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ON A NONLOCAL PROBLEM

INVOLVING FRACTIONAL

p(x, ·)-LAPLACIAN WITH

NON-STANDARD GROWTH∗

Mustapha Ait Hammou†

Abstract

We are concerned in a nonlocal problem involving the fractional
p(x, ·)−Laplacian operator and with a right-hand side that is a Ca-
rathéodory function satisfying only a non-standard growth condition.
We show that our problem admits at least one weak solution. In order
to do this, the main tool is the Berkovits degree theory for abstract
Hammerstein type mappings.
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1 Introduction

The use of the functional framework provided by the classical Lebesgue and
Sobolev spaces Lp and W 1,p has shown to be not appropriate for studying
various materials which present inhomogeneities. Indeed, for such materi-
als the exponents involved in the constitutive law could be variable, which
requires the use of the spaces Lp(x) and W 1,p(x). The use of these spaces
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is strongly motivated by their ability to model phenomena concerning elec-
trorheological fluids [20, 22], thermorheological fluids [7], elastic materials
[27] and image restoration [12]. The p(x)-Laplacian operator, which is an ex-
tension of the p-Laplacian, is involved in many of these problems and whose
existence results are developed; see, for example, [13, 14] and references
therein. Recently, some authors have further generalized the above men-
tioned operator to the fractional case (fractional operator p(x, ·)-Laplacian)
and they have introduced a functional framework to study problems in which
this fractional variable exponent operator is involved. See, for example,
[5, 6, 11] and their references.

Let Ω be a smooth bounded open set in RN , s ∈ (0, 1) and let
p : Ω× Ω→ (1,+∞) be a continuous bounded function. We assume that

1 < p− = min
(x,y)∈Ω×Ω

p(x, y) ≤ p(x, y) ≤ p+ = max
(x,y)∈Ω×Ω

p(x, y) < +∞, (1)

and p is symmetric i.e.

p(x, y) = p(y, x), ∀(x, y) ∈ Ω× Ω. (2)

Let us consider the fractional p(x, ·)−Laplacian operator given by

(−∆p(x,·))
su(x) = p.v.

∫
Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))

|x− y|N+sp(x,y)
dy, ∀x ∈ Ω,

where p.v. is a commonly used abbreviation in the principal value sense.

In this paper, we are concerned with the study of the following nonlinear
elliptic problem, {

(−∆p(x,·))
su(x) = f(x, u) in Ω,

u = 0 in RN \ Ω.
(P)

Note that (−∆p(x,·))
s is the fractional version of well known p(x)−Laplacian

operator −∆p(x)(u) = −div(|∇u|p(x)−2∇u) for which Fan and Zhang in [16]
and Iliaş in [17] present several sufficient conditions for the existence of
solutions for a problem similar to (P), that is the Dirichlet problem of p(x)-
Laplacian: {

−∆p(x)u = f(x, u) in Ω,

u = 0 x ∈ ∂Ω.

The discussion is based on the theory of the spaces Lp(x)(Ω) and W
1,p(x)
0 (Ω)

by using variational and topological methods.
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Bendahmane and Wittbold in [10] have shown the existence and unique-
ness of the renormalized solution for this problem where the right-hand side
f ∈ L1(Ω) and it not depends to u. We also refer to [23] for the exis-
tence and uniqueness of entropy solution. The same problem is studied by
Messaho in [21] for p ≡ cte. Her approach is based to the truncation and
epi-convergence method.

In [4], the autors study the problem (P). The main results are established
by means of mountain pass theorem and Fountain theorem with Cerami
condition.

Using another technical approach, that of the topological degree theory,
and only with a growth condition, we prove in this paper the existence of at
least one weak solution the problem (P). For more details about this theory
and its applications, the reader can refer to [1, 2, 3, 8] and the references
therein.

