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Abstract

We introduce a new contraction map called p-cyclic Boyd-Wong
contraction, defined on the union of p (p ≥ 2) non empty subsets of a
metric space. We give sufficient conditions for the existence of a unique
fixed point, best proximity point or periodic point for the map and an
iterative method is used to approximate the fixed point and the best
proximate point.
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1 Introduction and preliminaries

There are many interesting and useful generalizations of the celebrated Ba-
nach contraction theorem. Some of them are given in the literature ([1] to
[10]). One of them is given by Boyd and Wong in [1]. The contraction given
by Banach is essentially uniformly continuous whereas the contraction given
by Boyd and Wong is upper semi-continuous from the right. The continuity
condition of the contraction map is thus relaxed. In [6], the following type
of maps are introduced, where the maps are not continuous.
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Let (X, d) be a metric space. Let A1, A2, . . . , Ap be nonempty subsets of

X. Consider F :
p⋃

i=1
Ai →

p⋃
i=1

Ai satisfying the following condition:

F (A1) ⊆ A2, F (A2) ⊆ A3, . . . , F (Ap−1) ⊆ Ap and F (Ap) ⊆ A1.

Thus the map F takes points of a set to the next set and the last to the
first, forming a cycle. In [3], these maps are called as p-cyclic maps. In
[6], a contraction condition similar to the Banach contraction was imposed
on F. That is, for some k, 0 < k < 1,

d(Tx, Ty) ≤ k d(x, y), for all x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ p,

where Ap+1 = A1. This condition on the map entails
p⋂

i=1
Ai to be nonempty,

and clearly F restricted to this intersection is a Banach contraction. Thus
in [6], Kirk et al. extended the Banach contraction theorem for p-cyclic
maps. Also, in [6], the Boyd-Wong’s theorem is extended in this direction
and obtained the following fixed point theorem:

Theorem 1. ([6]) Let {Ai}pi=1 be nonempty and closed subsets of a complete

metric space (X, d) and f :
p⋃

i=1
Ai →

p⋃
i=1

Ai be a p-cyclic map satisfying the

following condition(where Ap+1 = A1):

d(f(x), f(y)) ≤ ψ(d(x, y)), ∀x ∈ Ai, y ∈ Ai+1, for 1 ≤ i ≤ p,

where ψ : [0,∞) → [0,∞) is upper semi-continuous from the right and
satisfies ψ(t) < t, for t > 0, ψ(0) = 0. Then f has a unique fixed point.

Recall that ψ : [0,∞) → [0,∞) is upper semicontinuous from the right
if, rj ↓ r ⇒ lim

j
supψ(rj) ≤ ψ(r), where rj ∈ [0,∞), j = 1, 2.....

In [2], Eldred and Veeramani introduced a notion of cyclic contrac-
tions, which are defined on the union of two nonempty subsets A and B of a
metric space such that T (A) ⊆ B and T (B) ⊆ A and for some k, 0 < k < 1,

d(Tx, Ty) ≤ k d(x, y) + (1− k) dist(A,B), x ∈ A, y ∈ B,

where dist(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.
Sufficient conditions were given in [2] to obtain a point called best prox-

imity point of T , that is a point x ∈ A ∪B such that

d(x, Tx) = dist(A,B).
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To obtain a best proximity point, the underlying space needed to be a
uniformly convex Banach space and the sets needed to be convex. A ques-
tion that naturally arises is that, whether the fixed point theorem 1 can be
extended to best proximity point theorem? In this paper, we give a positive
answer to this question. We introduce a contraction map called p-cyclic
Boyd-Wong contraction and give sufficient conditions for the existence and
convergence of a unique fixed point, best proximity point and periodic point
of the map.

The following results proved in [2] in a uniformly convex Banach space
setting are useful to prove best proximity point results in this paper.

Lemma 1. ([2]) Let A be a nonempty closed and convex subset and B be a
nonempty closed subset of a uniformly convex Banach space. Let {xn} and
{zn} be sequences in A and {yn} be a sequence in B satisfying:

(1) ‖ xn − yn ‖−→ dist(A,B)

(2) ‖ zn − yn ‖−→ dist(A,B).

Then ‖ xn − zn ‖−→ 0.

A p-cyclic mapping T is said to be a p-cyclic non expansive map ([3])
if for x ∈ Ai, y ∈ Ai+1, we have

d(Tx, Ty) ≤ d(x, y)

.

