁi eij(Xj - Yj(TH)) , 1=1,...,s.

We infer X > X(r+2)

Hence, the induction process has been completed. Thus the matrix se-
quence {X (k)}zozo are nonnegative, monotonically increasing and bounded
from above by (X (in the elementwise ordering). We denote limj_, o (X *)) =

(X). By taking the limits in (4) it follows that (X) is a solution of R(X) =0
with the property X < X.

Assume there is another solution Z with Z < X. There exists sufficiently
large index r such that X+1) > Z >y () > x()

Applying Lemma 1 (vi) for X = Z, we get

0=+ L)X -~ 2)+(Z-Y"))(yI =D +CY™)
U+ ZC)Z =YY,

We rewrite
(I + L)X+ = 2) = Q1.

The matrix Q") is nonnegative because Z > Y. Thus X(+D) — 7 ig
nonnegative, which is contradiction with the assumption X(+D > Z. We
infer the solution X is the minimal one.

The theorem is proved.
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3 Algorithms

The considered iterative methods have a linear convergence rate. We present
algorithms which realize the iterations on Matlab.
Algorithm 1 presents iteration (2) using Matlab’s commands.
Algorithm 1.
1. Input the coefficients A, B, C, D and compute RESB = norm(B).
2. Choose tolerance tol = 1.0e — 14 and n X n initial matrix X0 = 0,
normRE=1.
3. Compute LA = tril(A) , UA = LA—A,LD = tril(D) ,UD = LD—D.
4. Compute o« = max; (ai), § = max; (d).
5. Compute almA =al — A, dImD =61 —D.
6. Compute Z = inv(al + LD) T = inv(dI + LA).
7. Define the loop
while normRE > tol
Y0=((almA + X0*C)*X0 + X0*UD + B)*Z
X0 = T*(Y0*(dImD + C*Y0) + UA*YO0 + B)
normRE = norm(X0*C*X0-A*10-X0*D+B)/RESB
END Algorithm 1

Algorithm 2 explains how to realize iteration (4).
Algorithm 2.
1. Input the coefficients A, B, C, D and compute RESB = norm(DB).
2. Choose tolerance tol = 1.0¢ — 14 and n X n initial matrix X0 = 0,
normRE=1.
3. Compute a = max; (ai;), 6 = max; (di;),v = maz(w,?).
4. Compute almA =~I — A, dImD =~ - D.
5. Compute LA = tril(A),UA = LA—- A, Z = inv(yI+ D) T =
inv(yl + LA).
6. Define the loop
while normRE > tol
YO0=((almA + X0*C)*X0 + B)*Z
X0 = T*(Y0*(dImD + C*Y0) + UA*YO0 + B)
normRE = norm(X0*C*X0-A*10-X0*D+B)/RESB
END Algorithm 2

We can introduce a mixed algorithm depending on the bigger value of «
and 6.

We apply iterations (4) and (3) to construct next Algorithm 3.

Algorithm 3.

1. Input the coefficients A, B, C, D and compute RESB = norm(B).
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2. Choose the tolerance value tol = 1.0e — 14 and n x n initial matrix
X0 =0, normRE=1.
3. Compute a = max; (ai;), 6 = max; (di;),y = mazx(a,?).
4. Compute almA =~I — A, dImD =~I — D.
5. If v = « then
Compute LD = tril(D),UD = LD — D, Z = inv(al + LD) T =
inv(dl + A).
Apply iteration (3)
else
Compute LA = tril(A),UA = LA— A, Z = inv(vI + D) T =
inv(yI + LA).
Apply iteration (4)
END Algorithm 3

Additional experiments with bigger size of matrix coefficients.

4 Numerical Experiments

We provide experiments wit different matrix coefficients with small dimen-
sion (n = 2,3). Numerical experiments are executed on the computer with
Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz.

Example 1. We introduce an example with the 2 x 2 matrix coefficients.
Using Matlab’s notation we introduce the matrices:

A=[3-1;-1 3];

D=[102 -100; -100 102];

C=[1.2 0.9; 1.0 0.65];

B=C;
Example 2. The 2 x 2 matrix coefficients are:
A=[3-1;-1 3];

D=[102 -100; -100 102];

C=[0.97 0.6; 1.2 0.79];

A=[3-1; -1 3];

B=ksi*C; (for different values of ksi).
Example 3. The 3 x 3 matrix coefficients are:
A=[65 -2 -0.18;-2 65 -0.9; -0.18 -0.9 65];
D=[202 -140 -98; -140 202 -101; -98 -101 202];
C=[1521;2124; 1 4 15];

B=ksi*C; (for different values of ksi).
Example 4. The 3 x 3 matrix coeflicients are:
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D=[65 -2 -0.18;-2 65 -0.9; -0.18 -0.9 65];
A=[202 -140 -98; -140 202 -101; -98 -101 202];
C=[1521; 212 4; 1 4 15];

B=ksi*C; (for different values of ksi).

Table 1. tol = 1.0e — 14 , 1000 runs
Algorithm 1 Algorithm 2
Example 1

vy= It CPU It CPU
1162 4.01s 1188 4.0s
Example 2, ksi=1.0

0 845 2.8s 860 2.8s
Example 2, ksi=1.27

0 4174  14.7s 4298 14.3s
Example 3, ksi=1.0

) 483 2.4s 462 2.3s
Example 3, ksi=1.03

6 1492 7.6s 1430 6.9s
Example 4, ksi=1.03

a 1495 7.7s 1936 9.4s

Applying Algorithm 3 to Example 4 we obtain 1429 iteration steps and
CPU time of 7.1s. Algorithm 3 pays this computational price to obtain the
minimal nonnegative solution of R(X) = 0.

Example 5. [2] The matrix coefficients A, B, C and D are n x n matrices
and we compute them as follows:

A =D = tridiag (—1,T,—1I),

are block tridiagonal matrices. The matrix C is
C ! tridiag (1,2,1)
= — !
£g tridi g (1,2,

is a tridiagonal matrix and B = SD + AS — SCS, i.e. S is the minimal
nonnegative solution of R(X) = 0. We take e the vector of units and
compute S

1
S:%eeT.
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In addition, the m x m, (n = m?) matrix T is

200

T = tridiag (—1,4 + m,

-1).
Computational experiment to compute the minimal nonnegative solution
gives the results described in Table 2.

Table 2. tol = 1.0e — 14 , 1000 runs

Algorithm 1 Algorithm 2 Algorithm 3
m It CPU It CPU It CPU
8 25 10.2s 22 9.8s 22 9.4s
12 52 159.7s 44 165.0s 44 143.0s

Results from experiments show the effectiveness of the considered ap-
proach.
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