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Abstract

In this article we investigate some existence results for functional
and neutral conformable fractional differential equations in b-metric
spaces. Our results are based on the fixed point theory and the oo — ¢-
Geraghty type contraction. Two illustrate examples are given in the
last section.
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1 Introduction

Fractional differential equations have recently been applied in various areas
of engineering, mathematics, physics, and other applied sciences. Consid-
erable attention has been given to the existence of solutions of initial and
boundary value problems for fractional differential equations; see the mono-
graphs [2, 3, 4, 23, 25, 26, 29].
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Conformable fractional differential equations 59

The conformable fractional differential operator has been introduced first
in [22]. Next, the conformable fractional differential equations has been
rapidly developed; see [6, 7, 10, 11, 17, 18, 20, 21, 27, 28], and the reference
therein.

The notion of b-metric was proposed by Czerwik [14, 15]. Following these
initial papers, the existence fixed point for the various classes of operators
in the setting of b-metric spaces have been investigated extensively; see
[12, 13, 16, 24], and related references therein.

Neutral fractional differential equations has been studied by many math-
ematicians; see [1, 5, 30, 31], and the reference therein.

In this paper, first we discuss the existence of solutions for the following
class of initial value problems of conformable fractional differential equations

{(T;;u)(t) = f(t.u(t)); t € I :=[a,b], (1)

u(a™) =u, €R,

where b > a >0, f:I xR — R is a given continuous function, 77 is the
conformable fractional derivative of order r € (0, 1].

Next, we consider the following neutral conformable fractional differen-
tial equation

{u(t) = ¢(t); t € [~h,al, (2)

Tr [u(t) — 2(t,ug)] = f(t,ug); tel,

where h > 0, p € C,f,z: I x C — R is a given continuous function, and
C := C(|—h,a],R) is the space of continuous functions on [—h, a].

For any t € I, we define u; by

ur(s) = u(t + s); for s € [—h,al.

Next, we investigate the following class of infinite delay neutral con-
formable fractional differential equation

{u(t) = o(t); t € (—o00,d],

- _ . (3)
Ta+ [U(t) - Z(t7 ut)] - f(ta Ut), te Ia

where ¢ : [—00,a] = R, f,z : I x B — R are given continuous functions, and
B is called a phase space that will be specified later.
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For any t € I, we define u; € B by
ut(s) = u(t + s); for s € (—oo,al.

This paper initiates the study of conformable fractional differential equa-
tions on b-metric spaces.

2 Preliminaries

Let C(I) be the Banach space of all real continuous functions on I with the
norm

[ulloo = sup [u(#)]-
tel

By L'(I) we denote the Banach space of measurable functions u : I — R
with are Lebesgue integrable, equipped with the norm

T
|mm1=A ) dt.

Definition 1. (Conformable fractional derivatives) [6, 18, 22] The con-
formable fractional derivative (CFD) of order 0 < r < 1 starting from a of
the function u : I — R is defined by:

U S i )
T () = i "B ()

Particularly, if u is differentiable, then

r _ o d
Tr u(t) = (t —a)t ﬁu(t)

Definition 2. (Conformable fractional integral) [6, 18, 22] The conformable
fractional integrals of order r > 0 of a function u : I — R is defined by:

I u(t) = /t(s —a) " lu(s)ds, t el
a
Example 1. [6] For 0 <r <1, and A € R, we have
ToA=0, Toth = M 7, TreM = Mt els te 1.
Lemma 1. [6, 18, 22] Let 1 <r >0, and u € C(I),then
ar Lgru(t) = u(?).
Further, if u is differentiable on I, then
I' Trou(t) = u(t) — u(a).
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From the above Lemma, we have the following one:

Lemma 2. Let g € L'(I). Then the Cauchy problem

{ Tru(t) =g(t); t € I :=la,b]
u(a) = ug,

has a unique solution given by
u(t) = uq + 11 9(1).