Remark 1. If T : ∪pi=1Ai → ∪pi=1Ai is a p-cyclic non expansive map, then
in [3](Lemma 3.3) it is proved that

dist(Ai, Ai+1) = dist(Ai+1, Ai+2) = dist(A1, A2). (1.1)

If, moreover, ξ ∈ Ai is a best proximity point in Ai, then in [3](Remark 3.4)
it is proved that T jξ is a best proximity point in Ai+j, for j = 1, 2, ..., (p−1).

2 Main Results

First we define the map p-cyclic Boyd-Wong contraction as follows:
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Definition 1. Let A1, A2, . . . , Ap be nonempty subsets of a metric space X,

and T :
p⋃

i=1
Ai →

p⋃
i=1

Ai be a p-cyclic map. Suppose,

d(Tx, Ty) ≤ ψ(d(x, y)− dist(Ai, Ai+1)) + dist(Ai, Ai+1),

x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ p, where ψ : [0,∞) → [0,∞) is upper semicon-
tinuous from the right and satisfies ψ(t) < t, for t > 0 and ψ(0) = 0. Then
we call T , a p-cyclic Boyd-Wong contraction.

We give the following lemma which follows from the definition of p-cyclic
Boyd-Wong contraction.

Lemma 2. Let A1, A2, . . . , Ap be nonempty subsets of a metric space (X, d),

and T :
p⋃

i=1
Ai →

p⋃
i=1

Ai be a p-cyclic Boyd-Wong contraction map. Then

the following hold:

(a) T is p-cyclic non expansive map, and hence
dist(Ai, Ai+1) = dist(A1, A2), for all i

(b) For x, y ∈ Ai, d(T pnx, T pn+1y)→ dist(Ai, Ai+1), as n −→∞

(c) For x, y ∈ Ai, d(T pn−1x, T pny) −→ dist(Ai, Ai+1)

(d) For x, y ∈ Ai, d(T pn+px, T pn+1y) −→ dist(Ai, Ai+1)

(e) For x, y ∈ Ai, d(T pn−px, T pn+1y) −→ dist(Ai, Ai+1)

(f) For x, y ∈ Ai, d(T pnx, T pn+p+1y) −→ dist(Ai, Ai+1).

Proof. (a) Let x ∈ Ai and y ∈ Ai+1. Now,

d(Tx, Ty) ≤ ψ(d(x, y)− dist(Ai, Ai+1)) + dist(Ai, Ai+1).

Case(i): d(x, y) > dist(Ai, Ai+1). Then d(x, y) − dist(Ai, Ai+1) > 0. Since
ψ(t) < t for t > 0, we have

d(Tx, Ty) < d(x, y)− dist(Ai, Ai+1) + dist(Ai, Ai+1)

= d(x, y).

Therefore,

d(Tx, Ty) < d(x, y). (2.1)
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Case(ii): d(x, y) = dist(Ai, Ai+1).
Then ψ(d(x, y)− dist(Ai, Ai+1)) = ψ(0) = 0. Therefore

d(Tx, Ty) = dist(Ai, Ai+1)

That is,

d(Tx, Ty) = d(x, y) (2.2)

From (2.1) and (2.2), we have

d(Tx, Ty) ≤ d(x, y) for all x ∈ Ai and y ∈ Ai+1, 1 ≤ i ≤ p.

Hence T is a p-cyclic non expansive map.
(b) Let x, y ∈ Ai. By applying (a) p times,

d(T p(n+1)x, T p(n+1)+1y) ≤ d(T pnx, T pn+1y).

Therefore, {d(T pnx, T pn+1y)} is a non-increasing sequence bounded below
by dist(Ai, Ai+1). Hence d(T pnx, T pn+1y) −→ r ≥ dist(Ai, Ai+1),
where r = infn{d(T pnx, T pn+1y)}.
Claim: r = dist(Ai, Ai+1).

Case(1): d(T pnx, T pn+1y) = dist(Ai, Ai+1) for some n.
Then by p-cyclic non expansiveness of the map,

d(T pn+kx, T pn+k+1y) = dist(Ai, Ai+1), for all k = 1, 2, ...

Therefore, d(T pnx, T pn+1y) −→ dist(Ai, Ai+1).

