ISSN 2066-6594

EXISTENCE OF FIXED POINTS AND BEST PROXIMITY POINTS OF *p*-CYCLIC BOYD-WONG CONTRACTIONS*

Saravanan Karpagam[†]

DOI https://doi.org/10.56082/annalsarscimath.2021.1-2.111

Abstract

We introduce a new contraction map called *p*-cyclic Boyd-Wong contraction, defined on the union of p ($p \ge 2$) non empty subsets of a metric space. We give sufficient conditions for the existence of a unique fixed point, best proximity point or periodic point for the map and an iterative method is used to approximate the fixed point and the best proximate point.

MSC: 46H10

keywords: *p*-cyclic maps, *p*-cyclic contractions, *p*-cyclic non expansive maps, best proximity points.

1 Introduction and preliminaries

There are many interesting and useful generalizations of the celebrated Banach contraction theorem. Some of them are given in the literature ([1] to [10]). One of them is given by Boyd and Wong in [1]. The contraction given by Banach is essentially uniformly continuous whereas the contraction given by Boyd and Wong is upper semi-continuous from the right. The continuity condition of the contraction map is thus relaxed. In [6], the following type of maps are introduced, where the maps are not continuous.

^{*}Accepted for publication in revised form on December 1-st, 2020

[†]karpagam.saravanan@gmail.com Department of Science and Humanities, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, India

Let (X, d) be a metric space. Let A_1, A_2, \ldots, A_p be nonempty subsets of X. Consider $F : \bigcup_{i=1}^{p} A_i \to \bigcup_{i=1}^{p} A_i$ satisfying the following condition: $F(A_1) \subseteq A_2, \ F(A_2) \subseteq A_3, \ \ldots, F(A_{p-1}) \subseteq A_p$ and $F(A_p) \subseteq A_1$.

Thus the map F takes points of a set to the next set and the last to the first, forming a cycle. In [3], these maps are called as *p***-cyclic maps**. In [6], a contraction condition similar to the Banach contraction was imposed on F. That is, for some k, 0 < k < 1,

$$d(Tx,Ty) \leq k \ d(x,y)$$
, for all $x \in A_i$, $y \in A_{i+1}$, $1 \leq i \leq p$,

where $A_{p+1} = A_1$. This condition on the map entails $\bigcap_{i=1}^{p} A_i$ to be nonempty, and clearly F restricted to this intersection is a Banach contraction. Thus in [6], Kirk et al. extended the Banach contraction theorem for *p*-cyclic maps. Also, in [6], the Boyd-Wong's theorem is extended in this direction and obtained the following fixed point theorem:

Theorem 1. ([6]) Let $\{A_i\}_{i=1}^p$ be nonempty and closed subsets of a complete metric space (X, d) and $f: \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic map satisfying the following condition(where $A_{p+1} = A_1$):

$$d(f(x), f(y)) \le \psi(d(x, y)), \ \forall x \in A_i, \ y \in A_{i+1}, \ for \ 1 \le i \le p,$$

where $\psi : [0,\infty) \to [0,\infty)$ is upper semi-continuous from the right and satisfies $\psi(t) < t$, for t > 0, $\psi(0) = 0$. Then f has a unique fixed point.

Recall that $\psi : [0, \infty) \to [0, \infty)$ is upper semicontinuous from the right if, $r_j \downarrow r \Rightarrow \limsup \psi(r_j) \le \psi(r)$, where $r_j \in [0, \infty), j = 1, 2...$

In [2], Eldred and Veeramani introduced a notion of *cyclic contractions*, which are defined on the union of two nonempty subsets A and B of a metric space such that $T(A) \subseteq B$ and $T(B) \subseteq A$ and for some k, 0 < k < 1,

$$d(Tx, Ty) \le k \ d(x, y) + (1 - k) \ \operatorname{dist}(A, B), \ x \in A, \ y \in B,$$

where $dist(A, B) = inf\{d(x, y) : x \in A, y \in B\}.$

Sufficient conditions were given in [2] to obtain a point called **best prox***imity point* of T, that is a point $x \in A \cup B$ such that

$$d(x, Tx) = \operatorname{dist}(A, B).$$

To obtain a best proximity point, the underlying space needed to be a uniformly convex Banach space and the sets needed to be convex. A question that naturally arises is that, whether the fixed point theorem 1 can be extended to best proximity point theorem? In this paper, we give a positive answer to this question. We introduce a contraction map called p-cyclic Boyd-Wong contraction and give sufficient conditions for the existence and convergence of a unique fixed point, best proximity point and periodic point of the map.

