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Abstract

We establish several fractional variational inclusions for solutions of
a nonconvex fractional differential inclusion involving Caputo-Fabrizio
fractional derivative.
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1 Introduction

Recently, a new fractional order derivative with regular kernel has been
introduced by Caputo and Fabrizio [3]. This new definition is able to de-
scribe better heterogeneousness, systems with different scales with memory
effects, the wave movement on surface of shallow water, the heat transfer
model, mass-spring-damper model etc.. Another good property of this new
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definition is that using Laplace transform of the fractional derivative the
fractional differential equation turns into a classical differential equation of
integer order. Some properties of this definition have been studied in [1, 4, 8]
etc.. Several papers are devoted to the development of this new fractonal
derivative [6, 7, 8, 9, 10, 11] etc..

In Control Theory, mainly, if we want to obtain necessary optimality
conditions, it is essential to have several ”differentiability” properties of so-
lutions with respect to initial conditions. One of the most powerful result in
the theory of differential equations, the classical Bendixson-Picard-Lindelőf
theorem states that the maximal flow of a differential equation is differen-
tiable with respect to initial conditions and its derivatives verify the varia-
tional equation. This result has been generalized in various ways to differen-
tial inclusions by considering several variational inclusions and proving cor-
responding theorems that extend Bendixson-Picard-Lindelőf theorem. The
present paper is concerned with fractional differential inclusions of the form

Dσ
CFx(t) ∈ F (t, x(t)) a.e. ([0, T ]), x(0) = x0, x′(0) = x1 (1.1)

where α ∈ (0, 1), σ = α+1, Dσ
CF is the Caputo-Fabrizio fractional derivative,

F : [0, T ]×R→ P(R) is a set-valued map and x0, x1 ∈ R.

The aim of this note is to extend the results concerning the differentia-
bility of solutions of differential inclusions with respect to initial conditions
to the solutions of problem (1.1). The results we extend known as the con-
tingent, the intermediate (quasitangent) and the circatangent variational
inclusion are already obtained in the ”classical case” of differential inclu-
sions. For all these results and for a complete discussion on this topic we
refer to [2]. The proofs of our results follows by an approach similar to
the classical case of differential inclusions ([2]) and use a recent result ([5])
concerning the existence of solutions of problem (1.1).

The results in the present paper may be regarded as a continuation of
the study in [7], where it is proved that the reachable set of the intermediate
(quasitangent) Caputo-Fabrizio variational inclusion is a derived cone in the
sense of Hestenes to the reachable set of a given Caputo-Fabrizio fractional
differential inclusion.

The paper is organized as follows: in Section 2 we recall some preliminary
results that we need in the sequel and in Section 3 we prove our results.
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2 Preliminaries

Let Y be a normed space, X ⊂ Y and x ∈ X (the closure of X). From
the multitude of the tangent cones in the literature (e.g., [2]) we recall
only the contingent, the quasitangent and Clarke’s tangent cones, defined,
respectively by:

KxX = {v ∈ Y ; ∃sm → 0+, ∃vm → v : x+ smvm ∈ X}
QxX = {v ∈ Y ; ∀sm → 0+, ∃vm → v : x+ smvm ∈ X},
CxX = {v ∈ Y ;∀(xm, sm)→ (x, 0+), xm ∈ X, ∃ym ∈ X : ym−xm

sm
→ v}.

This cones are related as follows: CxX ⊂ QxX ⊂ KxX.
Corresponding to each type of tangent cone, say τxX, one may introduce

a set-valued directional derivative of a multifunction G(·) : X ⊂ Y → P(Y )
(in particular of a single-valued mapping) at a point (x, y) ∈ Graph(G) as
follows

τyG(x; v) = {w ∈ Y ; (v, w) ∈ τ(x,y)Graph(G)}, v ∈ τxX.

Let I := [0, T ], denote by C(I,R) the Banach space of all continuous
functions from I to R endowed with the norm |x|C = supt∈I |x(t)|dt and
by L1(I,R) we denote the Banach space of Lebegue integrable functions
u(.) : I → R endowed with the norm |u|1 =

∫ 1
0 |u(t)|dt.

The next definitions were introduced in [3].

a) The Caputo-Fabrizio integral of order α ∈ (0, 1) of a function f ∈
ACloc([0,∞),R) (which means that f ′(.) is integrable on [0, T ] for any T >
0) is defined by

IαCF f(t) = (1− α)f(t) + α

∫ t

0
f(s)ds.

b) The Caputo-Fabrizio fractional derivative of order α ∈ (0, 1) of f is
defined for t ≥ 0 by

Dα
CF f(t) =

1

1− α

∫ t

a
e−

α
1−α (t−s)f ′(s)ds.

c) The Caputo-Fabrizio fractional derivative of order σ = α+n, α ∈ (0, 1)
n ∈ N of f is defined by

Dσ
CF f(t) = Dα

CF (Dn
CF f(t)).

In particular, if σ = α+1, α ∈ (0, 1)Dσ
CF f(t) = 1

1−α
∫ t
a e
− α

1−α (t−s)f ′′(s)ds.
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A function x(.) ∈ C(I,R) is called a solution of problem (1.1) if there
exists a function f(.) ∈ L1(I,R) with f(t) ∈ F (t, x(t)), a.e. (I) such that
Dσ
CFx(t) = f(t), a.e. (I) and x(0) = x0, x

′(0) = x1. In this case we say that
(x(.), f(.)) is a trajectory-selection pair of (1.1).

We shall use the following notations for the solution sets of (1.1).

S(x0, x1) = {(x(.), f(.)); (x(.), f(.)) is a trajectory-selection pair of (1.1)}.

Hypothesis 2.1. i) F (., .) : I × R → P(R) has nonempty closed values
and for every x ∈ R, F (., x) is measurable.

ii) There exist L(.) ∈ L1(I, (0,∞)) such that for almost all t ∈ I, F (t, .)
is L(t)-Lipschitz in the sense that

dH(F (t, x1), F (t, x2)) ≤ L(t)|x1 − x2| ∀ x1, x2 ∈ R,

where dH(A,C) is Pompeiu-Hausdorff distance between closed sets A,C ⊂
R

dH(A,C) = max{d∗(A,C), d∗(C,A)}, d∗(A,C) = sup{d(a,C); a ∈ A}.

On C(I,R)× L1(I,R) we consider the following norm

|(x, f)|C×L = |x|C + |f |1 ∀ (x, f) ∈ C(I,R)× L1(I,R).

The next result ([5]) is an extension of Filippov’s theorem concerning
the existence of solutions to a Lipschitzian differential inclusion to fractional
differential inclusions of the form (1.1).

Consider y0, y1 ∈ R, g(.) ∈ L1(I,R) and y(.) is a solution of the problem

Dα
CF y(t) = g(t), y(0) = y0, y′(0) = y1.

Theorem 2.2. Assume that Hypothesis 2.1 is satisfied and there exists
q(.) ∈ L1(I,R) such that d(Dα

CF y(t), F (t, y(t))) ≤ q(t) a.e. (I). Denote

η(t) = (|x0 − y0|+ t|x1 − y1|+ |q|1)e
∫ t
0
L(s)ds. Then there exists (x(.), f(.)) ∈

C(I,R)×L1(I,R) a trajectory-selection pair of (1.1) satisfying for all t ∈ I

|x(t)− y(t)| ≤ η(t) ∀t ∈ I,

|f(t)− g(t)| ≤ L(t)η(t) + q(t) a.e. (I).
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3 Results

Let (y(.), g(.)) be a trajectory-selection pair of problem (1.1). We wish
to ”linearize” (1.1) along (y(.), g(.)) by replacing it by several fractional
variational inclusions.

Consider, first, the contingent variational inclusion{
Dσ
CFw(t) ∈ coKg(t)(F (t, .))(y(t);w(t)) a.e. (I)

w(0) = u, w′(0) = v.
(3.1)

Theorem 3.1. Consider the solution map S(., .) as a set valued map from
R × R into C(I,R) × L∞(I,R), with L∞(I,R) supplied with the weak-*
topology and assume that Hypothesis 2.1 is satisfied.