Case(2): d(T pnx, T pn+1y) > dist(Ai, Ai+1), for all n.
Then d(T pnx, T pn+1y)− dist(Ai, Ai+1) > 0, for all n. Now,

d(T p(n+1)x, T p(n+1)+1y) ≤ d(T pn+1x, T pn+2y)

≤ ψ(d(T pnx, T pn+1y)− dist(Ai, Ai+1))

+ dist(Ai, Ai+1)

d(T p(n+1)x, T p(n+1)+1y)−dist(Ai, Ai+1) ≤ ψ(d(T pnx, T pn+1y)−dist(Ai, Ai+1)).
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Then taking the limit as n −→∞,

lim
n→∞

d(T p(n+1)x, T p(n+1)+1y)− dist(Ai, Ai+1)

≤ lim sup
n→∞

ψ(d(T pnx, T pn+1y)− dist(Ai, Ai+1)).

Since d(T p(n+1)x, T p(n+1)+1y)− dist(Ai, Ai+1) ↓ r− dist(Ai, Ai+1), we have

r − dist(Ai, Ai+1) ≤ ψ(r − dist(Ai, Ai+1)).

If r > dist(Ai, Ai+1), then taking t = r−dist(Ai, Ai+1) > 0, we get t ≤ ψ(t),
which is a contradiction to the definition of ψ, where ψ(t) < t, for t > 0.
Hence r = dist(Ai, Ai+1).

(c) Let x, y ∈ Ai. Let sn = d(T pn−1x, T pny). Applying p-cyclic non
expansiveness of T p-times, we get

sn+1 = d(T pn+p−1x, T pn+py) ≤ d(T pn−1x, T pny) = sn.

Therefore, {sn} is non increasing and bounded below by dist(Ai−1, Ai).
Hence sn −→ r ≥ dist(Ai−1, Ai). Proceeding in a similar way as in (b),
we can prove that

r = dist(Ai−1, Ai) = dist(Ai, Ai+1), by (a).

(d) Taking T px in place of x in (b), we have
d(T pn+px, T pn+1y) −→ dist(Ai, Ai+1).

(e) To prove that d(T pn−px, T pn+1y) −→ dist(Ai, Ai+1), let

sn = d(T pn−px, T pn+1y).

Then sn+1 = d(T pnx, T pn+p+1y). Using p-cyclic non-expansiveness of T, p
times, sn+1 ≤ sn,∀n. Proceeding as in (b),
d(T pn−px, T pn+1y) −→ dist(Ai, Ai+1).

(f) Taking T py in place of y in (b), we have
d(T pnx, T pn+p+1y) −→ dist(Ai, Ai+1).

Note that if T satisfies

d(Tx, Ty) ≤ ψ(d(x, y)− dist(Ai, Ai+1)) + dist(Ai, Ai+1),

then

d(Tx, Ty) ≤ ψ(d(x, y))d(x, y) + (1− ψ(d(x, y)))dist(Ai, Ai+1),

which can be compared with the p-cyclic contraction map.
Combining Lemma 1 with Lemma 2, the following proposition is ob-

tained on a uniformly convex Banach space setting.
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Proposition 1. Let A1, A2, . . . , Ap be non empty, closed and convex subsets

of a uniformly convex Banach space X. Let T :
p⋃

i=1
Ai →

p⋃
i=1

Ai be a p-cyclic

Boyd-Wong contraction. Then for any x ∈ Ai, the following hold:

(a) ‖ T pnx− T pn+px ‖−→ 0

(b) ‖ T pnx− T pn−px ‖−→ 0

(c) ‖ T pn+1x− T pn+p+1x ‖−→ 0.

Theorem 2. Let X be a uniformly convex Banach space. Let A1, A2, . . . , Ap

be non empty, closed and convex subsets of X. Let T :
p⋃

i=1
Ai →

p⋃
i=1

Ai be a

p-cyclic Boyd-Wong contraction. Then for each i, 1 ≤ i ≤ p, there exists a
unique zi ∈ Ai, such that for any x ∈ Ai, {T pnx} converges to zi, and such
that zi is a best proximity point and unique periodic point of T in Ai. Also,
T jzi = zi+j is a best proximity point and unique periodic point of T in Ai+j

for j = 1, 2, . . . , p− 1.

Proof. If dist(Ai, Ai+1) = 0, for some i, then

‖ Tx− Ty ‖≤ ψ(‖ x− y ‖), x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ p.

Hence by Theorem 1, T has a unique fixed point.
Assume that dist(Ai, Ai+1) > 0. Let x ∈ Ai. We show that {T pnx} is a
Cauchy sequence. By Lemma 2 (b),

‖ T pnx− T pn+1x ‖→ dist(Ai, Ai+1).