The paper is divided into three sections. In the second section we
present some preliminary results on classes of operators related to the re-
cent Berkovits degree and on Lebesgue and fractional Sobolev spaces with
variable exponent. The third section is reserved for some technical lemmas
and the main result concerning the existence weak solutions of the problem
(P).

2 Some preliminary results

We first give the definitions of some classes of operators related to the
Berkovits topological degree theory (see [8]).

Let X be a real separable reflexive Banach space with dual X∗ and with
continuous pairing 〈. , .〉 and let Ω be a nonempty subset of X. The symbol
→ (⇀) stands for strong (weak) convergence and the sign ◦ denotes the
composition of two operators.

Definition 1. Let Y be a real Banach space. A mapping F : Ω ⊂ X → Y
is said to be

1. bounded, if it takes any bounded set into a bounded set.

2. demicontinuous, if for any (un) ⊂ Ω, un → u implies F (un) ⇀ F (u).

3. compact if it is continuous and the image of any bounded set is rela-
tively compact.

Definition 2. A mapping F : Ω ⊂ X → X∗ is said to be
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1. of class (S+), if for any (un) ⊂ Ω with un ⇀ u and
limsup〈Fun, un − u〉 ≤ 0, it follows that un → u.

2. quasimonotone , if for any (un) ⊂ Ω with un ⇀ u, it follows that
limsup〈Fun, un − u〉 ≥ 0.

Definition 3. For any operator F : Ω ⊂ X → X and any bounded op-
erator T : Ω1 ⊂ X → X∗ such that Ω ⊂ Ω1, we say that F satisfies
condition (S+)T , if for any (un) ⊂ Ω with un ⇀ u, yn := Tun ⇀ y and
limsup〈Fun, yn − y〉 ≤ 0, we have un → u.

Let O be the collection of all bounded open set in X. For any Ω ⊂ X,
we consider the following classes of operators:

F1(Ω) := {F : Ω→ X∗ | F is bounded, demicontinuous and satisfies condition (S+)},
FT,B(Ω) := {F : Ω→ X | F is bounded, demicontinuous and satisfies condition (S+)T },
FT (Ω) := {F : Ω→ X | F is demicontinuous and satisfies condition (S+)T },
FB(X) := {F ∈ FT,B(Ḡ) | G ∈ O,T ∈ F1(Ḡ)}.

Let us now present a Berkovits lemma for abstract mappings of type Ham-
merstein and an impotent proposition deduced from this lemma and the
properties of the Berkovits topological degree.

Lemma 1. [8, Lemmas 2.2 and 2.4] Suppose that T ∈ F1(Ḡ) is continuous
and S : DS ⊂ X∗ → X is demicontinuous such that T (Ḡ) ⊂ DS, where G is
a bounded open set in a real reflexive Banach space X. Then the following
statements are true:

(i) If S is quasimonotone, then I + S ◦ T ∈ FT (Ḡ), where I denotes the
identity operator.

(ii) If S is of class (S+), then S ◦ T ∈ FT (Ḡ)

Proposition 1. Let S : X → X∗ and T : X∗ → X be two operators bounded
and continuous such that S is quasimonotone and T is an homeomorphism,
strictly monotone and of class (S+). If

Λ := {v ∈ X∗|v + tS ◦ Tv = 0 for some t ∈ [0, 1]}

is bounded in X∗, then the equation

v + S ◦ Tv = 0

admits at lest one solution in X∗.
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Proof. Since Λ is bounded in X∗, there exists R > 0 such that

‖v‖X∗ < R for all v ∈ Λ.

This says that

v + tS ◦ Tv 6= 0 for all v ∈ ∂BR(0) and all t ∈ [0, 1]

where BR(0) is the ball of center 0 and radius R in X∗.
Thanks to the Minty-Browder Theorem [24, Theorem 26A], the inverse op-
erator L := T−1 is bounded, continuous and of type (S+).
From Lemma 1 it follows that

I + S ◦ T ∈ FT (BR(0)) and I = L ◦ T ∈ FT (BR(0)).