Definition 3. [8, 9] Let ¢ > 1 and M be a set. A distance function d :
M x M — RY is called b-metric if for all p,v,& € M, the following are
fulfilled:

o (bM1) d(u,v) =0 if and only if u = v;
o (BM2) d(n,v) = d(v, )
o (BM3) d(u,€) < cld(p ) + d(v. ).
The tripled (M, d,c) is called a b-metric space.
Example 2. [8, 9] Let d : C(I) x C(I) — R be defined by

d(u,v) = ||(u — v)?||ee := sup |lu(t) — v(t)||*; for all u,v € C(I).
tel

It is clear that d is a b-metric with ¢ = 2.

Example 3. [8, 9] Let X =[0,1] and d: X x X — R be defined by
d(z,y) = |z —y|* for all z,y € X.

It is clear that d is not a metric, but it is easy to see that d is a b-metric

space with r > 2.

Let ® be the set of all increasing and continuous function ¢ : R} — R%
satisfying the property: ¢(cp) < ep(u) < cu, for ¢ > 1 and ¢(0) = 0. We
denote by F the family of all nondecreasing functions A : R% — [0, C%) for
some ¢ > 1.
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Definition 4. /8, 9] For a b-metric space (M,d, c), an operator T : M — M
is called a generalized o — ¢p— Geraghty contraction type mapping whenever
there exists o : M x M — R, and some L > 0 such that for

d(z,T(y)) + d(l/’T(ﬂU))}
2s ’

D) = e { do, )., 7). dln )
and
N(z,y) = min{d(z, y),d(z, T (2)),d(y, T(y))},
we have
a(p, V(AT (1), T(v)) < Md(D (1, v)¢(D(p, v)) + LY (N (p,v); - (4)
for all u,v € M, where A € F, ¢y € ®.
Remark 1. In the case when L = 0 in Definition 4, and the fact that
d(z,y) < D(z,y); for allz,y € M,
the inequality (4) becomes
a(p, V(AT (1), T(v)) < Mo(d(p,v))d(d(p, v))- (5)
Definition 5. [8, 9] Let M be a non empty set, T : M — M, and « :

M x M — RY be a given mappings. We say that T is a—admissible if for
all p,v € M, we have

alu,v) > 1= a(T(R), T()) > 1.

Definition 6. [8, 9/ Let (M, d) be a b-metric space and let o : M x M — R*
be a function. M is said to be a—regular if for every sequence {xy}nen in
M such that oy, xn1) > 1 for all n and x, — x as n — oo, there erists
a subsequence { Ty tken Of {Tn}n with a(r,yy, ) > 1 for all k.

The following fixed point theorem plays a key role in the proof of our
main results.

Theorem 1. /8, 9] Let (M, d) be a complete b-metric space and T : M — M
be a generalized o — p— Geraghty contraction type mapping such that

e (i) T is a—admissible;

o (i) there exists po € M such that a(po, T'(1o)) > 1;

e (iii) either T is continuous or M is a—regular.
Then T has a fized point. Moreover, if

e (i) for all fized points p,v of T, either a(u,v) > 1 or a(v,u) > 1,
then T has a unique fized point.
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3 Functional Conformable Fractional Differential
Equations
In this section, we are concerned with the existence results of the problem
(1).
Let (C(I),d,2) be the b-metric space with ¢ = 2, such that
d:C(I) x C(I) — Ry is given by:

d(u,v) = ||(u — v)*[loc := sup fu(t) = v(t).

Definition 7. By a solution of the problem (1) we mean a function u € C(I)
that satisfies

t
u(t) = ug + / (s —a)" "' f(s,u(s))ds.

a
The following hypotheses will be used in the sequel.

(H1) There exist ¢ € @, p : C(I) x C(I) — (0,00) such that for each
u,v e C(I),and t €I

[f(t,u) — f(t,0)] < plu, v)|u(t) — v(t)],

with )
< o(|I(w = v)?[|oo)-

oo

/at(s —a)" 'p(u,v)ds

(H2) There exist pug € C(I) and a function 6 : C(I) x C(I) — R, such that

0 (ot + [ (s =0y~ o pals)is) .