If for given ε > 0 there exists an n0 ∈ N, such that

‖ T pmx− T pn+1x ‖ < dist (Ai, Ai+1) + ε,m > n > n0; (2.3)

then by Lemma 1, for given ε > 0, there exists an n1 ∈ N such that

‖T pmx− T pnx ‖ < ε, for all m > n > n1

and therefore, the sequence {T pnx} is a Cauchy sequence. Hence, it is
enough to prove the claim for given ε > 0, there exists an n0 ∈ N satisfying
(2.3). On the contrary, suppose that there exists an ε0 > 0, and for k =
1, 2, . . . ,, there exists mk > nk > k, such that

‖T pmkx− T pnk+1x‖ ≥ dist(Ai, Ai+1) + ε0. (2.4)
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Upon choosing mk to be the least integer greater than nk to satisfy (2.4),
we have,

‖T pmk−px− T pnk+1x‖ < dist(Ai, Ai+1) + ε0.

Now for each k,

dist(Ai, Ai+1) + ε0 ≤ ‖T pmkx− T pnk+1x‖
≤ ‖T pmkx− T pmk−px‖+ ‖T pmk−px− T pnk+1x‖
< ‖T pmkx− T pmk−px‖+ dist(Ai, Ai+1) + ε0.

Since by Proposition 1 (b),

lim
k→∞

‖T pmkx− T pmk−px‖ = 0,

we have
dist(Ai, Ai+1) + ε0 ≤ lim

k→∞
‖T pmkx− T pnk+1x‖ ≤ dist(Ai, Ai+1) + ε0.

Hence
lim
k→∞

‖T pmkx− T pnk+1x‖ = dist(Ai, Ai+1) + ε0. (2.5)

Consequently for each k,

‖T pmkx− T pnk+1x‖ ≤ ‖T pmkx− T pmk+px‖+ ‖T pmk+px− T pnk+p+1x‖
+‖T pnk+p+1x− T pnk+1x‖...(∗)

By p-cyclic non-expansiveness of T,

‖T pmk+px− T pnk+p+1x‖ ≤ ‖T pmk+1x− T pnk+2x‖
≤ ψ(‖T pmkx− T pnk+1x‖ − dist(Ai, Ai+1)) + dist(Ai, Ai+1).

Since ‖T pmkx− T pnk+1x‖ − dist(Ai, Ai+1) ↓ ε0,

lim sup
k→∞

ψ(‖T pmkx− T pnk+1x‖ − dist(Ai, Ai+1)) ≤ ψ(ε0)

and by Proposition 1 (a) and (c),

lim
k→∞

‖T pmkx− T pmk+px‖ = 0 and lim
k→∞

‖T pnk+p+1x− T pnk+1x‖ = 0.

Applying all the above in (*), as k −→∞, we get, by equation (2.5),

lim
k→∞

‖T pmkx− T pnk+1x‖ ≤ ψ(ε0) + dist(Ai, Ai+1)

dist(Ai, Ai+1) + ε0 ≤ ψ(ε0) + dist(Ai, Ai+1)
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Therefore, ε0 ≤ ψ(ε0). Since ε0 > 0, ψ(ε0) < ε0, thereby we arrive at a
contradiction. Hence the claim is proved. Therefore {T pnx} is a Cauchy
sequence in Ai and so converges to a zi ∈ Ai. Now, for each n,

dist(Ai, Ai−1) ≤ ‖zi − T pn−1x‖ ≤ ‖zi − T pnx‖+ ‖T pnx− T pn−1x‖

which tends to dist(Ai, Ai−1) as n −→∞. Hence

lim
n→∞

‖zi − T pn−1x‖ = dist(Ai, Ai−1) = dist(Ai, Ai+1).

Now, for each n, dist(Ai, Ai+1) ≤ ‖T pnx − Tzi‖ ≤ ‖T pn−1x − zi‖, which
tends to dist(Ai, Ai+1) as n→∞. Therefore

lim
n→∞

‖T pnx− Tzi‖ = dist(Ai, Ai+1).

That is, ‖zi − Tzi‖ = dist(Ai, Ai+1). Hence zi is a best proximity point of
T in Ai.

Next, we prove that, T pzi = zi. By p-cyclic non expansiveness,

‖ zi − T p+1zi‖ = lim
n
‖T pn+px− T p+1zi‖

≤ lim
n
‖T pnx− Tzi‖

≤ ‖zi − Tzi‖ = dist(Ai, Ai+1).

