Ann. Acad. Rom. Sci.

Ser. Math. Appl.

A NOTE ON A CLASSICAL CONNECTION BETWEEN PARTITIONS AND DIVISORS*

M. Merca ${ }^{\dagger}$

DOI https://doi.org/10.56082/annalsarscimath.2023.1-2.163

Dedicated to Dr. Dan Tiba on the occasion of his $70^{\text {th }}$ anniversary

Abstract

In this note, we consider the number of k 's in all the partitions of n in order to provide a new proof of a classical identity involving Euler's partition function $p(n)$ and the sum of the positive divisors function $\sigma(n)$. New relations connecting classical functions of multiplicative number theory with the partition function $p(n)$ from additive number theory are introduced in this context. The fascinating feature of these relations is their common nature. A new identity for the number of 1's in all the partitions of n is derived in this context.

MSC: 05A17, 05A19, 11P81.
keywords: divisors, partitions

1 Introduction

Let A be a given set of positive integers, and let $f(n)$ be a given arithmetical function. By Apostol [3, Theorem 14.8], we know that the numbers $p_{A, f}(n)$

[^0]defined by the equation
\[

$$
\begin{equation*}
\prod_{n \in A}\left(1-q^{n}\right)^{-f(n) / n}=1+\sum_{n=1}^{\infty} p_{A, f}(n) q^{n} \tag{1}
\end{equation*}
$$

\]

satisfy the recurrence relation

$$
\begin{equation*}
n p_{A, f}(n)=\sum_{k=1}^{n} f_{A}(k) p_{A, f}(n-k) \tag{2}
\end{equation*}
$$

where $p_{A, f}(0)=1$ and

$$
f_{A}(n)=\sum_{\substack{d \mid n \\ d \in A}} f(d)
$$

The formula (2) was derived by logarithmic differentiation of generating functions

$$
F_{A}(q)=\prod_{n \in A}\left(1-q^{n}\right)^{-f(n) / n}
$$

and

$$
G_{A}(q)=\sum_{n \in A} \frac{f(n)}{n} q^{n}
$$

If A is the set of all positive integers, then for $f(n)=n$ we have

$$
p_{A, f}(n)=p(n)
$$

the unrestricted partition function, and

$$
f_{A}(n)=\sigma(n)
$$

the sum of the positive divisors of n.
Recall that a partition of a positive integer n is a weakly decreasing sequence of positive integers whose sum is n [1]. For example, the following are the partitions of 6 :

$$
\begin{align*}
& (6),(5,1),(4,2),(4,1,1),(3,3),(3,2,1),(3,1,1,1), \\
& (2,2,2),(2,2,1,1),(2,1,1,1,1),(1,1,1,1,1,1) \tag{3}
\end{align*}
$$

In this context, the equation (2) provides a remarkable relation connecting a function of multiplicative number theory with one of additive number theory, namely

$$
\begin{equation*}
n p(n)=\sum_{k=1}^{n} \sigma(k) p(n-k) \tag{4}
\end{equation*}
$$

In this paper, we provide a new proof for the relation (4) considering the number of k 's in all partitions of n. We denoted this number by $S_{n, k}$. By (3), we see that $S_{6,1}=19, S_{6,2}=8, S_{6,3}=4, S_{6,4}=2, S_{6,5}=1$ and $S_{6,6}=1$.

Theorem 1. Let n be a positive integer. If $g(n)=\sum_{d \mid n} f(d)$, then

$$
\begin{equation*}
\sum_{k=1}^{n} f(k) S_{n, k}=\sum_{k=1}^{n} g(k) p(n-k) \tag{5}
\end{equation*}
$$

The general nature of the function $f(n)$ allows for applications of Theorem 1 to classical functions from multiplicative number theory: the divisor function $\sigma_{x}(n)$, the Möbius function $\mu(n)$, Euler's totient $\varphi(n)$, Jordan's totient $J_{k}(n)$, Liouville's function $\lambda(n)$, and others. The fascinating feature of these identities is their common nature.