Then for any u, v ∈ R one has

K(y,g)S((y(0), y′(0); (u, v)) ⊂
{(w, π); (w, π) is a trajectory-selection pair of (3.1)}.

Proof. Let u, v ∈ R and let (w, π) ∈ K(y,g)S((y(0), y′(0); (u, v)). Accord-
ing to the definition of the contingent derivative there exist hn → 0+, un →
u, vn → v, wn(.) → w(.) in C(I,R), πn(.) → π(.) in weak-* topology of
L∞(I,R) and c > 0 such that

|πn(t)| ≤ c a.e. (I),
g(t) + hnπn(t) ∈ F (t, y(t) + hnwn(t)) a.e. (I),
wn(0) = un, w

′
n(0) = vn.

(3.2)

Therefore,
wn(.) converges pointwise to w(.)
πn(.) converges weak in L1(I,R) to π(.)

(3.3)

We apply Mazur’s theorem and we find that there exists

vm(t) =
∞∑
p=m

apmπp(t)

vm(.)→ π(.) (strong) in L1(I,R), where apm ≥ 0,
∑∞
p=m a

p
m = 1 and for any

m, apm 6= 0 for a finite number of p.
Therefore, a subsequence (again denoted) vm(.) converges la π(.) a.e..

From (3.2) for any p and for almost all t ∈ I

w′p(t) ∈
1

hp
(F (t, y(t) + hpwp(t))− g(t)) ∩ cB
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Let t ∈ I be such that vm(t)→ π(t) and g(t) ∈ F (t, y(t)). Fix n ≥ 1 and
ε > 0. From (3.2) there exists m such that hp ≤ 1/n and |wp(t)−w(t)| ≤ 1/n
for any p ≥ m.

If, we denote

φ(z, h) :=
1

h
(F (t, y(t) + hz)− g(t)) ∩ cB

then
vm(t) ∈ co(∪h∈(0, 1

n
],z∈B(w(t), 1

n
)φ(z, h))

and if m→∞, we get

π(t) ∈ co(∪h∈(0, 1
n
],z∈B(w(t), 1

n
)φ(z, h)).

Since, φ(z, h) ⊂ cB, we infer that

π(t) ∈ co ∩ε>0,n≥1 (∪h∈(0, 1
n
],z∈B(w(t), 1

n
)φ(z, h) + εB).

On the other hand,

∩ε>0,n≥1(∪h∈(0, 1
n
],z∈B(w(t), 1

n
)φ(z, h) + εB) ⊂ Kg(t)F (t, .)(y(t);w(t))

and the proof is complete.

Next, we study the intermediate (quaitangent) variational inclusion{
Dσ
CFw(t) ∈ Qg(t)(F (t, .))(y(t);w(t)) a.e. (I)

w(0) = u, w′(0) = v,
(3.4)

where u, v ∈ R.

Theorem 3.2. Consider the solution map S(., .) as a set valued map from
R×R into C(I,R)×L1(I,R) and assume that Hypothesis 2.1 is satisfied.

Then, for any u, v ∈ R and any trajectory-selection pair (w, π) of the
fractional differential inclusion (3.4) one has

(w, π) ∈ Q(y,g)S((y(0), y′(0); (u, v)).

Proof. Let u, v ∈ R and let (w, π) ∈ C(I,R)×L1(I,R) be a trajectory-
selection pair of (3.4). By the definition of the quasitangent derivative and
from the Lipschitzianity of F (t, .), for almost all t ∈ I, we have

limh→0+ d(Dα
CFw(t),

F (t,y(t)+hw(t))−DαCF y(t)
h ) =

limh→0+ d(π(t), F (t,y(t)+hw(t))−g(t)
h ) = 0.

(3.5)
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Moreover, since g(t) ∈ F (t, y(t)) a.e. (I), from Hypothesis 2.1, for all
enough small h > 0 and for almost all t ∈ I, one has

d(Dα
CF (y(t) + hw(t)), F (t, y(t) + hw(t))) = d(g(t) + hπ(t), F (t, y(t)+

hw(t))) ≤ h(|π(t)|+ L(t)|w(t)|).