Therefore, ‖zi − T p+1zi‖ = dist(Ai, Ai+1). Since ‖zi − Tzi‖ = dist(Ai, Ai+1)
and Ai+1 is a convex subset of X, X being strictly convex, T p+1zi = Tzi.
Now,

‖T pzi − Tzi‖ = ‖T pzi − T p+1zi‖ ≤ ‖zi − Tzi‖ = dist(Ai, Ai+1).

Since Ai is convex, T pzi = zi.
To prove that zi is the unique periodic point, let y ∈ Ai be such that

y 6= x. Then by what we have proved above, T pny −→ η ∈ Ai, such
that ‖η − Tη‖ = dist(Ai, Ai+1). In a similar way as above T pη = η and
T p+1η = Tη.
Claim: ‖zi − Tη‖ = dist(Ai, Ai+1).
Suppose ‖zi − Tη‖ > dist(Ai, Ai+1). Then ‖zi − Tη‖ − dist(Ai, Ai+1) > 0.
Now,

‖Tzi − T 2η‖ ≤ ψ(‖zi − Tη‖ − dist(Ai, Ai+1)) + dist(Ai, Ai+1)

< ‖zi − Tη‖ − dist(Ai, Ai+1) + dist(Ai, Ai+1)

= ‖T pzi − T p+1η‖
≤ ‖Tzi − T 2η‖.
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Therefore ‖Tzi − T 2η‖ < ‖Tzi − T 2η‖, which is a contradiction. Hence the
claim is proved. Now since

‖η − Tη‖ = dist(Ai, Ai+1) = ‖zi − Tη‖,

and since Ai is a convex subset of a strictly convex space, η, zi ∈ Ai are best
approximations to Tη imply η = zi. Therefore for each x ∈ Ai, the sequence
{T pnx} converges to a unique zi, which is a best proximity point and unique
periodic point of T in Ai. By Remark 1, T jzi = zi+j is the best proximity
point and unique periodic point of T in Ai+j , for j = 1, 2, ..., p− 1.

3 Example

Consider the uniformly convex Banach space R2 endowed with the norm
‖(x1, y1)− (x2, y2)‖ =

√
(x1 − x2)2 + (y1 − y2)2.

Let A1 = {(0, 1 + x) : 0 ≤ x ≤ 1}, A2 = {(1 + x, 0) : 0 ≤ x ≤ 1},
A3 = {(0,−(1 + x)) : 0 ≤ x ≤ 1} and A4 = {(−(1 + x), 0) : 0 ≤ x ≤ 1}.
Then Ai are closed and convex subsets of R2, ∀ i = 1 to 4. Note that
dist(Ai, Ai+1) =

√
2 ∀ i = 1 to 4.

Define T : ∪4i=1Ai → ∪4i=1Ai as follows:
T (0, 1 + x) = (1 + x

10 , 0), T (1 + x, 0) = (0,−(1 + x
10)), T (0,−(1 + x)) =

(−(1 + x
10), 0) and T (−(1 + x), 0) = (0, (1 + x

10)).
Clearly T (Ai) ⊆ Ai+1, ∀ i = 1 to 4. Define ψ : [0,∞]→ [0,∞) as

ψ(t) =

{
t
3 , t ∈ [0, 1);
n2

n2+1
, t ∈ [n, n+ 1)

Then ψ is upper semi continuous from the

right and ψ(t) < t, t > 0.
Let z1 = (0, 1 + y) ∈ A1, z2 = (1 + x, 0) ∈ A2, z3 = (0,−(1 + y)) and
z4 = (−(1 + x), 0) where x, y ∈ [0, 1].
Now ∀ i = 1 to 4, ‖zi−zi+1‖ =

√
(1 + x)2 + (1 + y)2 and ‖Tzi−Tzi+1‖ =√

(1 + x
10)2 + (1 + y

10)2.

Then it is an easy exercise to check that T is a p-cyclic Boyd-Wong contrac-
tion and thus all the conditions of theorem 2 are satisfied. For any x ∈ Ai,
for any i, i = 1 to 4, the sequence {T 4nx} converges to a best proximity
point. Thus if x ∈ A1 then {T 4nx} converges to ξ1 = (0, 1) ∈ A1 which is a
best proximity point of T in A1 and T (ξ) = ξ2 = (1, 0), T 2(ξ) = ξ3 = (0,−1)
and T 3(ξ) = ξ4 = (−1, 0) are the unique best proximity points as well as pe-
riodic points of period 4 in A1, A2, A3, A4 respectively. Thus this illustrates
the theorem 2.
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