(Hs) For each t € I, and u,v € C(I), we have:
O(u(t),v(t)) >0

implies
0 <u + /at(s — )" f (s, uls))ds, ua + /:(s - a)?"—lf(s,v(s))ds> >0,

(Hy) If {up}nen € C(I) with u,, — u and 0(uy, up41) > 1, then 0(uy,,u) >
1.
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Theorem 2. Assume that hypotheses (H1) — (Hy) hold. Then the problem

(1) has a least one solution defined on I.

Proof. Consider the operator N : C(I) — C(I) defined by

(Nu)(t) = ug + / (s —a)" " f(s,u(s))ds.

By using Lemma 2, it is clear that the fixed points of the operator N are

solutions of (1).
Let av: C(I) x C(I) — (0,00) be the function defined by:

{ a(u,v) =1; if O(u(t),v(t)) >0, tel,

a(u,v) =0; elese.

First, we prove that N is a generalized a-¢-Geraghty operator:
For any u,v € C(I) and each t € I, we have

(Nu)(t) = (No)(B)] < Jy(s — @)1 f(s,uls)) = f (5, 0(5))lds
< Ju(s = a)" " p(u,v)[u(s) — v(s)lds
< Ju(t) = v()*)2 [5(s — a)p(u, v)ds
<l —v)2)% [1(s — a) ' p(u, v)ds.
Thus
a(u,v)|(Nu)(t) — (Nv)(t)|?
t 2
< (1~ )2 so0r(1s,0) / (s — )" p(u, v)ds
< (1 = 0)?[|ood (|| (1t — 0)?]|0)-
Hence

a(u, v)p(2°d(N (u), N(v)) < A(@(d(u, v)(d(u, v)),

where A € [, ¢ € ®, with A(t) = £¢, and ¢(t) = ¢.
So, N is generalized a-¢-Geraghty operator.
Let u,v € C(I) such that

a(u,v) > 1.
Thus, for each t € I, we have

O(u(t), v(t)) > 0.
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This implies from (Hj) that
O(Nu(t), Nv(t)) > 0,

which gives

a(N(u),N(v)) > 1.

Hence, N is a a-admissible.
Now, from (H3), there exists pg € C(I) such that

a(po, N(po)) = 1.
Finally, from (Hy), If pinp,eny € M with g, — p and o(pin, fin+1) > 1, then

o(fin, p) = 1.

From an application of Theorem 1, we deduce that N has a fixed point u
which is a solution of problem (1).

4 Neutral Conformable Fractional Differential Equa-
tions

Now, we are concerned with the existence results of the problems (2) and
(3). Consider the Banach space
C= {U : (_h’a b] - R, u‘(—h,a] e, U’] € C(I)}a

with the norm
[ulle = max{|[¢|l[-4,a [t}

Let (C,d,2) be the b-metric space with ¢ = 2, such that
d:C x C — R is given by:

d(u,v) = |[(u —v)?||c = max{[|[_p,a), [[(u —v)?||oc}-

Definition 8. By a solution of the problem (2) we mean a function u € C
that satisfies

u(t) = {w(t); te[=h,a
o(a) — z(a,uq) + 2(t, u(t)) + fi(s —a) " f(s,us)ds; t € 1.

Consider the following hypotheses:
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(Ho1) There exist ¢ € ®, and p,q : CxC — (0, 00) such that for each u,v € C,

andt el

[f(t,u) = f(t,0)] < p(u, v)[lu = vl [—p,q;
and

|2(t,u) — 2(t, v)| < q(u, v)|Ju = v|[—p,a
with

2

Jotwr+ [t oy Tptupas < U= oPle)

(Hp2) There exist vy € C(I) and a function ¢ : C(I) x C(I) — R, such that
t
¢ (100009t ~ st ) + gt + [ (5= a1 (s.mds) 20

(Hps) For each t € I, and u,v € C(I), we have:
t(u(t), v(t)) = 0

implies ¢ (g@(a) —g(a,uq) + g(t,uy) + fj(s —a)" 1 f(s,us)ds,

(@) — gla,va) + g(t,vr) + / (s - a)f—lﬂs,vs)ds) >0.