2 Proof of Theorem 1

We first sketch the proof of the generating function for $S_{n, k}$. Note that the generating function for partitions where z keeps track of parts equal to k is given by

$$
\begin{aligned}
& \left(1+z q^{k}+z^{2} q^{k+k}+z^{3} q^{k+k+k}+\cdots\right) \prod_{\substack{n=1 \\
n \neq k}}^{\infty}\left(1+q^{n}+q^{n+n}+q^{n+n+n}+\cdots\right) \\
& =\frac{1-q^{k}}{1-z q^{k}} \prod_{n=1}^{\infty} \frac{1}{1-q^{n}}=\frac{1-q^{k}}{\left(1-z q^{k}\right)(q ; q)_{\infty}}
\end{aligned}
$$

where

$$
(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right) .
$$

Because the infinite product $(a ; q)_{\infty}$ diverges when $a \neq 0$ and $|q| \geqslant 1$, whenever $(a ; q)_{\infty}$ appears in a formula, we shall assume that $|q|<1$. In this note, all identities involving infinite products of the form $(a ; q)_{\infty}$ may be understood in the sense of formal power series in q.

Taking the derivative with respect to z, and setting z equal to 1 , we
obtain the expression of the generating function for $S_{k, n}$:

$$
\begin{align*}
\sum_{n=k}^{\infty} S_{n, k} q^{n} & =\left.\frac{d}{d z} \frac{1-q^{k}}{\left(1-z q^{k}\right)(q ; q)_{\infty}}\right|_{z=1} \\
& =\frac{q^{k}}{1-q^{k}} \cdot \frac{1}{(q ; q)_{\infty}} \tag{6}
\end{align*}
$$

Multiplying both sides of (6) by $f(k)$, we derive the relation

$$
\sum_{k=1}^{\infty}\left(\sum_{n=1}^{\infty} S_{n, k} q^{n}\right) f(k)=\frac{1}{(q ; q)} \sum_{\infty=1}^{\infty} f(k) \frac{q^{k}}{1-q^{k}}
$$

that can be rewritten as

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} f(k) S_{n, k}\right) q^{n}=\left(\sum_{n=0}^{\infty} p(n) q^{n}\right)\left(\sum_{k=1}^{\infty} g(k) q^{k}\right) \tag{7}
\end{equation*}
$$

where we have invoked the well-known generating function of $p(n)$

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{(q ; q)_{\infty}}
$$

and the well-known Lambert series

$$
\sum_{k=1}^{\infty} \frac{f(k) q^{k}}{1-q^{k}}=\sum_{k=1}^{\infty}\left(\sum_{d \mid k} f(k)\right) q^{k}
$$

Equating the coefficient of q^{n} in (7) concludes the proof.

3 Some applications

Theorem 1 can be used to provide new connections between the partitions and many classical special arithmetic functions often studied in multiplicative number theory: the divisor function $\sigma_{x}(n)$, the Möbius function $\mu(n)$, Euler's totient $\varphi(n)$, Jordan's totient $J_{k}(n)$, and Liouville's function $\lambda(n)$.

3.1 Divisor functions

Firstly, we remark that

$$
\sum_{k=1}^{n} k S_{n, k}=n p(n)
$$

So it is clear that the relation (4) is the case $f(n)=n$ of our theorem.
By transposing the Ferrers graph of each partition of n it follows that the total number of parts in all the partitions of n equals the sum of largest parts of all the partitions of n. Considering $f(n)=1$ in Theorem 1, we derive the following result.

Corollary 1. For $n>0$, the sum of largest parts of all partitions of n can be expressed as

$$
\sum_{k=1}^{n} \tau(k) p(n-k)
$$

where $\tau(n)$ counts the positive divisors of n.
Example 1. According to (3) and Corollary 1, the sum of largest parts of all the partitions of 6 can be expressed as

$$
\begin{aligned}
& 6+5+4+4+3+3+3+2+2+2+1 \\
& =p(5)+2 p(4)+2 p(3)+3 p(2)+2 p(1)+4 p(0) \\
& =7+10+6+6+2+4=35
\end{aligned}
$$

The cases $f(n)=(-1)^{n}$ and $f(n)=(-1)^{n} \cdot n$ of Theorem 1 read as follows.

Corollary 2. For $n>0$, the difference between the number of odd parts and the number of even parts in all the partitions of n can be expressed as

$$
\sum_{k=1}^{n} \tau_{o, e}(k) p(n-k),
$$

where $\tau_{o, e}(n)$ is the difference between the number of odd divisors and the number of even divisors of n.

Example 2. According to (3) and Corollary 2, the difference between the number of odd parts and the number of even parts in all the partitions of 6 can be expressed as

$$
\begin{aligned}
& (0+2+0+2+2+2+4+0+2+4+6) \\
& \quad-(1+0+2+1+0+1+0+3+2+1+0) \\
& =p(5)+2 p(3)-p(2)+2 p(1)=7+6-2+2=13
\end{aligned}
$$

Corollary 3. For $n>0$, the difference between the sum of odd parts and the sum of even parts in all the partitions of n can be expressed as

$$
\sum_{k=1}^{n} \sigma_{o, e}(k) p(n-k),
$$

where $\sigma_{o, e}(n)$ is the difference between the sum of odd divisors and the sum of even divisors of n.

Example 3. According to (3) and Corollary 3, the difference between the sum of odd parts and the sum of even parts in all the partitions of 6 can be expressed as:

$$
\begin{aligned}
& (0+6+0+2+6+4+6+0+2+4+6) \\
& \quad-(6+0+6+4+0+2+0+6+4+2+0) \\
& =p(5)-p(4)+4 p(3)-5 p(2)+6 p(1)-4 p(0) \\
& =7-5+12-10+6-4=6 .
\end{aligned}
$$

3.2 Möbius function

The classical Möbius function $\mu(n)$ is defined for all positive integers n and has its values in $\{-1,0,1\}$ depending on the factorization of n into prime factors:

$$
\mu(n)= \begin{cases}0, & \text { if } n \text { has a squared prime factor, } \\ (-1)^{k}, & \text { if } n \text { is a product of } k \text { distinct primes }\end{cases}
$$

The sum over all positive divisors of n of the Möbius function is zero except when $n=1$. By Theorem 1, with $f(n)=\mu(n)$ we obtain the following decomposition for Euler's partition function.

Corollary 4. For $n \geqslant 0$,

$$
p(n)=\sum_{k=1}^{n+1} \mu(k) S_{n+1, k} .
$$

Example 4. The case $n=5$ of Corollary 4 reads as follows

$$
p(5)=S_{6,1}-S_{6,2}-S_{6,3}-S_{6,5}+S_{6,6}=19-8-4-1+1=7
$$

Recall that a natural number d is a unitary divisor of a number n if d is a divisor of n and if d and n / d are coprime. The sum over all positive divisors of n of the absolute value of the Möbius function is equal to the number of unitary divisors of n [5, Theorem 264],

$$
\sum_{d \mid n}|\mu(d)|=2^{\omega(n)},
$$

where $\omega(n)$ is an additive function defined as the number of distinct primes dividing n. On the other hand, $2^{\omega(n)}$ counts the squarefree divisors of n. We remark that the set of unitary divisors of n is not the set of squarefree divisors, e.g., the set of unitary divisors of number 20 is $\{1,4,5,20\}$, the set of squarefree divisors of number 20 is $\{1,2,5,10\}$. By Theorem 1 , we get the following result.

Corollary 5. For $n>0$, the total number of squarefree parts in all partitions of n can be expressed in terms of the number of squarefree divisors of n as follows

$$
\sum_{k=1}^{n} 2^{\omega(k)} p(n-k) .
$$

Example 5. According to (3) and Corollary 5, the total number of squarefree parts in all partitions of 6 can be expressed as

$$
\begin{aligned}
& 1+2+1+2+2+3+4+3+4+5+6 \\
& =p(5)+2 p(4)+2 p(3)+2 p(2)+2 p(1)+4 p(0) \\
& =7+10+6+4+2+4=33
\end{aligned}
$$

In addition, considering the relation [6, Exercise 1.52]

$$
\sum_{d \mid n} 2^{\omega(d)}=\tau\left(n^{2}\right),
$$

the case $f(n)=2^{\omega(n)}$ of Theorem 1 can be written as follows.
Corollary 6. For $n>0$,

$$
\sum_{k=1}^{n} 2^{\omega(k)} S_{n, k}=\sum_{k=1}^{n} \tau\left(k^{2}\right) p(n-k) .
$$

Example 6. By Corollary 6, for $n=6$ we have

$$
\begin{aligned}
& S_{6,1}+2 S_{6,2}+2 S_{6,3}+2 S_{6,4}+2 S_{6,5}+2 S_{6,4}+2 S_{6,5}+4 S_{6,6} \\
& =19+16+8+4+2+4=53
\end{aligned}
$$

and

$$
\begin{aligned}
& p(5)+3 p(4)+3 p(3)+5 p(2)+3 p(1)+9 p(0) \\
& =7+15+9+10+3+9=53
\end{aligned}
$$

3.3 Euler's totient function

Euler's totient or phi function, $\varphi(n)$, is a multiplicative function that counts the totatives of n, that is the positive integers less than or equal to n that are relatively prime to n. According to Euler's classical formula [5, Theorem 63],

$$
\sum_{d \mid n} \varphi(d)=n
$$

by Theorem 1, we obtain the following identity.
Corollary 7. For $n>0$,

$$
\sum_{k=1}^{n} \varphi(k) S_{n, k}=\sum_{k=1}^{n} k p(n-k)
$$

Example 7. By Corollary 7, for $n=6$ we have

$$
S_{6,1}+S_{6,2}+2 S_{6,3}+2 S_{6,4}+4 S_{6,5}+2 S_{6,6}=19+8+8+4+4+2=45
$$

and
$p(5)+2 p(4)+3 p(3)+4 p(2)+5 p(1)+6 p(0)=7+10+9+8+5+6=45$.
In a similar way, considering the relations

$$
\sum_{d \mid n} \frac{\mu(d)}{d}=\frac{\varphi(n)}{n} \quad \text { and } \quad \sum_{d \mid n} \frac{\mu^{2}(d)}{\varphi(d)}=\frac{n}{\varphi(n)}
$$

we obtain new identities which combine Euler's totient with Euler's partition function.

Corollary 8. For $n>0$,
(i) $\sum_{k=1}^{n} \frac{\mu(k)}{k} S_{n, k}=\sum_{k=1}^{n} \frac{\varphi(k)}{k} p(n-k)$;
(ii) $\sum_{k=1}^{n} \frac{\mu^{2}(k)}{\varphi(k)} S_{n, k}=\sum_{k=1}^{n} \frac{k}{\varphi(k)} p(n-k)$.

Example 8. By Corollary 8.(i), for $n=6$ we have

$$
S_{6,1}-\frac{S_{6,2}}{2}-\frac{S_{6,3}}{3}-\frac{S_{6,5}}{5}+\frac{S_{6,6}}{6}=19-4-\frac{4}{3}-\frac{1}{5}+\frac{1}{6}=\frac{409}{30}
$$

and
$p(5)+\frac{p(4)}{2}+\frac{2 p(3)}{3}+\frac{p(2)}{2}+\frac{4 p(1)}{5}+\frac{p(0)}{3}=7+\frac{5}{2}+2+1+\frac{4}{5}+\frac{1}{3}=\frac{409}{30}$.
On the other hand, by Corollary 8.(ii), with n replaced by 6, we obtain

$$
S_{6,1}+S_{6,2}+\frac{S_{6,3}}{2}+\frac{S_{6,5}}{4}+\frac{S_{6,6}}{2}=19+8+2+\frac{1}{4}+\frac{1}{2}=\frac{119}{4}
$$

and
$p(5)+2 p(4)+\frac{3 p(3)}{2}+2 p(2)+\frac{5 p(1)}{4}+3 p(0)=7+10+\frac{9}{2}+4+\frac{5}{4}+3=\frac{119}{4}$.
In number theory, Jordan's totient function of a positive integer $n, J_{t}(n)$, is the number of t-tuples of positive integers all less than or equal to n that form a coprime $(t+1)$-tuple together with n. This is a generalisation of Euler's totient function, which is J_{1}. Considering the identity [8, eq. 27.6.8, p. 641]

$$
\sum_{d \mid n} J_{t}(d)=n^{t}
$$

by Theorem 1, we obtain the following generalization of Corollary 7 .
Corollary 9. For $n>0, t>0$,

$$
\sum_{k=1}^{n} J_{t}(k) S_{n, k}=\sum_{k=1}^{n} k^{t} p(n-k) .
$$

Example 9. By Corollary 9, for $n=6$ and $t=2$ we have
$S_{6,1}+3 S_{6,2}+8 S_{6,3}+12 S_{6,4}+24 S_{6,5}+24 S_{6,6}=19+24+32+24+24+24=147$
and
$p(5)+4 p(4)+9 p(3)+16 p(2)+25 p(1)+36 p(0)=7+20+27+32+25+36=147$.

3.4 Liouville's function

For a positive integer n, the Liouville function $\lambda(n)$ is a completely multiplicative function defined as:

$$
\lambda(n)=(-1)^{\Omega(n)}
$$

where $\Omega(n)$ is the number of not necessarily distinct prime factors of n, with $\Omega(1)=0$. We remark that $\Omega(n)$ is a completely additive function. Considering Theorem 1 and the relation [8, eq. 27.7.6, p. 641]

$$
\sum_{d \mid n} \lambda(d)= \begin{cases}1, & \text { if } n \text { is a square } \\ 0, & \text { otherwise }\end{cases}
$$

we derive the following identity.
Corollary 10. For $n>0$,

$$
\sum_{k=1}^{n} \lambda(k) S_{n, k}=\sum_{k=1}^{n} p\left(n-k^{2}\right)
$$

Example 10. By Corollary 10, for $n=6$ we have

$$
S_{6,1}-S_{6,2}-S_{6,3}+S_{6,4}-S_{6,5}+S_{6,6}=19-8-4+2-1+1=9
$$

and

$$
p(5)+p(2)=7+2=9
$$

4 Concluding remarks

The number of k 's in all the partitions of n has been considered in order to provide a new proof of the classical identity

$$
n p(n)=\sum_{k=1}^{n} \sigma(k) p(n-k)
$$

Taking into accunt the generating function of $S_{n, k}$, we can write

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(S_{n+1,1}-S_{n, 1}\right) q^{n}=\sum_{n=0}^{\infty} S_{n+1,1} q^{n}-\sum_{n=0}^{\infty} S_{n, 1} q^{n} \\
& =\frac{1}{q} \sum_{n=0}^{\infty} S_{n, 1} q^{n}-\sum_{n=0}^{\infty} S_{n, 1} q^{n}=\frac{1-q}{q} \sum_{n=0}^{\infty} S_{n, 1} q^{n}=\frac{1}{(q ; q)_{\infty}}=\sum_{n=0}^{\infty} p(n) q^{n}
\end{aligned}
$$

Thus we deduce that

$$
p(n)=S_{n+1,1}-S_{n, 1}
$$

In this context, Theorem 1 can be rewritten without Euler's partition function $p(n)$.

Theorem 2. Let n be a positive integer. If $g(n)=\sum_{d \mid n} f(d)$, then

$$
\begin{equation*}
\sum_{k=1}^{n} f(k) S_{n, k}=\sum_{k=1}^{n} g(k)\left(S_{n+1-k, 1}-S_{n-k, 1}\right) . \tag{8}
\end{equation*}
$$

The following result in partition theory has been widely attributed to Richard Stanley, although it is a particular case of a more general result that had been established by Nathan Fine 15 years earlier [4].

Theorem 3. The number of 1 's in the partitions of n is equal to the number of parts that appear at least once in a given partition of n, summed over all the partitions of n.

Other results related to the number of 1's in all the partitions of n can be seen in $[2,7]$.

Replacing $p(n)$ by $S_{n+1,1}-S_{n, 1}$ in Corollary 4, we obtain a new identity for the number of 1 's in all the partitions of n. This new identity involves the parts greater than 1 in all the partitions of $n+1$.

Corollary 11. The number of 1's in the partitions of n is equal to

$$
-\sum_{k=2}^{n+1} \mu(k) S_{n+1, k}
$$

Example 11. We have $S_{5,1}=12$, because the partitions of 5 that contain 1 as a part are:

$$
(4,1),(3,1,1),(2,2,1),(2,1,1,1),(1,1,1,1,1)
$$

According to (3) and Corollary 11, we also have

$$
S_{5,1}=S_{6,2}+S_{6,3}+S_{6,5}-S_{6,6}=8+4+1-1=12 .
$$

Finally combinatorial proofs of our corollaries would be very interesting.

References

[1] G.E. Andrews, The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original. MR1634067 (99c:11126)
[2] G.E. Andrews, M. Merca, A new generalization of Stanley's theorem, The Mathematics Student, 89(1-2) (2020) 175-180.
[3] T.M. Apostol, Introduction to Analytic Number Theory, SpringerVerlag, New York, Inc, USA, 1976
[4] R.A. Gilbert, A Fine rediscovery, Amer. Math. Monthly. 122(4) (2015) 322-331.
[5] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford, 1979
[6] P.J. McCarthy, Introduction to Arithmetical Functions, SpringerVerlag, New York, 1986
[7] M. Merca, M.D. Schmidt, A Partition Identity Related to Stanley's Theorem. Amer. Math. Monthly. 125(10) (2018) 929-933.
[8] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010

[^0]: *Accepted for publication on March 17-th, 2023
 ${ }^{\dagger}$ mircea.merca@upb.ro Department of Mathematical Methods and Models, Fundamental Sciences Applied in Engineering Research Center, University Politehnica of Bucharest, RO-060042 Bucharest, Romania and Academy of Romanian Scientists, 050044, Bucharest, Romania