The following results proved in [2] in a uniformly convex Banach space setting are useful to prove best proximity point results in this paper.

Lemma 1. ([2]) Let A be a nonempty closed and convex subset and B be a nonempty closed subset of a uniformly convex Banach space. Let $\{x_n\}$ and $\{z_n\}$ be sequences in A and $\{y_n\}$ be a sequence in B satisfying:

(1)
$$||x_n - y_n|| \longrightarrow dist(A, B)$$

(2) $|| z_n - y_n || \longrightarrow dist(A, B).$

Then $||x_n - z_n|| \longrightarrow 0.$

A p-cyclic mapping T is said to be a p-cyclic non expansive map ([3]) if for $x \in A_i$, $y \in A_{i+1}$, we have

$$d(Tx, Ty) \le d(x, y)$$

Remark 1. If $T : \bigcup_{i=1}^{p} A_i \to \bigcup_{i=1}^{p} A_i$ is a p-cyclic non expansive map, then in [3](Lemma 3.3) it is proved that

$$dist(A_i, A_{i+1}) = dist(A_{i+1}, A_{i+2}) = dist(A_1, A_2).$$
(1.1)

If, moreover, $\xi \in A_i$ is a best proximity point in A_i , then in [3](Remark 3.4) it is proved that $T^j\xi$ is a best proximity point in A_{i+j} , for j = 1, 2, ..., (p-1).

2 Main Results

First we define the map p-cyclic Boyd-Wong contraction as follows:

Definition 1. Let A_1, A_2, \ldots, A_p be nonempty subsets of a metric space X, and $T: \bigcup_{i=1}^{p} A_i \to \bigcup_{i=1}^{p} A_i$ be a p-cyclic map. Suppose, $d(Tx, Ty) \leq \psi(d(x, y) - dist(A_i, A_{i+1})) + dist(A_i, A_{i+1}),$

 $x \in A_i, y \in A_{i+1}, 1 \leq i \leq p$, where $\psi : [0, \infty) \to [0, \infty)$ is upper semicontinuous from the right and satisfies $\psi(t) < t$, for t > 0 and $\psi(0) = 0$. Then we call T, a p-cyclic Boyd-Wong contraction.

We give the following lemma which follows from the definition of p-cyclic Boyd-Wong contraction.

Lemma 2. Let A_1, A_2, \ldots, A_p be nonempty subsets of a metric space (X, d), and $T : \bigcup_{i=1}^{p} A_i \to \bigcup_{i=1}^{p} A_i$ be a p-cyclic Boyd-Wong contraction map. Then the following hold:

- (a) T is p-cyclic non expansive map, and hence $dist(A_i, A_{i+1}) = dist(A_1, A_2)$, for all i
- (b) For $x, y \in A_i, d(T^{pn}x, T^{pn+1}y) \to dist(A_i, A_{i+1}), as n \longrightarrow \infty$
- (c) For $x, y \in A_i, d(T^{pn-1}x, T^{pn}y) \longrightarrow dist(A_i, A_{i+1})$
- (d) For $x, y \in A_i, d(T^{pn+p}x, T^{pn+1}y) \longrightarrow dist(A_i, A_{i+1})$
- (e) For $x, y \in A_i, d(T^{pn-p}x, T^{pn+1}y) \longrightarrow dist(A_i, A_{i+1})$
- (f) For $x, y \in A_i, d(T^{pn}x, T^{pn+p+1}y) \longrightarrow dist(A_i, A_{i+1}).$

Proof. (a) Let $x \in A_i$ and $y \in A_{i+1}$. Now,

$$d(Tx, Ty) \le \psi(d(x, y) - \operatorname{dist}(A_i, A_{i+1})) + \operatorname{dist}(A_i, A_{i+1}).$$

Case(i): $d(x, y) > \text{dist}(A_i, A_{i+1})$. Then $d(x, y) - \text{dist}(A_i, A_{i+1}) > 0$. Since $\psi(t) < t$ for t > 0, we have

$$d(Tx,Ty) < d(x,y) - \operatorname{dist}(A_i,A_{i+1}) + \operatorname{dist}(A_i,A_{i+1})$$

