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Abstract

We establish several fractional variational inclusions for solutions of
a nonconvex fractional differential inclusion involving Caputo-Fabrizio
fractional derivative.
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1 Introduction

Recently, a new fractional order derivative with regular kernel has been
introduced by Caputo and Fabrizio [3]. This new definition is able to de-
scribe better heterogeneousness, systems with different scales with memory
effects, the wave movement on surface of shallow water, the heat transfer
model, mass-spring-damper model etc.. Another good property of this new
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definition is that using Laplace transform of the fractional derivative the
fractional differential equation turns into a classical differential equation of
integer order. Some properties of this definition have been studied in [1, 4, §]
etc.. Several papers are devoted to the development of this new fractonal
derivative [6, 7, 8, 9, 10, 11] etc..

In Control Theory, mainly, if we want to obtain necessary optimality
conditions, it is essential to have several ”differentiability” properties of so-
lutions with respect to initial conditions. One of the most powerful result in
the theory of differential equations, the classical Bendixson-Picard-Lindel6f
theorem states that the maximal flow of a differential equation is differen-
tiable with respect to initial conditions and its derivatives verify the varia-
tional equation. This result has been generalized in various ways to differen-
tial inclusions by considering several variational inclusions and proving cor-
responding theorems that extend Bendixson-Picard-Lindel6f theorem. The
present paper is concerned with fractional differential inclusions of the form

D&px(t) € F(t,z(t)) a.e. ([0,T]), z(0)=mz, 2/(0)=mx (1.1)

where a € (0,1), 0 = a+1, D%y is the Caputo-Fabrizio fractional derivative,
F:[0,T] x R — P(R) is a set-valued map and zg,z; € R.

The aim of this note is to extend the results concerning the differentia-
bility of solutions of differential inclusions with respect to initial conditions
to the solutions of problem (1.1). The results we extend known as the con-
tingent, the intermediate (quasitangent) and the circatangent variational
inclusion are already obtained in the ”classical case” of differential inclu-
sions. For all these results and for a complete discussion on this topic we
refer to [2]. The proofs of our results follows by an approach similar to
the classical case of differential inclusions ([2]) and use a recent result ([5])
concerning the existence of solutions of problem (1.1).

The results in the present paper may be regarded as a continuation of
the study in [7], where it is proved that the reachable set of the intermediate
(quasitangent) Caputo-Fabrizio variational inclusion is a derived cone in the
sense of Hestenes to the reachable set of a given Caputo-Fabrizio fractional
differential inclusion.

The paper is organized as follows: in Section 2 we recall some preliminary
results that we need in the sequel and in Section 3 we prove our results.
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2 Preliminaries

Let Y be a normed space, X C Y and z € X (the closure of X). From
the multitude of the tangent cones in the literature (e.g., [2]) we recall
only the contingent, the quasitangent and Clarke’s tangent cones, defined,
respectively by:

K, X={veY; 3dsp,—0+, vy, 2v: z+ suv, € X}
Q: X ={veyY; Vs,—=0+, v, >v: x+su0, € X},
CoX = {v € Yi¥(@m, $m) = (2,04), Tm € X, Ty € X ¢ Umtm g},

This cones are related as follows: C, X C Q. X C K, X.

Corresponding to each type of tangent cone, say 7, X, one may introduce
a set-valued directional derivative of a multifunction G(-) : X C Y — P(Y)
(in particular of a single-valued mapping) at a point (z,y) € Graph(G) as
follows

7y G(r;v) ={w €Y; (v,w) € T(5,)Graph(G)}, venX.

Let I := [0,T], denote by C(I,R) the Banach space of all continuous
functions from I to R endowed with the norm |z|c = sup,c; |2(t)|dt and
by L'(I,R) we denote the Banach space of Lebegue integrable functions
u(.) : I — R endowed with the norm |ul; = fol |u(t)|dt.

The next definitions were introduced in [3].

a) The Caputo-Fabrizio integral of order o € (0,1) of a function f €
AC166([0,00), R) (which means that f’(.) is integrable on [0, 7] for any T' >
0) is defined by

IEef() = 0 - )0 +a [ f(s)as

b) The Caputo-Fabrizio fractional derivative of order o € (0,1) of f is
defined for ¢t > 0 by

Depf(t) = — /Clte”““f%s)ds.

C1l-a

c¢) The Caputo-Fabrizio fractional derivative of order o = a+n, o € (0, 1)
n € N of f is defined by

D¢ pf(t) = Dep(Dépf(1)).

In particular, if ¢ = a+1, a € (0,1) DZp f(t) = 1= Ji e w179 f7(5)ds.
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A function z(.) € C(I,R) is called a solution of problem (1.1) if there
exists a function f(.) € LY(I,R) with f(t) € F(t,x(t)), a.e. (I) such that
D¢ px(t) = f(t), a.e. (I) and 2(0) = x¢,2'(0) = x1. In this case we say that
(x(.), () is a trajectory-selection pair of (1.1).