(Hos) If {un}neny € C(I) with u, — wand ¢(up, unt1) > 1, then e(up,u) > 1.

(
Theorem 3. Assume that hypotheses (Hy1) — (Hoq) hold. Then the problem
(2) has a least one solution defined on [—h,b].

Proof. Consider the operator G : C' — C defined by

(p(t); te [_ha CL],
o(a) — ga,ug) + glt,ug) + [1(s — a) " f(s,us)ds; t € 1.
(7)

(Gu)(t) = {

It is clear that the fixed points of the operator G are solutions of (2).

Let a: C(I) x C(I) — (0,00) be the function defined in (6).
We start by proving that G is a generalized a-y-Geraghty operator:
Let u,v € C. For each t € [—h,a], we have

(Gu)(t) = (Gu)(t)] = 0,
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and for each ¢t € I, we have

[(Gu)(t) = (Gu)(B)] < [2(t, ue) — 2(t, v \+f (s —a) M f(s,us) = f(s,v5)|ds
< q(u,v)|ug T,Ut| +fa s—a) " Ip 1( v)|us —vs|ds
< Jup — vi|?)2q(u,v) + Jur — vi?)2 (s — a)""'p(u, v)ds

1
< it =212 (aw,0) + [1(s = a)*p(u, v)ds) .
Thus, we get

a(u,v)|(Gu)(t) — (Go)()?

t
‘ /(sa)r Yo(u,v)ds
< l(u = v)?lle(ll(u = v)?[lc).-

2
< [I(u = v)?llca(u, v)

c

Hence
o, V)G ), ) < AW (d(u,v)b(d(u, v)),
where A € [, ¢ € ®, with \(¢) = £¢, and ¥(t) =
So, G is generalized a-1-Geraghty operator.
Let u,v € C(I) such that

a(u,v) > 1.
Thus, for each t € I, we have
t(u(t),v(t)) > 0.
This implies from (Hp3) that

U((Gu)(t), (Gu)(t)) = 0,

which gives

a(G(u),G(v)) > 1.
Hence, N is a a-admissible.
Now, from (Hpz), there exists vy € C'(I) such that
a(vy, G(v)) > 1.
Finally, from (Hoa), If pn,eny € M with g, — g and apin, pin+1) > 1, then
o(fin, p) > 1.

From an application of Theorem 1, we deduce that G has a fixed point u
which is a solution of problem (2).
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5 Neutral Conformable Fractional Differential Equ-
ations with Infinite Delay

In this section, we establish some existence results for problem (3). Let
the space (B,] - ||g) is a seminormed linear space of functions mapping
(—00, a] into R, and satisfying the following fundamental axioms which were
adapted from those introduced by Hale and Kato [19] for ordinary differential
functional equations:

(A1) Ifu: (—o0,b] = R, and u, € B, then there are constants L, M, H > 0,
such that for any ¢ € I the following conditions hold:

(1) ug is in B,
(#0) Nulls < Kljurlls + M supse(q g u(s)];
(#0) [lu(®)]| < Hlutl|5-

(A2) For the function u(-) in (A1), u; is a B— valued continuous function
on I.

(A3) The space B is complete.
Consider the space
Q={u:(-00,b] = R, ul(_seq € B, ulr € C(I)}.

Definition 9. By a solution of the problem (8) we mean a function u € Q
that satisfies

wlt) = {w); t € (~oc,dl,
p(a) — gla,uq) + g(t,ug) + [(s —a) " f(s,us)ds; t € I.