= $d(x,y).$

Therefore,

$$d(Tx, Ty) < d(x, y). \tag{2.1}$$

On p-cyclic Boyd-Wong Contractions

Case(ii): $d(x, y) = \operatorname{dist}(A_i, A_{i+1}).$ Then $\psi(d(x, y) - dist(A_i, A_{i+1})) = \psi(0) = 0$. Therefore

$$d(Tx, Ty) = \operatorname{dist}(A_i, A_{i+1})$$

That is,

$$d(Tx, Ty) = d(x, y) \tag{2.2}$$

From (2.1) and (2.2), we have

 $d(Tx, Ty) \leq d(x, y)$ for all $x \in A_i$ and $y \in A_{i+1}$, $1 \leq i \leq p$.

Hence T is a p-cyclic non expansive map.

(b) Let $x, y \in A_i$. By applying (a) p times,

$$d(T^{p(n+1)}x, T^{p(n+1)+1}y) \le d(T^{pn}x, T^{pn+1}y).$$

Therefore, $\{d(T^{pn}x, T^{pn+1}y)\}$ is a non-increasing sequence bounded below by dist (A_i, A_{i+1}) . Hence $d(T^{pn}x, T^{pn+1}y) \longrightarrow r \ge \operatorname{dist}(A_i, A_{i+1})$, where $r = inf_n\{d(T^{pn}x, T^{pn+1}y)\}.$ Claim: $r = \operatorname{dist}(A_i, A_{i+1}).$

Case(1): $d(T^{pn}x, T^{pn+1}y) = dist(A_i, A_{i+1})$ for some n. Then by *p*-cyclic non expansiveness of the map,

$$d(T^{pn+k}x, T^{pn+k+1}y) = dist(A_i, A_{i+1}), \text{ for all } k = 1, 2, \dots$$

Therefore, $d(T^{pn}x, T^{pn+1}y) \longrightarrow \operatorname{dist}(A_i, A_{i+1}).$

. .

Case(2): $d(T^{pn}x, T^{pn+1}y) > \text{dist}(A_i, A_{i+1})$, for all n. Then $d(T^{pn}x, T^{pn+1}y) - \text{dist}(A_i, A_{i+1}) > 0$, for all n. Now,

$$d(T^{p(n+1)}x, T^{p(n+1)+1}y) \le d(T^{pn+1}x, T^{pn+2}y) \le \psi(d(T^{pn}x, T^{pn+1}y) - \operatorname{dist}(A_i, A_{i+1})) + \operatorname{dist}(A_i, A_{i+1})$$

 $d(T^{p(n+1)}x, T^{p(n+1)+1}y) - dist(A_i, A_{i+1}) \le \psi(d(T^{pn}x, T^{pn+1}y) - dist(A_i, A_{i+1})).$

Then taking the limit as $n \longrightarrow \infty$,

$$\lim_{n \to \infty} d(T^{p(n+1)}x, T^{p(n+1)+1}y) - dist(A_i, A_{i+1}) \\\leq \limsup_{n \to \infty} \psi(d(T^{pn}x, T^{pn+1}y) - dist(A_i, A_{i+1})).$$

Since $d(T^{p(n+1)}x, T^{p(n+1)+1}y) - dist(A_i, A_{i+1}) \downarrow r - dist(A_i, A_{i+1})$, we have

$$r - \operatorname{dist}(A_i, A_{i+1}) \le \psi(r - \operatorname{dist}(A_i, A_{i+1})).$$

If $r > \text{dist}(A_i, A_{i+1})$, then taking $t = r - \text{dist}(A_i, A_{i+1}) > 0$, we get $t \le \psi(t)$, which is a contradiction to the definition of ψ , where $\psi(t) < t$, for t > 0. Hence $r = \text{dist}(A_i, A_{i+1})$.