We shall use the following notations for the solution sets of (1.1).

S(zo, 1) = {(z(.), f(.); (=(.), f(.)) is a trajectory-selection pair of (1.1)}.

Hypothesis 2.1. i) F(.,.) : I x R — P(R) has nonempty closed values
and for every = € R, F(.,z) is measurable.

ii) There exist L(.) € L'(I,(0,00)) such that for almost all ¢ € I, F(t,.)
is L(t)-Lipschitz in the sense that

dH(F<t,.%'1),F(t,1'2)) < L(t)]a:l — xg‘ A 1,2 € R,

where dg (A, C) is Pompeiu-Hausdorf distance between closed sets A, C' C
R

dp(A,C) =max{d"(A,C),d"(C,A)}, d*(A,C)=sup{d(a,C);a c A}.

On C(I,R) x L'(I,R) we consider the following norm
(2, loxe = lzle +[fl ¥ (2, f) € C(IL,R) x LY(I,R).

The next result ([5]) is an extension of Filippov’s theorem concerning
the existence of solutions to a Lipschitzian differential inclusion to fractional
differential inclusions of the form (1.1).

Consider yg,y1 € R, g(.) € L'(I,R) and y(.) is a solution of the problem

Dgpy(t) =g(t), y(0) =yo, ¥ (0)=u.

Theorem 2.2. Assume that Hypothesis 2.1 is satisfied and there ezists
q(.) € LY(I,R) such that d(D&py(t), F(t,y(t))) < q(t) a.e. (I). Denote

t
n(t) = (Jzo — yo| + tlz1 — y1| + ]qh)efo L)s “Then there exists (x(.), f(.)) €
C(I,R) x LY(I,R) a trajectory-selection pair of (1.1) satisfying for all t € I

z(t) —y(t)| <n(t) Vtel,

[f(t) —g@)] < L(t)n(t) + q(t)  ae. (I).
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3 Results

Let (y(.),g(.)) be a trajectory-selection pair of problem (1.1). We wish
to "linearize” (1.1) along (y(.),g(.)) by replacing it by several fractional
variational inclusions.

Consider, first, the contingent variational inclusion

{ Dhelt) €l (6 D05w() e () 1)

Theorem 3.1. Consider the solution map S(.,.) as a set valued map from
R x R into C(I,R) x L*(I,R), with L>®(I,R) supplied with the weak-*
topology and assume that Hypothesis 2.1 is satisfied.

Then for any u,v € R one has

K(y,9S((4(0), 4 (0); (u,v)) C
{(w, ); (w, ) is a trajectory-selection pair of (3.1)}.

Proof. Let u,v € R and let (w, ) € K, ,S((y(0),y'(0); (u,v)). Accord-
ing to the definition of the contingent derivative there exist h,, — 0+, u, —
U, vy — v, wy(.) = w(.) in C(I,R), m(.) = 7(.) in weak-* topology of
L>(I,R) and ¢ > 0 such that

|mn(t)] < ¢ a.e. (1),
g(t) + hnmn(t) € F(t,y(t) + hpwn(t)) a.e. (1), (3.2)
Wy (0) = up, w,(0) = vy,
Therefore,
wy(.) converges pointwise to  w(.)

7n(.)  converges weak in L'(I,R) to 7(.) (3.3)
We apply Mazur’s theorem and we find that there exists

[e.o]

Um(t) = ) abymp(t)
p=m
Um(.) = m(.) (strong) in L'(I,R), where ab, >0, > >°  ab, =1 and for any
m, ab, # 0 for a finite number of p.
Therefore, a subsequence (again denoted) v, (.) converges la m(.) a.e..
From (3.2) for any p and for almost all ¢ € [

w(t) € hlpwt, y(t) + hpwy(t)) — g(£) N cB
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Let t € I be such that v,,(t) — 7(t) and g(t) € F(t,y(t)). Fix n > 1 and
€ > 0. From (3.2) there exists m such that h, < 1/n and |wy(t)—w(t)] < 1/n
for any p > m.

If, we denote

1
Oz, h) = o (F(t,y(t) + hz) — g(t)) NeB
then
um(t) € co(Une(0,1] e B(u(r), 1) (2 1))

and if m — oo, we get

W(t) € @(Uhe(& ]7Z€B(w(t)’%)¢(z, h))

1
Since, ¢(z,h) C ¢B, we infer that

7(t) € €0 Neson>1 (Uhe(O,%},zeB(w(t), )¢(Z, h) + eB).

1
On the other hand,
Ne>0,n21 (Une(0,1] zeBu(n), 1) ?(2: h) + €B) C Koy F(t, ) (y(1); w(t))

and the proof is complete.

Next, we study the intermediate (quaitangent) variational inclusion

{ Dheult) < Quul(Fle su(e) ac. () )

where u,v € R.