Since the operators I, S and T are bounded, I + S ◦ T is also bounded. We
conclude that

I + S ◦ T ∈ FT,B(BR(0)) and I ∈ FT,B(BR(0)).

Consider a homotopy H : [0, 1]×BR(0)→ X∗ given by

H(t, v) := v + tS ◦ Tv for (t, v) ∈ [0, 1]×BR(0).

Let us apply the homotopy invariance and normalization property of the
Berkovits degree (which we note d) introduced in [8], we get

d(I + S ◦ T,BR(0), 0) = d(I,BR(0), 0) = 1,

and hence there exists a point v ∈ BR(0) such that

v + S ◦ Tv = 0.

To study the problem (P), we need also to introduce and clarify our
functional framework. We first recall some useful properties of the variable
exponent Lebesgue spaces Lp(x)(Ω). For more details we refer the reader to
[15, 18, 25] for more details.

Denote
C+(Ω̄) = {h ∈ C(Ω̄)| inf

x∈Ω̄
h(x) > 1}.

For any h ∈ C+(Ω̄), we define

h+ := max{h(x), x ∈ Ω̄}, h− := min{h(x), x ∈ Ω̄}.
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For any p ∈ C+(Ω̄) we define the variable exponent Lebesgue space

Lp(x)(Ω) = {u; u : Ω→ R is measurable and

∫
Ω
|u(x)|p(x) dx < +∞}.

Endowed with Luxemburg norm

‖u‖p(x) = inf{λ > 0/ρp(·)(
u

λ
) ≤ 1}.

where

ρp(·)(u) =

∫
Ω
|u(x)|p(x) dx, ∀u ∈ Lp(x)(Ω),

(Lp(x)(Ω), ‖ · ‖p(x)) is a Banach space, separable and reflexive. Its conjugate

space is Lp′(x)(Ω) where 1
p(x) + 1

p′(x) = 1 for all x ∈ Ω.
We have also the following result

Proposition 2. For any u ∈ Lp(x)(Ω) we have

(i) ‖u‖p(x) < 1(= 1;> 1) ⇔ ρp(·)(u) < 1(= 1;> 1),

(ii) ‖u‖p(x) ≥ 1 ⇒ ‖u‖p
−

p(x) ≤ ρp(·)(u) ≤ ‖u‖p
+

p(x),

(iii) ‖u‖p(x) ≤ 1 ⇒ ‖u‖p
+

p(x) ≤ ρp(·)(u) ≤ ‖u‖p
−

p(x).

(iv) limn→∞ ‖un − u‖p(x) = 0 ⇔ limn→∞ ρp(x)(un − u) = 0.

From this proposition, we can deduce the inequalities

‖u‖p(x) ≤ ρp(·)(u) + 1, (3)

ρp(·)(u) ≤ ‖u‖p
−

p(x) + ‖u‖p
+

p(x). (4)

If p, q ∈ C+(Ω) such that p(x) ≤ q(x) for any x ∈ Ω̄, then there exists the
continuous embedding Lq(x)(Ω) ↪→ Lp(x)(Ω).

Next, we present the definition and some results on fractional Sobolev
spaces with variable exponent that was introduced in [4, 9, 19]. Let s be a
fixed real number such that 0 < s < 1 and lets the assumptions (1) and (2)
be satisfied, we define the fractional Sobolev space with variable exponent
via the Gagliardo approach as follows:

W = W s,p(x,y)(Ω)

= {u ∈ Lp̄(x)(Ω) :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|N+sp(x,y)
dxdy < +∞, for some λ > 0},



On a nonlocal problem involving fractional p(x, ·)-Laplacian 83

where p̄(x) = p(x, x). We equip the space W with the norm

‖u‖W = ‖u‖p̄(x) + [u]s,p(x,y),

where [·]s,p(x,y) is a Gagliardo seminorm with variable exponent, which is
defned by

[u]s,p(x,y) = inf{λ > 0 :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|N+sp(x,y)
dxdy ≤ 1}.