Consider the operator Ny : 2 — Q defined by:

p(t); t € (—o0,al,
ola) — z(a,uq) + 2(t, ug) + f;(s —a) " f(s,us)ds; t € 1. 5
8

(N1u)(t) = {

Let z(-) : (—o0,b] — R be a function defined by
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Then ¢ = ¢. For each z € C(I), with z(0) = 0, we denote by Z the function
defined by
Z{O; tete (—oo,0,
| 2(8), tel

If u(-) satisfies the integral equation
u(t) = pla) = gla,ua) + g(t,u) + [,(s — @)~ f(s,u5)ds.
We can decompose u(-) as u(t) = Z(t) + =(t); for ¢t € I, which implies that

up = Zy + x¢ for every t € I, and the function z(-) satisfies

t
2(t) = 2(t,Zs + xs) + / (s —a)" "V f(s,Zs + x5)ds.
Set
Co= {2 € C(I); =0},
and let || - || be the norm in Cj defined by

12lls = llz0ll5 + sup [2()] = sup |z(¢)[; 2 € Co.
tel tel

Cy is a Banach space with norm || - ||. Define the operator P : Cy — Cp; by

t
(P2)(t) = 2(t,Zs + xs) + / (s —a) "1 f(s,Zs + x4)ds. 9)
Thus, the operator N7 has a fixed point is equivalent to P has a fixed point.

We turn to proving that P has a fixed point.

Let (Cy,d,2) be the b-metric space with ¢ = 2, such that
d: Co x Cy — R is given by:

d(u, v) = [|(u = v)?[|o.
As in the prove of Theorem 3, we give without prove the following Theorem:

Theorem 4. Assume that the following hypotheses hold:

(Hoo1) There exist v € ®, and p,q : B x B — (0,00) such that for each
u,v € B, andt el

[f(t,uw) = f(E,0)] < plu, v)|lu =5,

and
|2(t,u) — 2(t,v)] < q(u,v)[|u — |5,



70 S. Abbas, M. Benchohra

with

2

Jotwor+ [t =arptu,ias]| < =0y,

b

(Hoo2) There exist vy € C(I) and a function v : C(I) x C(I) — R, such that
t
L <V1 (t), z(t, v1¢) —l—/ (s —a)" "L f(s, Vls)d8> >0,

(Hoos) For eacht € I, and u,v € Cy, we have:

L(ut, ’Ut) Z 0

implies . <z(t, ug) + fi(s —a)" " f(s,us)ds,
z(t,ve) + /t(s — a)rlf(s,vs)ds> >0,

(Hooa) If {wn}nen C Co with w, — u and t(wp, wp4+1) > 1, then t(wy, w) > 1.

Then the problem (3) has a least one solution defined on (—oo,b].

6 Examples

Example 1. Let (C(]0,1]),d,2) be the complete b-metric space, such that
d:C([0,1]) x C([0,1]) — R is given by:

d(u,v) = ||(u —v)*|lc.

Consider the following conformable fractional differential problem

(10)

(Tgeu)(t) = f(t,u(t)); ¢ €0,1],
u(0) =1,

where
Ft,u(t)) = m; te0,1].
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Let t € (0,1], and u € C([0,1]). If |u(t)| < |v(t)|, then

[T +sin(fu(t)]) 14 sin(Jv(t)])
L[t u(®) — f(t0@)] = A1 + [u(t)]) - 4(1 4+ Ju(t)))

< ()] = o)l + 3l sin(u®)]) — sin(o(t)))
gl sin(o(e)) — ()] sinu())

1 T . .
/@) = v+ Zlsin(ju(t)]) —sin(fo()])]

+ % [lo(@)]sin([o(t)]) — [o()| sinlu(t)])]

IN

= Jhul®) —v(o)] + 701+ o)) [sin(u(H)]) — sinlo(e))|
< gl o)+ 50+ o)
()] = (ol u(t)| + fo(t)
X S11n <2> ‘ COS (2> ‘
< @+ D) — o)

