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EVOLUTION OF CONVEX

HYPERSURFACES BY A FULLY

NONLINEAR MIXED VOLUME

PRESERVING CURVATURE FLOW∗

Ghodrat Moazzaf† Esmaiel Abedi‡

Abstract

In this paper we study the evolution of closed convex hypersurfaces
under the mixed volume preserving curvature flow in Euclidean space
with the speed given by reversed function that is symmetric and ho-
mogeneous of degree one. We prove that the hypersurfaces preserve
convexity under the flow, the maximum existence time is infinite and
the hypersurfaces asymptotically approach to sphere.
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1 Introduction

Let M0 be a smooth, strictly convex hypersurface without boundary. Sup-
pose M0 is given by a smooth embedding X0 : Sn → M0 ⊂ Rn+1. Let
Xt = X(., t) evolving according to

∂

∂t
X(x, t) = k(x, t)ν(x, t) (1)

X(x, 0) = X0(x)
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where k(x, t) = { 1

F(W(x, t))
− h(t)}, W(x, t) is the matrix of Weingarten

map of Mt = Xt(Sn) at the point Xt(x), ν(x, t) is the outer unit normal
vector to Mt at Xt(x), h(t) is a global term to be specified and the function
F has the following properties:
i) F(W) = f(κ(W))where κ(W) gives the eigenvalues ofW and f is a smooth
symmetric function defined on the positive cone

Γ = {κ = (κ1, ..., κn) ∈ Rn : κi > 0 for all i = 1, · · · , n};
ii) f is strictly increasing in each argument that is ∂f

∂κi
> 0 for each i =

1, · · · , n at every point of Γ;
iii) f is homogenous of degree one: f(ακ) = αf(κ) for any κ > 0;
iv) f is strictly positive on Γ and normalized: f(1, 1, . . . , 1) = 1;
v) f is concave;
vi) f is inverse concave that is the function f∗(x1, . . . , xn) = f(x−11 , . . . , x−1n )−1

is concave;
vii) f∗ vanishes on the boundary of Γ.

Problems of this kind have been studied widely from different points of
view. Brakke in [6] studied the motion of surfaces by their mean curva-
ture using the methods of geometric measure theory. In 1984 Huisken in
[9] considered k(x, t) = −H(x, t), h = 0 where H is the mean curvature
of hypersurfaces and the initial hypersurface is convex closed. He showed
that in this case the flow has unique smooth solution in [0, T ) where T is
a maximal time that the flow exists, and as t → T , the hypersurfaces Mt

converge to a point. Moreover if M̃t is obtained from Mt by a homothety
about the point p kipping the area of M̃t constant, then the hypersurfaces
M̃t converge to a sphere as t→ T .

When in 1 we let f(x, t) = H(x, t) and h = 0, where H(x, t) the mean
curvature of evolving hypersurfaces, the flow is called inverse mean curvature
flow, which is an important tool in general relativity. Huisken and Ilmanen
in [11] studied the inverse mean curvature flow in 3-dimensional Riemannian
manifold with nonnegative scalar curvature instead of Rn+1. They develop
the theory of weak solutions and used it to prove the Riemannian Penrose
Inequality, that interpreted as an optimal lower bound for total energy of
the system measured at spacelike infinity in terms of the size of the largest
blackhole contained inside.

Huisken and Ilmanen in [12] also proved a sharp lower bound for the
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mean curvature under the inverse mean curvature flow for star-shaped sur-
faces, independently of the initial mean curvature. They also proved that
the solution of the inverse mean curvature flow is smooth if the mean cur-
vature bounded from below.

In 1991 Urbas studied the evolution of smooth closed uniformly convex
hypersurfaces in the case k(x, t) = f(x, t), h = 0, where f satisfies the condi-
tions (i) - (vii)([17]). He proved that the hypersurfaces remain smooth and
uniformly convex for all time and assymptotically become rounded. He also
studied the evolution of starshaped hypersurfaces when k(x, t) = f(x, t)−1,
where f has the properties (i)-(v) and obtained the same results [16].