(c) Let $x, y \in A_i$. Let $s_n = d(T^{pn-1}x, T^{pn}y)$. Applying *p*-cyclic non expansiveness of T *p*-times, we get

$$s_{n+1} = d(T^{pn+p-1}x, T^{pn+p}y) \le d(T^{pn-1}x, T^{pn}y) = s_n$$

Therefore, $\{s_n\}$ is non increasing and bounded below by $dist(A_{i-1}, A_i)$. Hence $s_n \longrightarrow r \ge dist(A_{i-1}, A_i)$. Proceeding in a similar way as in (b), we can prove that

$$r = dist(A_{i-1}, A_i) = dist(A_i, A_{i+1}), by (a).$$

(d) Taking $T^p x$ in place of x in (b), we have $d(T^{pn+p}x, T^{pn+1}y) \longrightarrow \text{dist}(A_i, A_{i+1}).$

(e) To prove that $d(T^{pn-p}x, T^{pn+1}y) \longrightarrow \operatorname{dist}(A_i, A_{i+1})$, let

$$s_n = d(T^{pn-p}x, T^{pn+1}y).$$

Then $s_{n+1} = d(T^{pn}x, T^{pn+p+1}y)$. Using *p*-cyclic non-expansiveness of *T*, *p* times, $s_{n+1} \leq s_n, \forall n$. Proceeding as in (b),

$$d(T^{pn-p}x, T^{pn+1}y) \longrightarrow \operatorname{dist}(A_i, A_{i+1}).$$

(f) Taking $T^p y$ in place of y in (b), we have $d(T^{pn}x, T^{pn+p+1}y) \longrightarrow \text{dist}(A_i, A_{i+1}).$

Note that if T satisfies

$$d(Tx, Ty) \le \psi(d(x, y) - \operatorname{dist}(A_i, A_{i+1})) + \operatorname{dist}(A_i, A_{i+1}),$$

then

$$d(Tx, Ty) \le \psi(d(x, y))d(x, y) + (1 - \psi(d(x, y)))dist(A_i, A_{i+1}),$$

which can be compared with the p-cyclic contraction map.

Combining Lemma 1 with Lemma 2, the following proposition is obtained on a uniformly convex Banach space setting.

116

Proposition 1. Let A_1, A_2, \ldots, A_p be non empty, closed and convex subsets of a uniformly convex Banach space X. Let $T : \bigcup_{i=1}^{p} A_i \to \bigcup_{i=1}^{p} A_i$ be a p-cyclic Boyd-Wong contraction. Then for any $x \in A_i$, the following hold:

- $(a) \parallel T^{pn}x T^{pn+p}x \parallel \longrightarrow 0$
- $(b) \parallel T^{pn}x T^{pn-p}x \parallel \longrightarrow 0$
- $(c) \parallel T^{pn+1}x T^{pn+p+1}x \parallel \longrightarrow 0.$

Theorem 2. Let X be a uniformly convex Banach space. Let A_1, A_2, \ldots, A_p be non empty, closed and convex subsets of X. Let $T: \bigcup_{i=1}^{p} A_i \to \bigcup_{i=1}^{p} A_i$ be a p-cyclic Boyd-Wong contraction. Then for each $i, 1 \leq i \leq p$, there exists a unique $z_i \in A_i$, such that for any $x \in A_i$, $\{T^{pn}x\}$ converges to z_i , and such that z_i is a best proximity point and unique periodic point of T in A_i . Also, $T^j z_i = z_{i+j}$ is a best proximity point and unique periodic point of T in A_{i+j} for $j = 1, 2, \ldots, p - 1$.

Proof. If dist $(A_i, A_{i+1}) = 0$, for some *i*, then

$$|| Tx - Ty || \le \psi(|| x - y ||), x \in A_i, y \in A_{i+1}, 1 \le i \le p.$$

Hence by Theorem 1, T has a unique fixed point.

Assume that $dist(A_i, A_{i+1}) > 0$. Let $x \in A_i$. We show that $\{T^{pn}x\}$ is a Cauchy sequence. By Lemma 2 (b),

$$\parallel T^{pn}x - T^{pn+1}x \parallel \to \operatorname{dist}(A_i, A_{i+1}).$$

If for given $\epsilon > 0$ there exists an $n_0 \in \mathbb{N}$, such that

$$|| T^{pm}x - T^{pn+1}x || < \text{dist} (A_i, A_{i+1}) + \epsilon, m > n > n_0;$$
 (2.3)

then by Lemma 1, for given $\epsilon > 0$, there exists an $n_1 \in \mathbb{N}$ such that

$$||T^{pm}x - T^{pn}x|| < \epsilon, \text{ for all } m > n > n_1$$

and therefore, the sequence $\{T^{pn}x\}$ is a Cauchy sequence. Hence, it is enough to prove the claim for given $\epsilon > 0$, there exists an $n_0 \in \mathbb{N}$ satisfying (2.3). On the contrary, suppose that there exists an $\epsilon_0 > 0$, and for $k = 1, 2, \ldots$, there exists $m_k > n_k > k$, such that

$$||T^{pm_k}x - T^{pn_k+1}x|| \ge \operatorname{dist}(A_i, A_{i+1}) + \epsilon_0.$$
(2.4)

Upon choosing m_k to be the least integer greater than n_k to satisfy (2.4), we have,

$$||T^{pm_k-p}x - T^{pm_k+1}x|| < \operatorname{dist}(A_i, A_{i+1}) + \epsilon_0.$$

Now for each k,

$$dist(A_{i}, A_{i+1}) + \epsilon_{0} \leq \|T^{pm_{k}}x - T^{pm_{k}+1}x\|$$

$$\leq \|T^{pm_{k}}x - T^{pm_{k}-p}x\| + \|T^{pm_{k}-p}x - T^{pn_{k}+1}x\|$$

$$< \|T^{pm_{k}}x - T^{pm_{k}-p}x\| + dist(A_{i}, A_{i+1}) + \epsilon_{0}.$$

Since by Proposition 1 (b),

$$\lim_{k \to \infty} \|T^{pm_k} x - T^{pm_k - p} x\| = 0,$$

we have

 $dist(A_i, A_{i+1}) + \epsilon_0 \le \lim_{k \to \infty} \|T^{pm_k}x - T^{pn_k+1}x\| \le dist(A_i, A_{i+1}) + \epsilon_0.$ Hence (2.5) $\lim_{k \to \infty} ||T^{pm_k} - T^{pn_k+1} - \operatorname{dist}(A - A)| + \epsilon$

$$\lim_{k \to \infty} \|T^{pm_k} x - T^{pm_k+1} x\| = \operatorname{dist}(A_i, A_{i+1}) + \epsilon_0.$$
(2.5)

Consequently for each k,

$$||T^{pm_k}x - T^{pn_k+1}x|| \leq ||T^{pm_k}x - T^{pm_k+p}x|| + ||T^{pm_k+p}x - T^{pn_k+p+1}x|| + ||T^{pn_k+p+1}x - T^{pn_k+1}x||...(*)$$

By p-cyclic non-expansiveness of T,

$$\|T^{pm_k+p}x - T^{pn_k+p+1}x\| \le \|T^{pm_k+1}x - T^{pn_k+2}x\|$$

$$\le \psi(\|T^{pm_k}x - T^{pn_k+1}x\| - \operatorname{dist}(A_i, A_{i+1})) + \operatorname{dist}(A_i, A_{i+1}).$$

Since $||T^{pm_k}x - T^{pn_k+1}x|| - \operatorname{dist}(A_i, A_{i+1}) \downarrow \epsilon_0$,

$$\limsup_{k \to \infty} \psi(\|T^{pm_k}x - T^{pn_k+1}x\| - \operatorname{dist}(A_i, A_{i+1})) \le \psi(\epsilon_0)$$

and by Proposition 1 (a) and (c),

$$\lim_{k \to \infty} \|T^{pm_k}x - T^{pm_k+p}x\| = 0 \quad and \quad \lim_{k \to \infty} \|T^{pn_k+p+1}x - T^{pn_k+1}x\| = 0.$$

Applying all the above in (*), as $k \to \infty$, we get, by equation (2.5),

$$\lim_{k \to \infty} \|T^{pm_k}x - T^{pn_k+1}x\| \leq \psi(\epsilon_0) + \operatorname{dist}(A_i, A_{i+1})$$
$$\operatorname{dist}(A_i, A_{i+1}) + \epsilon_0 \leq \psi(\epsilon_0) + \operatorname{dist}(A_i, A_{i+1})$$

Therefore, $\epsilon_0 \leq \psi(\epsilon_0)$. Since $\epsilon_0 > 0$, $\psi(\epsilon_0) < \epsilon_0$, thereby we arrive at a contradiction. Hence the claim is proved. Therefore $\{T^{pn}x\}$ is a Cauchy sequence in A_i and so converges to a $z_i \in A_i$. Now, for each n,

$$dist(A_i, A_{i-1}) \le ||z_i - T^{pn-1}x|| \le ||z_i - T^{pn}x|| + ||T^{pn}x - T^{pn-1}x||$$

which tends to dist (A_i, A_{i-1}) as $n \longrightarrow \infty$. Hence

$$\lim_{n \to \infty} \|z_i - T^{pn-1}x\| = \operatorname{dist}(A_i, A_{i-1}) = \operatorname{dist}(A_i, A_{i+1}).$$

