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BEREZIN TRANSFORM OF

INVERTIBLE POSITIVE OPERATORS*

Namita Das� Madhusmita Sahoo�

Abstract

In this paper we introduce a class A ⊂ L∞(D) such that if φ ∈ A
and satisfies certain positive-definite condition, then there exists a
ψ ∈ A such that φ(z) ≤ αeψ(z), for some constant α > 0. Further,
if φ(z) = 〈Akz, kz〉, for some bounded positive, invertible operator A
from the Bergman space L2

a(D) into itself then ψ(z) = 〈(logA)kz, kz〉.
Here kz, z ∈ D are the normalized reproducing kernel of L2

a(D). Ap-
plications of these results are also discussed.
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1 Introduction

Let dA(z) be the area measure on the open unit disk D in the complex plane
C normalized so that the area of the disk is 1. That is, dA(z) = 1

πdxdy. Let
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L2(D, dA) be the Hilbert space of Lebesgue measure functions on D with
the inner product

〈f, g〉 =

∫
D
f(z)g(z)dA(z), f, g ∈ L2(D, dA).

The Bergman space L2
a(D) is the set of of those functions in L2(D, dA) that

are analytic on D. The space L2
a(D) is a closed subspace [5] of L2(D, dA) and

so there is an orthogonal projection P from L2(D, dA) onto L2
a(D). If the

analytic function f on D has power series expansion f(z) =

∞∑
n=0

anz
n, then

‖f‖2 =

∫
D
|f(z)|2dA(z) =

∞∑
n=0

|an|2

n+ 1
.

Let K(z, w̄) be the function on D×D defined by K(z, w̄) = Kz(w) = 1
(1−zw̄)2

.

The function K(z, w̄) is called the Bergman kernel of D or the reproducing
kernel of L2

a(D) because the formula

f(z) =

∫
D
f(w)K(z, w̄)dA(w)

reproduces each f in L2
a(D). For any n ≥ 0, n ∈ Z, let en(z) =

√
n+ 1zn,

then {en} forms an orthonormal basis for L2
a(D) and

K(z, w̄) =
∞∑
n=0

en(z)en(w) =
1

(1− zw̄)2
.

Let ka(z) = K(z,ā)√
K(a,ā)

= 1−|a|2
(1−āz)2 . These functions ka are called the normalized

reproducing kernels of L2
a(D); it is clear that they are unit vectors in L2

a(D).
For any a ∈ D, let φa be the analytic mapping on D defined by φa(z) = a−z

1−āz ,
z ∈ D. An easy calculation shows that the derivative of φa at z is equal to
−ka(z). It follows that the real Jacobian determinant of φa at z is

Jφa(z) = |ka(z)|2 =
(1− |a|2)2

|1− āz|4
.

Let L∞(D, dA) be the Banach space of all essentially bounded measurable
functions f on D with

‖f‖∞ = ess sup{|f(z)| : z ∈ D}



72 N.Das, M.Sahoo

and H∞(D) be the space of bounded analytic functions on D. Let h∞(D) be
the space of all bounded harmonic functions on D. Let L(H) be the set of all
bounded linear operators from the Hilbert space H into itself and LC(H) be
the subspace of L(H) consisting of all compact operators from the Hilbert
space H into itself. Let IL(H) denotes the identity operator in L(H). We
define ρ : L(L2

a(D)) −→ L∞(D) by

ρ(T )(z) = T̃ (z) = 〈Tkz, kz〉, z ∈ D.

Let V (D) = {φ ∈ L∞(D) : ess lim
|z|−→1−

φ(z) = 0}. If T ∈ L(L2
a(D)) then

ρ(T ) ∈ L∞(D) and ‖ρ(T )‖∞ ≤ ‖T‖ as |ρ(T )(z)| = |〈Tkz, kz〉| ≤ ‖T‖ for
all z ∈ D. Further, if T ∈ LC(L2

a(D)), then as kz −→ 0 weakly, hence
ρ(T ) ∈ V (D). One may also notice that if T ∈ L(L2

a(D)) is diagonal with
respect to the basis {en}∞n=0, then ρ(T ) is radial. If T ∈ L(L2

a(D)) then
[22], T ∼= 0 if and only if T̃ (z) = 0 for all z ∈ D. Let T ∈ L(L2

a(D)). If
0 < mIL(L2

a) ≤ T ≤ MIL(L2
a) then it follows from Kantorovich inequality

[14], [16] that T̃ (z)T̃−1(z) ≤ (m+M)2

4mM = C(say) for all z ∈ D. The constant

C is called the Kantorovich constant. It is also well known [23] that T̃ 2(z) ≤
C
(
T̃ (z)

)2
. If S, T ∈ L(L2

a(D)) are positive and invertible operators whose

spectrums are contained in [m,M ] with 0 < m < M , then the geometric

mean S]T of S and T is defined [19] and [12] as S]T = S
1
2

(
S
−1
2 TS

−1
2

) 1
2
S

1
2

and S̃(z)T̃ (z) ≤ (m+M)2

4mM S̃]T (z) for all z ∈ D. The Toeplitz operator Tψ with
symbol ψ in L∞(D) is defined on L2

a(D) by Tψf = P (ψf). It is well known
[22] that each bounded linear operator on L2

a(D) is uniquely determined by
its Berezin transform and the behavior of the operators can be analyzed by
exploring the corresponding Berezin transform.

The natural question that arises at this point is: Given a function φ ∈
L∞(D) does there exist an operator T ∈ L(L2

a(D)) such that T̃ (z) = φ(z)
and given two operators S, T ∈ L(L2

a(D)) when S̃(z) ≥ T̃ (z) for all z ∈ D ?
The organization of this paper is as follows: In Section 2, we discuss

some of the algebraic properties of the Berezin transform ρ(T ) and the map

σz(T ) = el̃og T (z) where T ∈ L(L2
a(D)) is positive and invertible. Section

3, is devoted to minimax approximation and in this section we obtain an
estimate for ρ(T )−σz(T ). In Section 4, we introduce a class A ⊂ L∞(D) and
establish that if φ ∈ A and satisfies certain positive-definite condition, then
there exists a ψ ∈ A such that φ(z) ≤ αeψ(z), for some constant α > 0. These
results also gives us an idea about the domination of Berezin transform of
bounded positive invertible operators defined on L2

a(D).



Invertible positive operators 73

2 Invertible positive operators on L2
a(D)

An operator T ∈ L(H) is said to be positive if 〈Tx, x〉 ≥ 0 for all x ∈ H.
In short, we write T ≥ 0. If further T ∈ L(H) is positive and invert-

ible then we write T > 0. If T > 0, then log T = lim
α→+0

Tα − I
α

and

T = lim
n→∞

(
1 +

log T

n

)n
. If S, T ∈ L(H) and S ≥ T ≥ 0 then by Löwner-

Heinz inequality Sα ≥ Tα for α ∈ [0, 1] and if S ≥ T > 0 then logS ≥ log T.
The last relation is called logS majorizes log T.

For A > 0, the exponential map on L(H), denoted exp, is defined as

exp(A) =

∞∑
n=0

An

n!
.

The absolute convergence of this series is established just as in the
scalar case from whence follows the continuity of exp . If A,B ∈ L(H)
and AB = BA, then by multiplying the series defining exp(A) and exp(B)
and rearranging one can verify that exp(A + B) = exp(A) exp(B). Fur-
ther, if A ∈ L(H) and ‖I − A‖ < 1, then there exists B ∈ L(H) such
that A = exp(B). Let G be the set of all positive, invertible operators

in L(L2
a(D)). Define for z ∈ D, σz : G −→ C as σz(A) = el̃ogA(z) and

ρ : L(L2
a(D)) −→ L∞(D) as ρ(A)(z) = Ã(z). Thus σz(A) = eρ(logA)(z). In

this section, we shall discuss some of the algebraic properties of σz(A) and
the Berezin transform ρ(A) for A ∈ G.

Proposition 2.1. Let z ∈ D and A,B ∈ G. The following hold:

(i) σz(sA) = sσz(A) for all s > 0.

(ii) σz(A
−1) = (σz(A))−1.

(iii) If α > 0, β > 0 and α+β = 1, then σz(αA+βB) ≥ (σz(A))α(σz(B))β.

(iv) If {A}′ = {B ∈ L(L2
a(D)) : BA = AB} the commutant of A then

σz(A) = inf{ÃB(z)|σz(B) ≥ 1, B ∈ {A}′}

= inf{ρ(AB)(z)|σz(B) ≥ 1, B ∈ {A}′}.

(v) If AB = BA, then σz(A+B) ≥ σz(A) + σz(B).
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Proof. Since σz(s) = el̃og sI(z) = e〈(log s)kz ,kz〉 = elog s = s for all s > 0, hence

σz(sA) = e〈log(sA)kz ,kz〉

= e〈(log s+logA)kz ,kz〉

= elog sσz(A) = sσz(A).

This proves (i). Now we shall prove (ii). Notice that

σz(A
−1) = e

˜(logA−1)(z)

= e〈(logA−1)kz ,kz〉

= e〈−(logA)kz ,kz〉 = e−l̃ogA(z)

=
1

e ˜(logA)(z)
=

1

σz(A)
= (σz(A))−1 .

To prove (iii), let α > 0, β > 0 and α + β = 1. Then it follows from the
operator concavity of the logarithm [10] that

σz(αA+ βB) = e〈(log(αA+βB))kz ,kz〉

≥ e〈(α logA+β logB)kz ,kz〉

= e〈α logAkz ,kz〉e〈β logBkz ,kz〉

= eα〈(logA)kz ,kz〉eβ〈(logB)kz ,kz〉

= (σz(A))α (σz(B))β .

To prove (iv), we shall first show that σz(AB) = σz(A)σz(B) if AB = BA.
Notice that log(AB) = log(A)+log(B) if AB = BA. Hence e〈(log(AB))kz ,kz〉 =
e〈(logA+logB)kz ,kz〉 = σz(A)σz(B) if AB = BA. Now suppose a positive oper-
ator B commutes with A ∈ G and assume σz(A) ≥ 1. Then 〈(AB)kz, kz〉 ≥
σz(AB) = σz(A)σz(B) ≥ σz(A). Consider, in particular B = σz(A)A−1.
Then σz(B) = σz(A)σz(A

−1) = 1. Further

〈(AB)kz, kz〉 = 〈A(σz(A)A−1)kz, kz〉 = σz(A)〈AA−1kz, kz〉 = σz(A).

The assertion (iv) follows. To prove (v), assume that AB = BA. Then

σz(A+B) = inf {〈((A+B)C)kz, kz〉| σz(C) ≥ 1, (A+B)C = C(A+B)}
= inf {〈ACkz, kz〉+ 〈BCkz, kz〉| σz(C) ≥ C,AC +BC = CA+AB}
≥ inf {〈ACkz, kz〉| σz(C) ≥ 1, AC = CA}
+ inf {〈BCkz, kz〉| σz(C) ≥ 1, BC = CB}
= σz(A) + σz(B).
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Proposition 2.2. Let A,B ∈ L(L2
a(D)) be positive and invertible. Then the

following hold:

(i) If A ≤ B then σz(A) ≤ σz(B) and
1

Ã−1(z)
≤ σz(A) ≤ Ã(z), z ∈ D.

(ii) ‖A−1‖−1 ≤ σz(A) ≤ r(A) = ‖A‖ where r(A) is the spectral radius of
A, and z ∈ D.

Proof. To prove (i), assume A ≤ B. Then it follows from the operator
monotonicity of the logarithm that logA ≤ logB and

σz(A) = el̃ogA(z) = e〈(logA)kz ,kz〉 ≤ e〈(logB)kz ,kz〉 = σz(B).

Now, let A ∈ G and A =
n∑
i=1

siEi be the spectral decomposition of A. Then

e
˜(logA)(z) = σz(A) = σz

(
n∑
i=1

siEi

)
=

n∏
i=1

s
Ẽi(z)
i

for the projections Ei with

n∑
i=1

Ei = 1. By considering the simple functions

An =
n∑
i=1

s
(n)
i E

(n)
i of A converging uniformly to A =

∫ M

m
sdEs, (where

0 < m ≤ A ≤M for positive numbers m < M) we define

∏∫ M

m
sd〈Eskz, kz〉 = lim

n−→∞

n∏
i=1

s
(n)
〈E(n)

i
kz,kz〉

i .

This definition makes sense and it also shows that σz(A) =
∏∫ M

m
sd〈Eskz, kz〉.

Thus
σz(A) ≤ Ã(z) (2.1)

since Ã(z) is the continuous weighted arithmetic mean and σz(A) is the
continuous weighted geometric mean with the weight kz and (2.1) follows
from the arithmetic- geometric mean inequality.(Kubo, F, Ando, T, Means of
positive operators). Equality holds in (2.1) if and only if kz is an eigenvector
of A. From the harmonic-geometric-arithmetic mean inequality it follows
that

1

Ã−1(z)
≤ σz(A) ≤ Ã(z). (2.2)
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This proves (i). Now it follows from [8] that σz(A) ≤ 〈Akz, kz〉 ≤ ‖A‖ =
r(A) and σz(A) ≥ 1

〈A−1kz ,kz〉 ≥
1

‖A−1‖ . Thus the result (ii) follows.

A real-valued continuous function f on (0,∞) is said to be operator
monotone if, for any positive operators S, T the relation S ≤ T always
implies f(S) ≤ f(T ). It is well-known [9] that such a function f has the
unique integral representation

f(s) = α+ βs−
∫ ∞

0

(
1

t+ s
− t

t2 + 1

)
dγ(t),

where α is real, β ≥ 0 and γ is a positive measure on (0,∞) satisfying∫ ∞
0

dγ(t)

t2 + 1
<∞. The most important examples of operator monotone func-

tions [20] are log s and sr(0 ≤ r ≤ 1) with integral representations

log s = −sin(sπ)

π

∫ ∞
0

(
1

t+ s
− t

t2 + 1

)
dt,

and for 0 < r < 1,

sr = cos
(rπ

2

)
− sin(rπ)

π

∫ ∞
0

(
1

t+ s
− t

t2 + 1

)
trdt.

Let us further assume lim
s−→0+

f(s) = 0 (so let us set f(0) = 0.) It is easy to

see that

0 = f(0) = α−
∫ ∞

0

(
1

t
− t

t2 + 1

)
dγ(t)

and

f(s) = βs+

∫ ∞
0

(
1

t
− 1

t+ s

)
dγ(t)

= βs+

∫ ∞
0

s

t+ s

dγ(t)

t
.

It is clear from this expression that f is concave (operator concave). The
function f : (a, b) −→ R is said to be convex if f(λx+ (1− λ)y) ≤ λf(x) +
(1 − λ)f(y), 0 < λ < 1. The function f is concave if −f is convex. If S, T
are positive operators in L(L2

a(D)), then it follows from [18] that for any
operator monotone function f with f(0) = 0 we have

‖f(S)− f(T )‖ ≤ f (‖S − T‖) .

The following is also true:
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Theorem 2.3. If S, T ∈ L(L2
a(D) are positive and ‖S − T‖ > a > 0 for

some constant a then

e‖ log(S+a)−log(T+a)‖ ≤
( e
a
‖S − T‖

)
.

Proof. Since log s = −
∫ ∞

0

(
1

t+ s
− t

t2 + 1

)
dt, it follows that

log(S + a)− log(T + a) =

∫ ∞
0

[
(T + a+ t)−1 − (S + a+ t)−1

]
dt.

Now if b > 0, we have

log(S + a)− log(T + a) =

∫ b

0

[
(T + a+ t)−1 − (S + a+ t)−1

]
dt

+

∫ ∞
b

[
(T + a+ t)−1 − (S + a+ t)−1

]
dt.

Thus

‖ log(S + a)− log(T + a)‖ ≤
∫ b

0

∥∥(T + a+ t)−1 − (S + a+ t)−1
∥∥ dt

+

∫ ∞
b

∥∥(T + a+ t)−1 − (S + a+ t)−1
∥∥ dt.

To estimate the first integral on the right, we notice that∥∥(T + a+ t)−1 − (S + a+ t)−1
∥∥ ≤ max

{
‖(T + a+ t)−1‖, ‖(S + a+ t)−1‖

}
≤ 1

t+ a
.

Hence ∫ b

0

∥∥(T + a+ t)−1 − (S + a+ t)−1
∥∥ dt ≤ ∫ b

0

dt

t+ a

= log

(
a+ b

a

)
.

To estimate the second integral, we notice that∥∥(T + a+ t)−1 − (S + a+ t)−1
∥∥ =

∥∥(S + a+ t)−1(S − T )(T + a+ t)−1
∥∥

≤ 1

(t+ a)2
‖S − T‖.
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Hence∫ ∞
b

∥∥(T + a+ t)−1 − (S + a+ t)−1
∥∥ dt ≤ ∫ ∞

b

1

(t+ a)2
‖S − T‖dt

=
‖S − T‖
a+ b

.

Therefore,

‖log(S + a)− log(T + a)‖ ≤ log

(
a+ b

a

)
+
‖S − T‖
a+ b

.

But as a function of b, the expression log
(
a+b
a

)
+ ‖S−T‖a+b attains its minimum

at b = ‖S − T‖ − a. Hence

‖log(S + a)− log(T + a)‖ ≤ log

(
‖S − T‖

a

)
+ 1

= log
( e
a
‖S − T‖

)
Thus

e‖ log(S+a)−log(T+a)‖ ≤ e

a
‖S − T‖.

Remark 2.4. Hence in Theorem 2.3, taking a = 1, we obtain

e‖ log(S+I)−log(T+I)‖ ≤ e‖S − T‖

if ‖S − T‖ > 1.

Corollary 2.5. Let A,B ∈ G and suppose A ≤ B and 0 < a = ‖A − B‖.
Assume that 0 < m1I ≤ A ≤M1I and 0 < m2I ≤ B ≤M2I. Then

|σz(A)− σz(B)| ≤ 2e

r
‖B‖‖A−B‖

where r = M2 −m1.

Proof. Notice that 0 < m1I ≤ A ≤ B ≤ M2I. If r = M2 −m1, then r > 0.
Let S = A− r

2I and T = B − r
2I. Hence

‖S − T‖ =
∥∥∥(A− r

2
I
)
−
(
B − r

2
I
)∥∥∥ = ‖A−B‖ = a > 0.
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Let k = a− r
2 . Thus by Theorem 2.3,

e‖ log(A+k)−log(B+k)‖ = e‖ log(A+(a− r
2

)I)−log(B+(a− r
2

)I)‖

= e‖ log(A− r
2
I+a−log(B− r

2
I+a)‖

= e‖ log(S+a)−log(T+a)‖

≤ e

a
‖S − T‖

=
e

a
‖A−B‖

=
e

k + r
2

‖A−B‖

≤ e
r
2

‖A−B‖

=
2e

r
‖A−B‖.

Letting k −→ 0 we obtain e‖ logA−logB‖ ≤ 2e
r ‖A−B‖. Now from Proposition

2.2, it follows that

|σz(A)− σz(B)| = |e ˜(logA)(z) − e ˜(logB)(z)|
= |e〈(logB)kz ,kz〉||e〈(logA)kz ,kz〉−〈(logB)kz ,kz〉 − 1|

≤ ‖B‖e| ˜(logA)(z)− ˜(logB)(z)|

≤ ‖B‖e|ρ(logA−logB)(z)|

≤ ‖B‖e‖ logA−logB‖

≤ 2e

r
‖B‖‖A−B‖.

The result follows.

Given 1 ≤ p <∞, we define the Schatten p-class of the Hilbert space H,
denoted by Sp is the space of all compact operators T on H with its singular
value sequence {λn} belonging to lp (the pth summable sequence space). It
is known that Sp is a Banach space with the norm

‖T‖p =

[∑
n

|λn|p
]1/p

.

The space S1 is also called the trace class of H. If T is in S1, then the series
∞∑
n=1

〈Ten, en〉 converges absolutely for any orthonormal basis {en} of H and
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the sum is independent of the choice of the orthonormal basis. We call this
value the trace of T and denote it by tr(T ).

Theorem 2.6. Let A ∈ G. Then the map h : D −→ C defined by h(z) =
σz(A) satisfies the following:

|h(z)− h(w)| ≤ ‖A‖e2
√

2‖ logA‖β(z,w)

where β(z, w) =
∣∣∣ z−w1−z̄w

∣∣∣ , the pseudohyperbolic metric on D.

Proof. For A ∈ G, we shall first show that

‖Ã(z)− Ã(w)‖ ≤ 2
√

2‖A‖β(z, w).

From [7], we have

T̃ (z)− T̃ (w) = trace[T (Pz − Pw)]

where Pz(f) = 〈f, kz〉kz, f ∈ L2
a(D). It is known [3], for X ∈ S1, T ∈

L(L2
a(D)), TX ∈ S1 and |trace(TX)| ≤ ‖T‖‖X‖trace. Thus

|T̃ (z)− T̃ (w)| ≤ 2‖T‖
{

1− |〈kz, kw〉|2
}1/2

.

By direct calculation, using K(z, a) = 1
(1−āz)2 , we see that

1− |〈kz, kw〉|2 = 1−
∣∣∣∣〈kz, Kw

‖Kw‖

〉∣∣∣∣2 = 1− 1

‖Kw‖2
|kz(w)|2

= 1− (1− |w|2)2(1− |z|2)2

|1− z̄w|4

= 1−
(

1− |z − w|
2

|1− w̄z|2

)2

= 1−
(

1 +
|z − w|4

|1− w̄z|4
− 2
|z − w|2

|1− w̄z|2

)
= − |z − w|

4

|1− w̄z|4
+ 2
|z − w|2

|1− w̄z|2

=
|z − w|2

|1− w̄z|2

(
2− |z − w|

2

|1− w̄z|2

)
≤ 2
|z − w|2

|1− w̄z|2
= 2(β(z, w))2.
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Thus {
1− |〈kz, kw〉|2

}1/2 ≤
√

2β(z, w).

Hence
|T̃ (z)− T̃ (w)| ≤ 2

√
2‖T‖β(z, w).

Thus

|h(z)− h(w)| = |σz(A)− σw(A)|

=
∣∣∣el̃ogA(z) − el̃ogA(w)

∣∣∣
=
∣∣∣e〈(logA)kz ,kz〉 − e〈(logA)kw,kw〉

∣∣∣
=
∣∣∣e〈(logA)kw,kw〉

∣∣∣ ∣∣∣e〈(logA)kz ,kz〉−〈(logA)kw,kw〉 − 1
∣∣∣

≤ ‖A‖
∣∣∣el̃ogA(z)−l̃ogA(w)

∣∣∣
(since|e〈(logA)kz ,kz〉| ≤ |〈Akz, kz〉| ≤ ‖A‖)

≤ ‖A‖ e
∣∣∣ ˜(logA)(z)− ˜(logA)(w)

∣∣∣
≤ ‖A‖ e2

√
2‖logA‖β(z,w).

The result follows.

Proposition 2.7. The sequence (Ãs(z))
1
s converges monotone decreasingly

(respectively, increasingly) to σz(A) as s ↓ 0 (respectively s ↑ 0). That

is, (ρ(As)(z))
1
s converges monotone decreasingly(respectivly, increasingly)

to σz(A) as s ↓ 0 (respectivly, s ↑ 0).

Proof. To prove the proposition, let 0 ≤ t ≤ s. Then(
Ãs(z)

) t
s

= (〈Askz, kz〉)
t
s ≤ 〈Atkz, kz〉.

Using L’Hospital’s rule, we obtain

lim
s↓0

log〈Askz, kz〉
1
s = lim

s↓0

log〈Askz, kz〉
s

= lim
s↓0

d〈Askz ,kz〉
ds

〈Askz, kz〉

= lim
s↓0

〈As(logA)kz, kz〉
〈Askz, kz〉

= 〈(logA)kz, kz〉.

Hence el̃ogA(z) = σz(A) = lim
s↓0

(
Ãs(z)

) 1
s
. This completes the prove.
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3 Minimax approximation and the map σz(A)

In this section we shall discuss minimax approximation and we obtain an
estimate for ρ(T ) − σz(T ). Let f be a real-valued continuous function on
[a, b]. Let ρn(f) = inf

degq≤n
‖f − q‖∞. Let q∗n(x) be the unique polynomial

of degree less than equal to n such that ‖f − q∗n‖ = ρn(f). The approx-
imation q∗n is called the minimax approximation [4] to f(x) on [a, b]. Let
En(f, x) = max

a≤x≤b
|f(x) − q∗n(x)| and ε(x) = f(x) − q∗n(x). Then by Cheby-

shev equioscillation theorem [15] there are at least n+2 points a = x0 < x1 <
x2 < . . . < xn < xn+1 = b where ε(xi) = ±En, i = 0, 1, 2, . . . , n+ 1, ε(xi) =
−ε(xi+1), i = 0, 1, 2, . . . n and ε

′
(xi) = 0, i = 1, . . . n.

Lemma 3.1. Let f ∈ C2[a, b] with f
′′
(x) > 0 for a ≤ x ≤ b. If q∗1(x) =

a0 + a1x is the linear minimax approximation to f(x) on [a, b], then

a1 =
f(b)− f(a)

b− a
, a0 =

f(a) + f(c)

2
−
(
a+ c

2

)[
f(b)− f(a)

b− a

]
(3.1)

where c is the unique solution of f
′
(c) = f(b)−f(a)

b−a .

Proof. Since f
′′
(x) > 0 on [a, b], hence f is convex on [a, b]. Let

ρ1(f) = inf
degq≤1

‖f − q‖∞.

Let ε(x) = f(x)− (a0 +a1x). The function f is convex on [a, b] as f
′′
(x) > 0.

Then by Chebyshev equioscillation theorem, there exists a point x1 ∈ [a, b]
such that ε(a) = ρ1, ε(b) = ρ1, ε(x1) = −ρ1 and ε

′
(x1) = 0. That is,

f(a)− (a0 + a1a) = ρ1, (3.2)

f(b)− (a0 + a1b) = ρ1, (3.3)

f(x1)− (a0 + a1x1) = −ρ1, (3.4)

f
′
(x1)− a1 = 0. (3.5)

Hence a1 = f
′
(x1). Now subtracting (3.2) from (3.3) gives

f(b)− f(a)− a1(b− a) = 0.

Hence a1 = f(b)−f(a)
b−a = f

′
(x1). Thus x1 = c. From (3.4), it follows that

f(c)− (a0 + a1c) = −ρ1. (3.6)

Adding (3.2) and (3.6), we obtain f(c) + f(a)− 2a0 − a1(c+ a) = 0. Hence

a0 = f(a)+f(c)
2 −

[
f(b)−f(a)

b−a

] (
a+c

2

)
. The result follows.
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Lemma 3.2. Let f be monotone increasing and differentiable on [a, b]. As-
sume f is concave on [a, b]. Let q∗1(x) = −a0 − a1x is the unique minimax
approximation to f on [a, b] and c is the unique solution of the equation

f
′
(x) =

f(b)− f(a)

b− a
= a1 (3.7)

Let g(t) = t−f−1(a1t+d) where d = 2a0−f(c)−cf ′(c) and a0 is as defined
in (3.1). Then

g(t) ≤ f(c)(b− a) + f(a)b− f(b)a

f(b)− f(a)
− c

Proof. From Lemma 3.1, it follows that a1 = f(b)−f(a)
b−a = f

′
(c) and

a0 =
f(a) + f(c)

2
−
[
f(b)− f(a)

b− a

](
a+ c

2

)
=

1

2

[
bf(a)− af(b)

b− a
+ f(c) + cf

′
(c)

]
.

Thus d = 2a0 − f(c)− cf ′(c) = bf(a)−af(b)
b−a . Let t0 = f(c)−d

a1
. Then t0 ∈ [a, b]

and f(c) = a1t0 + d. Since f−1 is convex, hence g is concave and

g
′
(t0) = 1− a1

f ′ (f−1(a1t0 + d))
= 1− a1

f ′(c)
= 0.

Hence t0 is a point of maximum of g and

g(t0) =
f(c)(b− a) + f(a)b− f(b)a

f(b)− f(a)
− c.

Theorem 3.3. Suppose A is a positive operator and 0 < m ≤ A ≤M. Then

Ã(z)− σz(A) ≤ L(M,m)

(
logL(M,m) +

M logm−m logM

M −m
− 1

)
where L(M,m) = M−m

logM−logm is the logarithmic mean.

Proof. Let f(t) = log t on [m,M ] in Lemma 3.2. Putting t = Ã(z), we have

Ã(z)− σz(A) ≤ t− f−1(a1t+ d) = t− ea1t+d.
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Then f
′
(c) = 1

c and therefore

c =
1

a1
=

M −m
logM − logm

= L(M,m)

and

Ã(z)− σz(A) ≤ logL(M,m)(M −m) + (logm)M −m logM

logM − logm
− c

=
logL(M,m)(M −m) +M logm−m logM

logM − logm
− L(M,m)

=

[
logL(M,m) + (M logm−m logM)

M−m
logM−logm

M−m

]
− L(M,m)

= L(M,m)

[
logL(M,m) +

M logm−m logM

M −m
− 1

]
.

4 On the range of Berezin transform

Ahern, Flores and Rudin [1] and Englis [11] established that a function

φ ∈ h∞(D) if and only if φ(z) = T̃φ(z) for every z ∈ D. Ahren [2] showed
that if f and g are non-constant holomorphic functions on D then there ex-
ists a function u ∈ L1(D, dA) such that fg = ρ(Tu). Ahren also established
that there are very few such triples (f, g, u). Cuckovic and Li [6] Consid-
ered functions of the form f1g1 + h where f1 and g1 are holomorphic on the
unit disk D and h is either harmonic or of the form f2g2 for some holomor-
phic functions f2 and g2(z) = zn with n ≥ 1. They characterized all such
functions f1, g1, h for which it is possible to find u ∈ L1(D, dA) such that
ρ(Tu) = f1g1 +h and give precise relations between f1, f2, g1 and g2(z) = zn

with n ≥ 1. N.V. Rao [21] described all functions in the range of ρ which are

of the form

N∑
i=1

figi where fi, gi are all holomorphic in D. In fact, Rao gave a

complete description of all such u ∈ L1(D, dA) and the corresponding fi, gi

1 ≤ i ≤ N such that ρ(Tu) =
N∑
i=1

figi. In this section we shall introduce a

class A ⊂ L∞(D) and establish that if φ ∈ A and satisfies certain positive-
definite condition, then there exists a ψ ∈ A such that φ(z) ≤ αeψ(z), for
some constant α > 0.
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Definition 4.1. A function g(x, ȳ) on D × D is called of positive type (or
positive definite), written g � 0, if

n∑
j,k=1

cjckg(xj , xk) ≥ 0 (4.1)

for any n-tuple of complex numbers c1, . . . , cn and points x1, . . . , xn ∈ D.
We write g � h if g−h� 0. We shall say Υ ∈ A if Υ ∈ L∞(D) and is such
that

Υ(z) = Θ(z, z̄) (4.2)

where Θ(x, ȳ) is a function on D×D meromorphic in x and conjugate mero-
morphic in y and if there exists a constant c > 0 such that

cK(x, ȳ)� Θ(x, ȳ)K(x, ȳ)� 0 for all x, y ∈ D.

It is a fact that (see [13], [17]) Θ as in (4.2), if it exists, is uniquely
determined by Υ.

Theorem 4.2. If φ ∈ A and 0 ≤ φ then there exist a positive operator S ∈
L(L2

a(D)) such that φ(z) = S̃(z) for all z ∈ D. Further, if 0 < m ≤ A ≤M,

r = L(M,m) and s = m logM−M logm
logM−logm then Ã(z) ≤ re

s−r
r σz(A), and equality

holds if and only if M and m are eigenvalues of A, l̃ogA(z) = r−s
r and kz

is a linear combination of eigenvectors corresponding to eigenvalues m and
M .

Proof. For the first part of the proof it suffices to show that 0 ≤ φ ∈ A
if and only if there exists a positive operator S ∈ L(L2

a) such that φ(z) =
〈Skz, kz〉 for all z ∈ D. So let S ∈ L(L2

a(D)) be a positive operator. Let

Θ(x, ȳ) =
〈SKy ,Kx〉
〈Ky ,Kx〉 where Kx = K(., x̄) is the unnormalized reproducing

kernel at x. Then Θ(x, ȳ) is a function on D × D meromorphic in x and
conjugate meromorphic in y. Let φ(z) = Θ(z, z̄).

Then φ(z) = 〈Skz, kz〉 for all z ∈ D and φ ∈ L∞(D) as S is bounded.

Now let f =
n∑
j=1

cjKxj where cj ’s are constants, xj ∈ D for j = 1, 2, . . . , n.

Since S is bounded and positive there exists a constant c > 0 such that
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0 ≤ 〈Sf, f〉 ≤ c‖f‖2. But

〈Sf, f〉 =

〈
S

 n∑
j=1

cjKxj

 ,
n∑
j=1

cjKxj

〉

=

n∑
j,k=1

cj c̄k〈SKxj ,Kxk〉

=
n∑

j,k=1

cj c̄kΘ(xk, x̄j)K(xk, x̄j)

and c‖f‖2 = c〈f, f〉 = c
∑n

j,k=1 cj c̄kK(xk, x̄j). Hence we obtain that

cK(x, ȳ)� Θ(x, ȳ)K(x, ȳ)� 0.

Thus φ ∈ A.
Now let φ ∈ A and φ(z) = Θ(z, z̄) where Θ(x, ȳ) is a function on D× D

meromorphic in x and conjugate meromorphic in y. We shall prove the
existence of a positive, bounded operator S ