A NOTE ON A CLASSICAL CONNECTION BETWEEN PARTITIONS AND DIVISORS*

M. Merca ${ }^{\dagger}$

DOI https://doi.org/10.56082/annalsarscimath.2023.1-2.163

Dedicated to Dr. Dan Tiba on the occasion of his $70^{\text {th }}$ anniversary

Abstract

In this note, we consider the number of k 's in all the partitions of n in order to provide a new proof of a classical identity involving Euler's partition function $p(n)$ and the sum of the positive divisors function $\sigma(n)$. New relations connecting classical functions of multiplicative number theory with the partition function $p(n)$ from additive number theory are introduced in this context. The fascinating feature of these relations is their common nature. A new identity for the number of 1's in all the partitions of n is derived in this context.

MSC: 05A17, 05A19, 11P81.
keywords: divisors, partitions

1 Introduction

Let A be a given set of positive integers, and let $f(n)$ be a given arithmetical function. By Apostol [3, Theorem 14.8], we know that the numbers $p_{A, f}(n)$

[^0]
[^0]: *Accepted for publication on March 17-th, 2023
 ${ }^{\dagger}$ mircea.merca@upb.ro Department of Mathematical Methods and Models, Fundamental Sciences Applied in Engineering Research Center, University Politehnica of Bucharest, RO-060042 Bucharest, Romania and Academy of Romanian Scientists, 050044, Bucharest, Romania