Various flows with nonzero h(t) have been considered by different au-
thors. Huisken in 1987 also studied the volume preserving mean curvature
flow taking

h(t) =

∫
Mt
Hdµ∫

Mt
dµ

.

Mixed volume preserving curvature flow for strictly convex closed hypersur-
faces has been studied by McCoy in 2005 in [14] in the case that the speed
of the flow is h(t)− F (W(x, t)) where

h(t) =

∫
Mt
F (W)Ek+1dµ∫
Mt
Ek+1dµ

.

The preservation of convexity, short time and long time existence and asymp-
totically convergence to a sphere have been proved during the paper. He
also included some generalizations for the flow in [15] and extended some
of previous results when the the function F (W) is a homogeneous of degree
α > 0.
The mixed volume of a convex hypersurface M is written as

Vn−k(Φ) =

{
V ol(Φ) k = −1{

(n+ 1)
(
n
k

)}−1 ∫
M Ek dµ k = 0, 1, . . . , n− 1,

where Φ is the (n + 1)-dimensional region contained inside M , ∂ Φ = M ,
and El is the lth elementary symmetric function of κ1, . . . , κn, the priciple
curvature of M

El =

{
1 l = 0∑

1≤i1<···<il≤n κi1κi2 . . . κil l = 0, . . . , n,
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for k = −1 and k = 0, Vn−1 and Vn correspond to the volume and area of
M respectively.

We consider the general mixed volume preserving curvature flow and
prove the following theorem during the paper.

Theorem 1.1. Let M0 be a smooth, compact and strictly convex hyper-
surface and suppose that F satisfies conditions (i)-(vii), then the evolution
equation 1 with

h(t) =

∫
Mt
F (W)−1Ek+1dµ∫
Mt
Ek+1dµ.

(2)

has a unique smooth solution Mt in [0,∞) and if M̃t are rescaled hyper-
surfaces of Mt parametrized by X̃t(., t) = e−tX(., t) then M̃t’s converge as
t → ∞ in the C∞− topology, to a sphere and the volume of Vn−k of the
sphere is the same as M0.

In section 2 we state some definitions and some general time independent
results that will be required in other sections. In section 3 we prove the
short time existence of the flow using the theory of fully nonlinear parabolic
equations, we show that if the initial hypersurface M0 is strictly convex,
then then the flow 1 has a unique smooth solution in some interval [0, T )
where 0 < T ≤ ∞. In section 4 using Maximum Principle we prove that
the strictly convexity is preserved by the flow. Some corollaries also are
obtained. The aim of section 5 is proving the existence of the solution of
the flow in [0,∞). We use the method of support function for hypersurfaces
which Urbas used it in [17]. Some results from theory of fully nonlinear
partial differential equations are required in this section. We try to show
that the support function has uniform C2,α bound which leads to long time
existence of the solution. Finally in section 6 using a parametrization we
prove that the hypersurfaces converge in a C∞ to a sphere.

2 Preliminaries

Similar notation as in [9, 16] will be used here. If M is a hypersurface as in
Section 1, the metric gij on Mt is given by

gij =

〈
∂X

∂xi
(x, t),

∂X

∂xj
(x, t)

〉
,
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the second fundamental form A = {hij} is

hij = −
〈

∂2X

∂xi∂xj
(x, t), ν

〉
=

〈
∂X

∂xi
(x, t),

∂ν

∂xj
(x, t)

〉
,

the Weingarten map is W = {hij} with hij = gikhkj , the mean curvature of
Mt is

H = gijhij = hii,

and the norm of second fundamental form is

|A|2 = gijgklhikhjl,

where gij is the inverse of the metric gij . The Riemann curvature of hyper-
surface is given by

Rijkl = hikhjl − hilhjk. (3)

We also recall the Codazzi equations which say that

∇ihjk = ∇jhik = ∇khij . (4)

Throughout this paper indices are summed from 1 to n and raised indices
indicate contraction with the metric unless otherwise indicated.
Let (Ḟ kl) be the matrix of first partial derivative of F with respect to the
components of its arguments that given by

∂

∂
F (A+ sB)

∣∣∣s=0 = Ḟ kl(A)Bkl.