The space (W, ‖ · ‖W ) is a Banach space (see [12]), separable and reflexive
(see [9, Lemma 3.1]).

We also define W0 as the subspace of W which is the closure of C∞0 (Ω)
with respect to the norm ‖ · ‖W . From [4, Theorem 2.1 and Remark 2.1],

‖ · ‖W0 := [·]s,p(x,y)

is a norm on W0 which is equivalent to the norm ‖ · ‖W , and we have the
compact embedding W0 ↪→↪→ Lp̄(x)(Ω). So the space (W0, ‖ · ‖W0) is a
Banach space separable and reflexive.
We defne the modular ρp(·,·) : W0 → R by

ρp(·,·)(u) =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy.

The modular ρp(·,·) checks the following results, which is similar to Proposi-
tion 2 (see [26, Lemma 2.1])

Proposition 3. For any u ∈W0 we have

(i) ‖u‖W0 ≥ 1 ⇒ ‖u‖p
−

W0
≤ ρp(·,·)(u) ≤ ‖u‖p

+

W0
,

(ii) ‖u‖W0 ≤ 1 ⇒ ‖u‖p
+

W0
≤ ρp(·,·)(u) ≤ ‖u‖p

−

W0
.

3 Technical lemmas and main result

Let Ω ⊂ RN , N ≥ 2, be a smooth bounded open set, s ∈ (0, 1) and we
assume that (1) and (2) and holds. In this section, we present two technical
lemmas that we will need to study our problem (P), then our main result.

Let denote L : W0 → W ∗0 , the operator associated to the (−∆p(x,·))
s

defined by

〈Lu, v〉 =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+sp(x,y)
|∇u|p(x)−2 dxdy,

for all u, v ∈W0, where W ∗0 is the dual space of W0.
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Lemma 2. [9]

(i) L is bounded and strictly monotone operator,

(ii) L is a mapping of type (S+),

(iii) L is a homeomorphism.

Now, we make the following assumptions on the function f : Ω×R→ R:

(f1) f satisfies the Carathéodory condition, that is, f(., η) is measurable on
Ω for all η ∈ R and f(x, ·) is continuous on R for a.e. x ∈ Ω.

(f2) f has the growth condition

|f(x, η)| ≤ c(k(x) + |η|q(x)−1)

for a.e. x ∈ Ω and all η ∈ R, where c is a positive constant,
k ∈ Lp̄′(x)(Ω) and q ∈ C+(Ω̄) with q+ < p̄−.

Lemma 3. Under assumptions (f1) and (f2), the operator S : W0 → W ∗0
setting by

〈Su, v〉 = −
∫

Ω
f(x, u)vdx, ∀u, v ∈W0

is compact.

Proof. Let φ : W0 → Lp̄′(x)(Ω) be an operator defined by

φu(x) := −f(x, u) for u ∈W0 and x ∈ Ω.

We first show that φ is bounded and continuous.
For each u ∈W0, we have by the growth condition (f2), the inequalities (3)
and (4) that

‖φu‖p̄′(x) ≤ ρp̄′(x)(φu) + 1

=

∫
Ω
|f(x, u(x))|p̄′(x) + 1

≤ const(ρp̄′(x)(k) + ρr(x)(u)) + 1

≤ const(‖k‖p̄
′+

p̄′(x) + ‖u‖r+

r(x) + ‖u‖r−r(x)) + 1,

where r(x) = (q(x) − 1)p̄′(x) ∈ C+(Ω̄) with r(x) < p̄(x). Then, by the
continuous embedding Lp̄(x) ↪→ Lr(x) and the compact embedding
W0 ↪→↪→ Lp̄(x)(Ω), we have