Now, for each n, dist $(A_i, A_{i+1}) \leq ||T^{pn}x - Tz_i|| \leq ||T^{pn-1}x - z_i||$, which tends to dist (A_i, A_{i+1}) as $n \to \infty$. Therefore

$$\lim_{n \to \infty} \|T^{pn}x - Tz_i\| = \operatorname{dist}(A_i, A_{i+1}).$$

That is, $||z_i - Tz_i|| = \text{dist}(A_i, A_{i+1})$. Hence z_i is a best proximity point of T in A_i .

Next, we prove that, $T^p z_i = z_i$. By *p*-cyclic non expansiveness,

$$\| z_{i} - T^{p+1} z_{i} \| = \lim_{n} \| T^{pn+p} x - T^{p+1} z_{i} \|$$

$$\leq \lim_{n} \| T^{pn} x - T z_{i} \|$$

$$\leq \| z_{i} - T z_{i} \| = \operatorname{dist}(A_{i}, A_{i+1}).$$

Therefore, $||z_i - T^{p+1}z_i|| = \text{dist}(A_i, A_{i+1})$. Since $||z_i - Tz_i|| = \text{dist}(A_i, A_{i+1})$ and A_{i+1} is a convex subset of X, X being strictly convex, $T^{p+1}z_i = Tz_i$. Now,

$$||T^{p}z_{i} - Tz_{i}|| = ||T^{p}z_{i} - T^{p+1}z_{i}|| \le ||z_{i} - Tz_{i}|| = \operatorname{dist}(A_{i}, A_{i+1}).$$

Since A_i is convex, $T^p z_i = z_i$.

To prove that z_i is the unique periodic point, let $y \in A_i$ be such that $y \neq x$. Then by what we have proved above, $T^{pn}y \longrightarrow \eta \in A_i$, such that $\|\eta - T\eta\| = dist(A_i, A_{i+1})$. In a similar way as above $T^p\eta = \eta$ and $T^{p+1}\eta = T\eta$.

Claim: $||z_i - T\eta|| = dist(A_i, A_{i+1}).$ Suppose $||z_i - T\eta|| > dist(A_i, A_{i+1}).$ Then $||z_i - T\eta|| - dist(A_i, A_{i+1}) > 0.$ Now,

$$\begin{aligned} \|Tz_{i} - T^{2}\eta\| &\leq \psi(\|z_{i} - T\eta\| - dist(A_{i}, A_{i+1})) + dist(A_{i}, A_{i+1}) \\ &< \|z_{i} - T\eta\| - dist(A_{i}, A_{i+1}) + dist(A_{i}, A_{i+1}) \\ &= \|T^{p}z_{i} - T^{p+1}\eta\| \\ &\leq \|Tz_{i} - T^{2}\eta\|. \end{aligned}$$

Therefore $||Tz_i - T^2\eta|| < ||Tz_i - T^2\eta||$, which is a contradiction. Hence the claim is proved. Now since

$$\|\eta - T\eta\| = dist(A_i, A_{i+1}) = \|z_i - T\eta\|,$$

and since A_i is a convex subset of a strictly convex space, η , $z_i \in A_i$ are best approximations to $T\eta$ imply $\eta = z_i$. Therefore for each $x \in A_i$, the sequence $\{T^{pn}x\}$ converges to a unique z_i , which is a best proximity point and unique periodic point of T in A_i . By Remark 1, $T^j z_i = z_{i+j}$ is the best proximity point and unique periodic point of T in A_{i+j} , for j = 1, 2, ..., p - 1.