Similarly for the second partial derivative of F

∂2

∂t2
F (A+ sB)

∣∣∣s=0 = F̈ kl,rs(A)BklBrs.

We will use the notations

ḟi(κ) =
∂f

∂κi
(κ) and f̈ij(κ) =

∂2f

∂κi∂κj
(κ).

The following two Lemmas will be required in next sections see [17] for proof.

Lemma 2.1. for any concave function f satisfying (i)-(iv) and for any
κ ∈ Γ,

f(κ) ≤ 1

n
H, (5)

T = trace(Ḟ kl) =
∑
k

fk ≥ 1. (6)
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Lemma 2.2. Let f satisfies (i)-(iv) and κ = (κ1, . . . , κn) ∈ Γ and suppose
that κ1 ≤ · · · ≤ κn, then

κn − f(κ1 . . . κn) ≥ 1

n

n−1∑
1

(κn − κi). (7)

Lemma 2.3. ([5]) Fore any flow of the form 1,

d

dt

∫
Mt

Eldµ =

{
(l + 1)

∫
Mt

( 1
F − h)El+1dµ l = 0, 1, . . . n− 1

0 l = n, ,

From this lemma we have

Corollary 2.4. The flow 1 preserves
∫
Mt
Ekdµ.

Urbas in [16] and [17] used some norms and function space on Sn and
Sn × [0, T ) that will be needed here.
Let Ck(Sn) is the Banch space of real valued functions on Sn which are k-
times continuously differentiable with respect to x, and equipped with the
norm

‖u‖Ck(Sn) =
∑
|β|≤k

sup
Sn
|∇βu|,

where β is a standard multi-index for partial derivatives and ∇ is the deriva-
tive on Sn.
For α ∈ (0, 1], let Ck,α be the space of functions u ∈ Ck(Sn) such that the
norm

‖u‖Ck,α(Sn) = ‖u‖Ck(Sn)

+ sup
|β|=k

sup
x,y∈Sn

∣∣∣∇βu(x)−∇βu(y)
∣∣∣

|x− y|α

is finite, and |x − y| here is the distance between x and y in Sn. We de-
note by Ck(Sn × I) the space of real valued functions u which are k-times
continuously differentiable with respect to x and [k2 ]-times continuously dif-
ferentiable with respect to t such that the norm

‖u‖Ck(Sn×I) =
∑

|β|+2r≤k

sup
Sn×I

∣∣∣∇βDr
tu
∣∣∣
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is finite. Here [k2 ] is the largest integer not grater than k
2 .

We also denote by Ck,α(Sn × I) the space of functions in Ck(Sn × I) such
that the norm

‖u‖Ck,α(Sn×I) = ‖u‖Ck(Sn×I)

+ sup
|β|+2r=k

sup
(x,s),(y,t)∈Sn×I

(x,s) 6=(y,t)

∣∣∣∇βDr
tu(x, s)−∇βDr

tu(y, t)
∣∣∣(

|x− y|2 + |s− t|
)
α
2

.

3 Short time existence

In this section we prove the short-time existence of the solution of the flow.
For any compact strictly convex hypersurface M the gauss map ν : M → Sn
is diffeomorphism. So we can reparametrize the convex hypersurface by the
inverse gauss map

X(x) = X(ν−1(x)), x ∈ Sn.

The support function of hypersurface Mt is defined as fllows

s(x, t) = 〈X(x, t), x〉 ,

where x is outer unit normal to Mt at X(x, t) for all t in the interval of
existence. All information about the hypersurfaces can be obtained from
support function. The entries of W−1, the matrix of inverse Weingarten
map, are given by

rij = ∇i∇js+ ḡijs, (8)

where ∇ is the covariant derivative and ḡij the standard metric on Sn. See
[2] and [17] for more details.

We consider F∗
(
W−1(rij)

)
= f∗(r1, . . . , rn), where ri = 1

ki
for i =

1, . . . , n, are the principle radii of hypersurface Mt. We have the follow-
ing evolution equations in terms of rij ,

Lemma 3.1. The following evolution equations are hold,

∂

∂t
s = F∗(rij)− h, (9)

∂

∂t
F∗ = LF∗ + (F∗ − h) trace(Ḟ∗), (10)

∂

∂t
rij = Lrij + F̈ kl,pq∗ ∇irpq∇jrkl + (traceḞ∗)rij − ḡijh, (11)

where L = Ḟ kl∗ ∇k∇l.
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Proof. The first equation is a result of the definition of support function and
and equation 1.
For the second equation we have

∂

∂t
F∗ = Ḟ ij∗

∂

∂t
rij = Ḟ ij∗

∂

∂t

(
∇i∇js+ sḡij

)
= Ḟ ij∗ ∇i∇jF∗ + Ḟ ij∗

(
1

F
− h
)
ḡij

= LF∗ + (F∗ − h) traceḞ∗.

For the last equation we have

∂

∂t
rij = ∇i∇j

∂s

∂t
+ ḡij

∂s

∂t
= ∇i∇jF∗ + ḡij (F∗ − h)

= Ḟ kl∗ ∇i∇jrkl + F̈ kl,pq∗ ∇irpq∇jrkl + ḡij (F∗ − h) ,

using formulas for interchanging the order of covariant derivative and the
relation ∇irjk = ∇jrik ([17],[4])we have

∂

∂t
rij = Ḟ kl∗ (∇k∇irjl −Rmiklrmj −Rmikjrml)F̈ kl,pq∗ ∇irpq∇jrkl + ḡij(F∗ − h),

= Lrij + Ḟ kl∗ (−ḡilδmk rmj + ḡklδ
m
i rmj − ḡijδmk rml + ḡkjδ

m
i rml)

+ F̈ kl,pq∗ ∇irpq∇jrkl + ḡij (F∗ − h)

= Lrij + F̈ kl,pq∗ ∇irpq∇jrkl + (traceḞ∗)rij − ḡijF∗ + ḡij (F∗ − h) ,

thus the last equation holds and the Lemma is proved.

We end this section by proving the short time existence for the equation

∂s

∂t
= F∗(rij)− h. (12)

Theorem 3.2. Suppose M0 is a compact and strictly convex hypersurface
that evolves under the equation 1 then the flow 1 has a unique unique solution
in a short time that is there is a 0 < T ≤ ∞ such that the flow 1 has a smooth
solution on [0, T ).

Proof. From 8 we have

∂s

∂t
= F∗(rij)− h(t) := G(rij).
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Since the eigenvalues of rij are ri, i = 1, . . . , n, then the eigenvalues of Ḟ ij∗ are
∂f∗
∂ri

for i = 1, . . . , n (see [17] ) moreover we can write by direct computation

ḟ i∗ =
∂

∂ri
f∗(r1, . . . , rn) = f−2ḟi > 0,

therefore Ġ is positive definite then we can conclude that the equation 12
is strictly parabolic and the short time existence and the uniqueness of 1
follows from the theory of nonlinear parabolic equation([13]).

4 Preservation of convexity

Since the initial hypersurface is strictly convex and compact we have hij ≥
εF . In this section we prove that this inequality holds during the flow(probably
for another constant ε > 0 ). If ri are the principle radii of initial hyper-
surface then the inequality ri ≤ cf holds for some c > 0. We require the
following generalization of maximum principle accommodate to the elliptic
operator L.

Theorem 4.1. ([7] ,[3]) Let Sij be a smooth time-varying symmetric tensor
field on a compact manifold M satisfying

∂

∂t
Sij = akl∇k∇lSij + uk∇kSij +Nij ,

where akl and u are smooth, ∇ is a smooth symmetric connection and akl

is also positive definite every where. Suppose Nijv
ivj ≤ 0 whenever Sij ≤ 0

and Sijv
j = 0. If Sij ≤ 0 on M at time t = 0 then Sij ≤ 0 on [0, T ).

Theorem 4.2. If ri ≤ cf∗ at time t = 0 for some c > 0, then this is true
for any time that the flow 1 exists.

Proof. Let Tij = rij − cF∗ḡij and Tij ≤ 0 at t = 0. Using 3.1 the evolution
equation for Tij

∂

∂t
Tij = LTij +Nij ,

where Nij = F̈ kl,pq∗ ∇irpq∇jrkl +
(
traceḞ∗

)
Tij − h(1 + traceḞ )ḡij .

Suppose t0 be the first time that Tij has a null eigenvector in the existence
interval at point (x0, t0), then at point (x0, t0) we have

Nijv
ivj = F̈ kl,pq∗ ∇irpq∇jrklvivj +

(
traceḞ∗

)
Tijv

ivj −h(1 + traceḞ∗)ḡijv
ivj .
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Using the concavity of f∗ the first term on the right hand is nonpositive,
the second term vanishes and the last term is negative using 6, so we have
Nijv

ivj ≤ 0, then we have Tij ≤ 0 for any time that the flow exists.

Remark 4.3. If we choose coordinates such that rij = diag(r1, . . . , rn) then
it can be concluded that ri < Cf∗ for any i = 1, . . . , n and then rmax <
Cf∗ so we have κmin > C ′f where C ′ = 1

C .

Now we can state the following Lemma (see [4] for the proof).

Lemma 4.4. If f∗ approaches zero on ∂Γ then for any C > 0 there exists
C ′ > 0 such that if r ∈ Γ and rmax ≤ Cf∗, then rmax ≤ C ′rmin

Remark 4.5. In view of Lemma 4.4 there is a C ′ > 0 such that κmax <
C ′κmin and this in turn implies that hij ≥ εFgij is maintained under the
flow for some ε > 0 depending on n and M0.

We end this section with two corollaries.

Corollary 4.6. ([2]) There are constants 0 < C ≤ C depending on n, F
and M0 such that for any t ∈ [0, T ),

CId ≤ Ḟ (W(x, t)) ≤ CId. (13)

Corollary 4.7. ([14]), For t ∈ [0, T )
i) there is a c = c(M0, F ) such that |∇s| ≤ c,
ii) there is a d = d(M0, F ) such that M0 ⊂ Bd(0).

5 Priori estimates and long time existence

Like [17] it is convenient to work with the scaling hypersurface M̃t = e−tMt

assuming s̃ = e−ts rather than s itself to find priori estimates. Using homo-
geneity of F we have

∂

∂t
s̃ = F∗(∇ij s̃+ ḡij s̃)− s̃− e−th(t) (14)

in the remainder of this section s will denote the solution of the normalized
problem 14 rather than 12. In the following two Lemmas a lower bound and
also an upper bound for rij that is required to derive long time existence,
will be proved.
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Lemma 5.1. The upper bound for the eigenvalues of rij = ∇ijs + ḡijs is
preserved by the flow. In other words if at t = 0 we have

∇ijs+ ḡijs ≤ Kḡij ,

for some positive K, then this remains true for all t ∈ [0, T ).

Proof. Let Tij = rij −Kḡij like [17] we find the evolution of rij in terms of
s and its derivatives we have

∂

∂t
s = F∗(rij)− s− e−th(t), (15)

∂

∂t
∇ls = Ḟ ij∗ ∇lrij −∇ls, (16)

∂

∂t
∇kls = Ḟ klij∗ ∇ijs+ F̈ ij,pq∗ ∇krpq∇lrij −∇kls. (17)

Using standard formulas for interchanging the order of covariant differenti-
ation and the gauss formula ( see [17] for more details ) we have

Ḟ ij∗ ∇klijs = Ḟ ij∗ (∇ijkls+ 2ḡkl∇ijs− ḡij∇kls+ ḡjk∇ils− ḡil∇jks). (18)

Use of 18 in 17 we obtain

∂

∂t
∇kls = Ḟ ij∗ ∇ijkls+ 2ḡijḞ

ij
∗ ∇ijs− (traceḞ∗)∇kls (19)

+ ḡjkḞ
ij
∗ ∇ils− ḡilḞ ij∗ ∇jks+ Ḟ ij∗ ∇lrij −∇kls.

Using degree one homogeneity of F∗ in 15 we have

ḡkl
∂

∂t
s = ḡklḞ

ij
∗ ∇ijs+ ḡkl(traceḞ∗ − 1)− ḡkle−th(t). (20)

Adding 19 to 20 we have

∂

∂t
rkl = Lrkl + 2ḡklF∗ − (traceḞ∗ + 1)rkl + F i∗k∇ils (21)

− F i∗l∇iks+ F̈ ij,pq∗ ∇krpq∇lrij − ḡkle−th(t),

then the evolution of Tij is given by ∂
∂tTij = ∂

∂trkl = LTkl +Nkl, where

Nkl = 2ḡklF∗ − (traceḞ∗ + 1)rkl + F i∗k∇ils
− F i∗l∇iks+ F̈ ij,pq∗ ∇krpq∇lrij − ḡkle−th(t).
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Now suppose that v is a null eigenvector of Tij at (x0, t0) for some t0 > 0.
Choosing coordinate at this point such that (rkl) = diag(r1, . . . , rn) and
ri > rj with i < j, the null eigenvector condition implies that the largest
eigenvalue of rkl is K with the corresponding eigenvector v and rklv

k =
Kḡklv

k then we have

Nklv
kvl ≤ 2F∗|v|2 − (traceḞ∗ + 1)rklv

kvl = 2F∗|v|2 − (traceḞ∗ + 1)Kḡklv
kvl

= (2F∗ − (traceḞ∗ + 1)K)|v|2

using 6, we have at (x, t)

Nkl ≤ 2(F∗ −K) ≤ 0.

then the result follows from theorem 4.1.

Corollary 5.2. F∗ ≤ K where K is the maximum of ri at t = 0, for
i = 1, . . . , n.

Proof. The result is concluded from the previous Lemma and the fact that
f∗ is homogenous and increasing function.

Corollary 5.3. h(t) ≤ K, where K is the maximum of ri at t = 0, for
i = 1, . . . , n.

Proof. Using definition of h and the existence of upper bound for f∗ the
result will be obtained.

Lemma 5.4. Let s be the solution of 15 on Sn×[0, T ) then for any t ∈ [0, T )
we have

0 < s(t) ≤ max
Sn

s(0). (22)

Proof. At a point that s attain a maximum we have ∇ijs ≤ 0 using or-
thonormal frame at such point and homogeneity of F∗ we have

∂

∂t
s = F∗(∇ijs+ δijs)− s− e−th(t)

≤ F∗(δijs)− s− e−th(t)

= −e−th(t) < 0.

Using Hamiltonian Maximum principle the right side of 22 is proved.
The left side of the inequality is a result of strong maximum principle.
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Now we prove a lower bound for the eigenvalues of rij using the method
that Urbas used in [17].

Lemma 5.5. Let s be the solution of 15 on Sn× [0, T ) then for t ∈ [0, T ) if
at t = 0 we have rij ≥ εδij then this remains true for all t ∈ [0, T ).

Proof. Instead of proving lower bound for the eigenvalues of (rij) we esti-
mate its inverse matrix. If we denote the partial derivatives ∂bpq/∂rkl and
∂2bpq/∂rmn∂rkl by bpqkl and bpqkl,mn then we have

bpqkl = −bpkbql, (23)

bpqkl,mn = bmbknbql + bpkbqmbln, (24)

∇jbpq = bpqkl∇jrkl, (25)

∇ijbpq = bpqkl∇ijrkl + bpqkl,mn∇irmn∇jrkl. (26)

Using 21, 23, 24 and 26 we have

∂

∂t
bpq = bpqkl

∂

∂t
rkl =− bpkbql(Ḟ ij∗ ∇ijrkl + 2ḡklF∗ − (traceḞ∗ + 1)rkl + F i∗k∇ils

− F i∗l∇iks+ F̈ ij,mn∗ ∇krmn∇lrij − ḡkle−th(t)),

using 26 we have

∂

∂t
bpq = Ḟ ij∗ (∇ijbpq − bpqkl,mn∇irmn∇jrnl)− 2bpkbqlḡklF∗ + (traceḞ∗ + 1)bpq

− bpkbql(F i∗k∇ils− F i∗l∇iks)− bpkbqlF̈ ij,mn∗ ∇krmn∇lrij + e−th(t)bpkbqlḡkl

= Lbpq − 2F∗b
pkbqlḡkl + (traceḞ∗ + 1)bpq − bpkbql(F i∗k∇ils− F i∗l∇iks)

− bpkbqlF̈ ij,mn∗ ∇krmn∇lrij − Ḟ ij∗ (bpmbknbql − bpkbqmbln)∇irmn∇jrkl
+ e−th(t)bpkbqlḡkl. (27)

By a directional computation it is proved that ∇irjk = ∇jrik which implies

bpkbqlF̈ ij,mn∗ ∇krmn∇lrij − Ḟ ij∗ (bpmbknbql + bpkbqmbln)∇irmn∇jrkl
= bpkbql(F̈ ij,mn∗ + 2Ḟ im∗ bjn)∇krmn∇lrij ,

replacing to the 27 gives

∂

∂t
bpq = Lbpq − 2F∗b

pkbqlḡkl + (traceḞ∗ + 1)bpq

− bpkbql(F̈ ij,mn∗ + 2Ḟ im∗ bjn)∇krmn∇lrij
− bpkbql(F i∗k∇ils− F i∗l∇iks) + bpkbqlḡkle

−th(t).
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If we set p = q then

∂

∂t
bpp = Lbpp − 2F∗b

pkbplḡkl + (traceḞ∗ + 1)bpp

− bpkbpl(F̈ ij,mn∗ + 2Ḟ im∗ bjn)∇krmn∇lrij
+ bpkbplḡkle

−th(t)

But it has proved in [17] that

(F̈ ij,mn∗ + 2Ḟ im∗ bjn)ηijηmn ≥ 0.

If we suppose that (bij) attains its maximum eigenvalue at a point like xt
with unit eigenvector ξt ∈ Sn, using a rotation on the orthonormal frame
e1, . . . , en at xt we may assume that ξt = e1, then we have

∂

∂t
b11 ≤ 2F∗(b

11)2 + (traceḞ∗ + 1)b11 + e−th(t)(b11)2

≤ −2(traceḞ∗)b
11 + (traceḞ∗ + 1)b11 + e−th(t)(b11)2

≤ −(traceḞ∗ − 1)b11 + e−th(t)(b11)2 ≤ e−th(t)(b11)2

≤ rmax(0)(b11)2 = K(b11)2,

using maximum principle we have

b11max(0) ≤ 1

Ke−t −K + (b11max(0))−1
.

Since at t = 0, the following equality holds

b11max = κmax(0) =
1

rmax(0)
,

then we have

b11max(t) ≤ 1

Ke−t
=

1

K
et,

and this complete the proof a of Lemma.

From Lemma 5.4 and Lemma 5.5 we conclude the following Lemma to
get uniform Ck,α bound for s.

Lemma 5.6. ([17]) Let s be a solution of 14 on Sn × [0, T ]. Then for any
t ∈ (0, T ), any positive integer k and any α ∈ (0, 1) we have

‖s‖Ck,α(Sn×[t,T ]) ≤ C,

where C depends only on n, k, α, rmin(0), rmax(0), t−1, F and ‖s‖C2(Sn×[0,T ]).

Now following the Urbas method in [17] we can extend the time of solu-
tion to infinity and the long time existence of 14 is derived.
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6 Assymptotic behavior

In this section we investigate the assymptotic behavior of evolving hyper-
surfaces under the flow 1.

Theorem 6.1. Let M̃t = e−tMt are the rescaling hypersurfaces then as
t→∞, the hypersurfaces M̃t converge in C∞ topology to a sphere

Proof. To prove the theorem let τij = ∇ijs+ sḡij − F ḡij , then using 21 we
have

∂

∂t
τij = Lrij + 2ḡklF∗ − (traceḞ∗ + 1)rkl + F i∗k∇ils

− F i∗l∇iks+ F̈ ij,pq∗ ∇krpq∇lrij − ḡkle−th(t)

−∇ijḞ ij∗ ∇ijF∗ − (traceḞ∗ − 1)F∗ḡkl

= Lτij − (traceḞ∗ + 1)τkl + F i∗k∇ils− F i∗l∇iks
+ F̈ ij,pq∗ ∇krpq∇lrij − ḡkle−th(t).

Consider the maximum eigenvalue of τ over Sn at time t is attained at point
xt ∈ Sn with unit eigenvector ξt ∈ TxtSn. By a rotation on the orthonormal
frame e1, . . . , en we may assume ξt = e1 at xt. Let k = l = 1, then

∂

∂t
τ11 ≤ Ḟ ij∗ ∇ijτ11 − (traceḞ∗ + 1)τ11 − (traceḞ∗ + 1)e−th(t)

≤ −2τ11

The definition of τij implies

max[rmax(x, t)− f∗(r(x, t))] ≤ C1e
−2t, (28)

where r(x, t) = (r1(x, t), . . . rn(x, t)) is the eigenvalues of ∇ijs+ ḡijs at (x, t),
rmax(x, t) is maximum eigenvalue of ∇ijs+ ḡijs at point (x, t), and C1 is a
positive constant depending on s0 and f∗. Using 7 we have

(rmax(x, t)− rmin(x, t)) ≤ nC1e
−2t, (29)

where rmin(x, t) is the minimum eigenvalue of ∇ijs + ḡijs at point (x, t),
therefore for any x ∈ Sn we have

dist(r(x, t),D) ≤ Ce−2t, (30)
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where D = {(r1, . . . , rn) ∈ Γ|r1 = · · · = rn}. Sincef∗ is smooth and the
eigenvalues of ∇ijs + ḡijs remain in a fixed compact convex subset K of Γ

and also ∂f∗
∂t = 1

n on D, then we have

|∂f∗
∂ri

(r(x, t)− 1

n
| =≤ sup

K
|D2f |dist(r(x, t),D) ≤ Ce−2t. (31)

Using 5 we also have

f∗(r1, . . . , rn) ≤ 1

n

n∑
i=1

ri =
1

n
trace(∇ijs+ ḡijs) =

1

n
∆s+ s, (32)

and from 29 we obtain

1

n
∆s+ s− Ce−2th(t) ≤ f∗, (33)

and hence we have

1

n
∆s− Ce−2t − e−th(t) ≤ ∂s

∂t
≤ 1

n
∆s− e−th(t), (34)

since h(t) ≤ K we have

1

n
∆s− C ′e−t ≤ ∂s

∂t
≤ 1

n
∆s. (35)

Now suppose s̄(t) = (1/|Sn|)
∫
Sn s(x, t)dx where |Sn| =

∫
Sn dµ. Integrating

35 over Sn gives

−C ′e−t ≤ ∂s̄

∂t
≤ 0. (36)

Integrating again over any interval [t1, t2] ⊂ [0,∞) implies

0 ≤ s̄(t1)− s̄(t2) ≤ C ′e−t1 .

Since s̄ is nonincreasing by 36 and bounded from below then s∗ = limt→ s̄(t)
exists and

|s̄(t)− s∗| ≤ C ′e−t.

Multiplying 35 by s and integrating over Sn and using Poicare inequality
wehave

d

dt

∫
Sn
s2 ≤ − 2

n

∫
Sn
|∇s2| ≤

∫
Sn
|s̄− s|2,

hence
d

dt

∫
Sn

(s− s̄)2 =
d

dt

∫
Sn
|s2 − s̄2| ≤ − 2

n

∫
Sn

+2Ce−t,
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which implies ∫
Sn

(s− s∗)2 ≤ C(γ)e−γt, (37)

for any γ < 2. Using interpolation inequality ([17]) we have∫
Sn
|∇ks|2 ≤ Ck(γ, γ̃)e−γ̃t, (38)

for any γ̃ ≤ γ ≤ 2. By Sobolev embedding theorem on Sn (see [1], §2.7) we
have

‖s− s∗‖Cl(Sn) ≤ (

∫
Sn
|∇ks|2 + |s− s∗|2)1/2, (39)

for any k > l + n/2. The convergence of s in Ck norms to s∗ follows from
37, 38 and 39. So the hypersurface M̃t converge in the C∞ topology to a
sphere of radius s∗ centered at the origin.
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