‖φu‖p̄′(x) ≤ const(‖k‖
p̄′+

p̄′(x) + ‖u‖r+

W0
+ ‖u‖r−W0

) + 1.
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This implies that φ is bounded on W0.
To show that φ is continuous, let un → u in W0. Then un → u in Lp̄(x)(Ω).
Hence there exist a subsequence (uk) of (un) and measurable functions h in
Lp̄(x)(Ω) and g such that

uk(x)→ u(x) and |uk(x)| ≤ h(x)

for a.e. x ∈ Ω and all k ∈ N. Since f satisfies the Carathéodory condition,
we obtain that

f(x, uk(x))→ f(x, u(x)) a.e. x ∈ Ω.

it follows from (f2) that

|f(x, uk(x))| ≤ c(k(x) + |h(x)|q(x)−1)

for a.e. x ∈ Ω and for all k ∈ N.
Since

k + |h|q(x)−1 ∈ Lp̄′(x)(Ω),

and taking into account the equality

ρp̄′(x)(φuk − φu) =

∫
Ω
|f(x, uk(x))− f(x, u(x))|p̄′(x)dx,

the dominated convergence theorem and the equivalence (iv) in Proposition
2 implies that

φuk → φu in Lp̄′(x)(Ω).

Thus the entire sequence (φun) converges to φu in Lp̄′(x)(Ω).
Since the embedding I : W0 → Lp̄(x)(Ω) is compact, it is known that the
adjoint operator I∗ : Lp̄′(x)(Ω) → W ∗0 is also compact. Therefore, the com-
position S = I∗ ◦ φ : W0 →W ∗0 is compact.

Definition 4. We say that u ∈W0 is a weak solution of (P) if

〈Lu, v〉+ 〈Su, v〉 = 0, ∀v ∈W0.

Theorem 1. Under assumptions (1), (2) (f1) and (f2), the problem (P)
has a weak solution u in W0.

Proof. u ∈W0 is a weak solution of (P) if and only if

Lu = −Su. (5)

Thanks to the properties of the operator L seen in Lemma 2 and in view of
Minty-Browder Theorem [24, Theorem 26A], the inverse operator
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T := L−1 : W ∗0 → W0 is bounded, continuous and satisfies condition (S+).
Moreover, note by Lemma 3 that the operator S is bounded, continuous and
quasimonotone.
Consequently, equation (5) is equivalent to

u = Tv and v + S ◦ Tv = 0. (6)

To solve equation (6), we will apply the Proposition 1. To do this, we first
claim that the set

Λ := {v ∈W ∗0 |v + tS ◦ Tv = 0 for some t ∈ [0, 1]}

is bounded. Indeed, let v ∈ Λ. Set u := Tv, then ‖Tv‖W0 = ‖u‖W0 .
If ‖u‖W0 ≤ 1, then ‖Tv‖W0 is bounded.
If ‖u‖W0 > 1, then we get by the implication (i) in Proposition 3 and the
inequality (4) the estimate

‖Tv‖p
−

W0
= ‖u‖p−W0

≤ ρp(·,·)(u)

= 〈Lu, u〉
= 〈v, Tv〉
= −t〈S ◦ Tv, Tv〉

≤ t

∫
Ω

(|u(x)|q(x) + λ|u(x)|r(x))u dx

≤ const(‖u‖q
−

q(x) + ‖u‖q
+

q(x) + ‖u‖r−r(x) + ‖u‖r+

r(x)).

From the continuous embedding Lq(x)(Ω) ↪→ Lr(x)(Ω) and the compact em-
bedding W0 ↪→↪→ Lq(x)(Ω), we can deduct the estimate

‖Tv‖p
−

W0
≤ const(‖Tv‖q

+

W0
+ ‖Tv‖r+

W0
).

It follows that {Tv|v ∈ Λ :} is bounded.
Since the operator S is bounded, it is obvious from (6) that the set Λ is
bounded in W ∗0 . Hence, in virtu of Proposition 1, the equation v + S ◦ Tv
have at lest one solution v̄ in W ∗0 . We conclude that ū = T v̄ is a weak
solution of (P).
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