3 Example

Consider the uniformly convex Banach space \mathbb{R}^2 endowed with the norm $||(x_1, y_1) - (x_2, y_2)|| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$ Let $A_1 = \{(0, 1 + x) : 0 \le x \le 1\}, A_2 = \{(1 + x, 0) : 0 \le x \le 1\},\$ $A_3 = \{(0, -(1+x)) : 0 \le x \le 1\}$ and $A_4 = \{(-(1+x), 0) : 0 \le x \le 1\}$. Then A_i are closed and convex subsets of \mathbb{R}^2 , $\forall i = 1$ to 4. Note that $dist(A_i, A_{i+1}) = \sqrt{2} \forall i = 1 to 4.$ Define $T: \bigcup_{i=1}^{4} A_i \to \bigcup_{i=1}^{4} A_i$ as follows: $T(0, 1+x) = (1 + \frac{x}{10}, 0), \ T(1+x, 0) = (0, -(1 + \frac{x}{10})), \ T(0, -(1+x)) = (0, -(1 + \frac{x}{10}))$ $(-(1+\frac{x}{10}),0)$ and $T(-(1+x),0) = (0,(1+\frac{x}{10})).$ Clearly $T(A_i) \subseteq A_{i+1}, \forall i = 1$ to 4. Define $\psi : [0, \infty] \to [0, \infty)$ as $\psi(t) = \begin{cases} \frac{t}{3}, & t \in [0, 1); \\ \frac{n^2}{n^2+1}, & t \in [n, n+1) \end{cases}$ Then ψ is upper semi continuous from the right and $\psi(t) < t$, t > 0. Let $z_1 = (0, 1 + y) \in A_1$, $z_2 = (1 + x, 0) \in A_2$, $z_3 = (0, -(1 + y))$ and $z_4 = (-(1+x), 0) \text{ where } x, y \in [0, 1].$ Now $\forall i = 1 \ to \ 4, ||z_i - z_{i+1}|| = \sqrt{(1+x)^2 + (1+y)^2} \text{ and } ||Tz_i - Tz_{i+1}|| = \sqrt{(1+x)^2 + (1+y)^2}$ $\sqrt{(1+\frac{x}{10})^2+(1+\frac{y}{10})^2}.$ Then it is an easy exercise to check that T is a p-cyclic Boyd-Wong contraction and thus all the conditions of theorem 2 are satisfied. For any $x \in A_i$, for any i, i = 1 to 4, the sequence $\{T^{4n}x\}$ converges to a best proximity point. Thus if $x \in A_1$ then $\{T^{4n}x\}$ converges to $\xi_1 = (0,1) \in A_1$ which is a

best proximity point of T in A_1 and $T(\xi) = \xi_2 = (1,0), T^2(\xi) = \xi_3 = (0,-1)$ and $T^3(\xi) = \xi_4 = (-1,0)$ are the unique best proximity points as well as periodic points of period 4 in A_1, A_2, A_3, A_4 respectively. Thus this illustrates the theorem 2. Acknowledgement: The author wishes to thank the anonimous referee for his/her suggestions for the improvement of the paper.

References

- D. W. Boyd, J. S. W. Wong, On Nonlinear Contractions, *Proc. Amer. Math. Soc.* 20 (1969), 458 464.
- [2] A. A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), 1001 - 1006.
- [3] S. Karpagam, Sushama Agrawal, Best Proximity point theorems for p-cyclic Meir - Keeler contractions, *Fixed point theory and applications*, Volume 2009, Article Id 568072, 19 pages.
- [4] S. Karpagam, B. Zlatanov, Best proximity points of p-cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal. Model. Control, 21, No 6 (2016), 790-806.
- [5] S. Karpagam, B. Zlatanov, A note on best proximity points for psumming cyclic orbital Meir-Keeler contraction maps, Int. J. Pure Appl.Math., 107, No 1 (2016), 225-243.
- [6] W. A. Kirk, P. S. Srinivasan, P. Veeramani, Fixed points for mapping satisfying cyclical contractive conditions, *Fixed Point Theory*, 4 (2003), 79 - 89.
- [7] A. Meir and E. Keeler, A theorem on contractive mappings, J. Math. Anal. Appl. 28 (1969), 326 - 329.
- [8] M. Petric, B. Zlatanov, Best proximity points and Fixed points for p-summing maps, *Fixed Point Theory Appl.*, 2012 (2012), Art. 86.
- [9] M. L. Suresh, T. Gunasekar, S. Karpagam, B. Zlatanov, A study on p-cyclic Orbital Geraghty type contractions, *International Journal of Engineering and Technology*, 7 (4.10) (2018) 883-887.
- [10] B. Zlatanov, Best proximity points for *p*-summing cyclic orbital Meir-Keeler contractions, *Nonlinear Anal.Model.Control.*, 20, No 4(2015), 528-544.