By standard arguments the function t → d(g(t) + hπ(t), F (t, y(t) +
hw(t))) is measurable. Therefore, using the Lebesgue dominated conver-
gence theorem we infer∫ T

0
e−

α
1−α (T−s)d(Dα

CF (y(t) + hw(t)), F (t, y(t) + hw(t)))dt ≤ o(h), (3.6)

where limh→0+
o(h)
h = 0.

We apply Theorem 2.2 and by (3.6) we deduce the existence of M ≥ 0
and of trajectory-selection pairs (yh(.), gh(.)) of the fractional differential
inclusion (1.1) satisfying

|yh−y−hw|C+|gh−g−hπ|1 ≤Mo(h), yh(0) = y(0)+hu, y′h(0) = y′(0)+hv,

which implies

lim
h→0+

yh − y
h

= w in C(I,R), lim
h→0+

gh − g
hn

= π in L1(I,R).

Therefore

lim
h→0+

dC×L((w, π),
S((y(0) + hu, y′(0) + hv))− (y, g)

h
) = 0

and the proof is complete.

Finally we deal with the variational inclusion defined by the Clarke direc-
tional derivative of the set-valued map F (t, .), i.e., the so called circatangent
variational inclusion{

Dσ
CFw(t) ∈ Cg(t)(F (t, .))(y(t);w(t)) a.e. (I)

w(0) = u, w′(0) = v.
(3.7)

Theorem 3.3. Consider the solution map S(., .) as a set valued map from
R×R into C(I,R)×L1(I,R) and assume that Hypothesis 2.1 is satisfied.

Then, for any u, v ∈ R and any trajectory-selection pair (w, π) of the
fractional differential inclusion (3.7) one has

(w, π) ∈ C(y,g)S((y(0), y′(0); (u, v)).
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Proof. Let u, v ∈ R, let (w, π) ∈ C(I,R) × L1(I,R) be a trajectory-
selection pair of (3.7), let (yn, gn) be a sequence of trajectory-selection pairs
of (1.1) that converges to (y, g) ∈ C(I,R) × L1(I,R) and let hn → 0+.
Then there exists a subsequence gj(.) := gnj (.) such that

lim
j→∞

gj(t) = g(t) a.e. (I) (3.8)

Denote λj := hnj . From (3.7) and from the definition of the Clarke
directional derivative, for almost all t ∈ I we have

limh→0+ d(Dα
CFw(t),

F (t,yj(t)+λjw(t))−DαCF yj(t)
λj

) =

limh→0+ d(π(t),
F (t,yj(t)+λjw(t))−gj(t)

λj
) = 0.

(3.9)

Since gj(t) ∈ F (t, yj(t)) a.e. (I), for almost all t ∈ I, we get

d(Dα
CF (yj(t) + λjw(t)), F (t, yj(t) + λjw(t))) = d(gj(t) + λjπ(t), F (t, yj(t)+

λjw(t))) ≤ λj(|π(t)|+ L(t)|w(t)|).

The last inequality together with Lebesgue’s dominated convergence the-
orem implies

∫ T

0
e−

α
1−α (T−s)d((Dα

CF (yj(t) + λjw(t)), F (t, yj(t) + λjw(t)))dt ≤ o(λj),
(3.10)

where limj→∞
o(λj)
λj

= 0.

We apply Theorem 2.2 and by (3.10) we deduce the existence of M ≥ 0
and of trajectory-selections pairs (yj(.), gj(.)) of the fractional differential
inclusion in (1.1) satisfying

|yj − yj − λjw|C + |gj − gj − λjπ|1 ≤Mo(λj),

yj(0) = y(0) + λju, y′j(0) = y′(0) + λjv.

It follows that

lim
j→∞

yj − y
λj

= w in C(I,R), lim
j→∞

gj − g
λj

= π in L1(I,R),

which completes the proof.
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[10] Ş. Toprakseven. The existence and uniqueness of initial-boundary value
problems of the Caputo-Fabrizio differential equations. Universal J.
Math. Appl. 2:100-106, 2019.

[11] S. Zhang, L. Hu, S. Sun. The uniqueness of solution for initial value
problems for fractional differential equations involving the Caputo-
Fabrizio derivative. J. Nonlin. Sci. Appl. 11:428-436, 2018.