Theorem 3.2. Consider the solution map S(.,.) as a set valued map from
R x R into C(I,R) x L'(I,R) and assume that Hypothesis 2.1 is satisfied.

Then, for any u,v € R and any trajectory-selection pair (w, ) of the
fractional differential inclusion (3.4) one has

(w7 ﬂ-) € Q(y,g)'s((y(o)a yl(o); (U, 1)))

Proof. Let u,v € R and let (w,7) € C(I,R) x L*(I,R) be a trajectory-
selection pair of (3.4). By the definition of the quasitangent derivative and
from the Lipschitzianity of F'(t,.), for almost all ¢ € I, we have

limp o4 d( %Fw(t), F(t’y(t)Jrhwg/))*DQCFy(t)) _
limy, o d(r(t), ZEsthe®) ol _ g,

(3.5)
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Moreover, since g(t) € F(t,y(t)) a.e. (I), from Hypothesis 2.1, for all
enough small h > 0 and for almost all ¢ € I, one has

d(Dgp(y(t) + hw(t)), F(t, y(t) + hw(t))) = d(g(t) + hr(t), F(t,y(t)+
hw(t))) < h(|x(t)] + L) w(t)])-

By standard arguments the function t — d(g(t) + hn(t), F(t,y(t) +
hw(t))) is measurable. Therefore, using the Lebesgue dominated conver-
gence theorem we infer

/DT e T T d(D2p(y(t) + hw(t)), F(t, y(t) + hw(t)))de < o(h),  (3.6)

where limp_o4 @ = 0.

We apply Theorem 2.2 and by (3.6) we deduce the existence of M > 0
and of trajectory-selection pairs (yp(.), gn(.)) of the fractional differential
inclusion (1.1) satisfying

lyn—y—hw|c+|gh—g—hr|i < Mo(h), yn(0) = y(0)+hu, y,(0) =y (0)+hv,

which implies
Yn — Y . . gn — 9 . 1
_ = C(I,R 1 =2 = L (I.R).
g S e W OUR) g TS n LUR)
Therefore

S((y(0) + hu, y'(0) + hv)) — (y,9)
h

I _
hi}%ﬂ_ dCXL((w77T)7 ) 0

and the proof is complete.

Finally we deal with the variational inclusion defined by the Clarke direc-
tional derivative of the set-valued map F'(t,.), i.e., the so called circatangent
variational inclusion

D paolt) € oy (F(t, ) (y(t); w(t))  ae. (I)
{ w(0) =u, w'(0)=w. (3.7)

Theorem 3.3. Consider the solution map S(.,.) as a set valued map from
R x R into C(I,R) x L*(I,R) and assume that Hypothesis 2.1 is satisfied.

Then, for any u,v € R and any trajectory-selection pair (w, ) of the
fractional differential inclusion (3.7) one has

(w, ) € Cy,yS(((0), 4/ (0); (i, v)).
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Proof. Let u,v € R, let (w,n) € C(I,R) x L'(I,R) be a trajectory-
selection pair of (3.7), let (yn, gn) be a sequence of trajectory-selection pairs
of (1.1) that converges to (y,g9) € C(I,R) x LY(I,R) and let h, — 0+.
Then there exists a subsequence g;(.) := gn,(.) such that

lim g;(t) = g(t) a.e. (1) (3.8)

]—)OO

Denote A;j := hy,. From (3.7) and from the definition of the Clarke
directional derivative, for almost all £ € I we have

limh_)0+ d(Dg’ w(t) F(t,yj(t)"’)‘ju/]\(?))_D%ij(t)) —

F J
limp_yo. d((t), F(ty;(t )+/\>\Jw(t)) g;(t )) —0.

(3.9)

Since g;(t) € F(t,y;(t)) a.e. (), for almost all t € I, we get

d(Dgp(y;(t) + Ajw(t)), F (8, y;(t) + Xjw(t))) = d(g;(t) + Ajm(t), F (L, y;(t)+
Aj w( ))) < Aj(lm ()\+ () |w ()\)-

The last inequality together with Lebesgue’s dominated convergence the-
orem implies

T
| e TR p s (1) + Ay 0). F (15 (8) + Aw(t)) )t < o)
(3.10)

o(\j

where lim;_; Tj) =0.

We apply Theorem 2.2 and by (3.10) we deduce the existence of M > 0
and of trajectory-selections pairs (7;(.),g,(.)) of the fractional differential
inclusion in (1.1) satisfying

‘yj — Y- )‘jw‘C’ + \ﬁj —3g; — )\jﬂ"l < ]\40(}\]‘)7

7;(0) = y(0) + Nju,  7;(0) =3/(0) + Ajv.

It follows that

im %Y —w i CUR), lim %Y

J—00 j J]—00 ]

=x in LYI,R),

which completes the proof.
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