The case when |v(t)| < |u(t)], we get

2+ [u(@))|u(t) = v(@)]-

| =

£ (&, u(®) = f(E,0(t))] <

So,
1
70 u(0)) = £ 0(0)] < 3 ming2 4 u(o), 2+ (0 Y hutt) — o(0)].
Thus, hypothesis (H;) is satisfied with

plu,v) = Jminf2 + fu(6),2 + [o(2)]}

Define the functions A(t) = t, ¢(t) = t, a : C([0,1]) x C([0,1]) — R}
with
{aw,v) =1 if d(u(t) v(1) 20, tE T,

a(u,v) = 05 else,

and ¢ : C([0,1]) x C([0,1]) = R with §(u,v) = ||u — v]|c.
Hypothesis (Hz) is satisfied with po(t) = u(0). Also, (H3) holds from the



72 S. Abbas, M. Benchohra

definition of the function 0. Hence by Theorem 2, problem (10) has at least
one solution defined on [0, 1].

Example 2. Consider now the following conformable neutral fractional
differential problem

{u(t) =t te[-1,0],

Ty, (u(t) — 1 — sin(|u,])) = 22508, ¢ € [0,1].

(11)

For each ¢ € [0, 1], we set

1+ sin(||ul[[~1,0))
L+ flullj=1,0)

f(tvu) =

and
2(tu) = 1+ sin(uf 1 9).

Let t € (0,1], and u,v € C([—1,0]). Then, we get
£t w) = f(t o) < min{2 + full-10), 2 + [oll o) Hlw = vll-10),

and

_ + _
|2(t,u) — 2(t,v)] < 'cos <”uH[ 1) 5 Il 1’0]))’ [u = vl|[=1,0))-

Thus, hypothesis (Hyy) is satisfied with

I
p(u,v) = 7min{2 + [|ull-1,0), 2+ [[v]l-10))}

(HUH[—LO]) + ||UH[—1,0])> ‘
cos 5 .

and

Q(ua U) =

Define the functions A(t) = &t, 1(t) = ¢, a : C([0,1]) x C([0,1]) — R%.
with
{a(u, v) =15 if 6(u(t),v(t) >0, tel,

a(u,v) = 0; else,

and ¢ : C([0,1]) x C([0,1]) = R with §(u,v) = ||lu — v|c.

Hypothesis (Hyz) is satisfied with vg(t) = 2. Also, (Hys) is satisfied from the
definition of the function §. Hence by Theorem 3, problem (11) has at least
one solution defined on [—1,1].
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Example 3. Let v be a positive real constant and

B, ={uec C((-o0,1],R,): lim eu(f) exists in R}. (12)

0——o0
The norm of B, is given by
lully = sup eu(0)].
€(—o0,1

Let u : (=00, 1] = R be such that ug € B,. Then

lim e%u,(0)
0——o0

= limg_, oo u(t +60 — 1) = limy_, _ o 67(9_t+1)u(9)

=D limg_, o €7@y () < 0.

Hence u; € B,. Finally we prove that

[utlly < Kllually + M sup [u(s)],
s€[0,t]

where K = M =1 and H = 1. We have
[ue(O)|| = Ju(t + 60 — 1].
Ift+60<1, we get

[u(B) < sup Ju(s)].
s€(—00,1]

For t +6 > 1, then we have

lus(B)] < sup |u(s)].

s€0,t]

Thus for all t + 0 € I, we get

[ur(B)|| < sup Ju(s)[ + sup [u(s)].

56(—00,0] SG[O,t]
Then
lully < flually + sup [u(s)].
s€[0,t
It is clear that (B,,| - ||) is a Banach space. We can conclude that B, a

phase space.
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Consider now the following problem

u(t) =t; t € (—o0,0], (13)
- . 1+sin(||u
Tr. (u(t) — 1 — sin(||ullz,)) = $ te0,1].

For each ¢ € [0, 1], we set

and

1 + si
feow = L snluls,)
1+ ||ulls,

Y

z(t,u) = 1+ sin(||ul|B, ).

Simple computations show that all conditions of Theorem 4 are satisfied.
Hence, problem (13) has at least one solution defined on (—oo, 1].
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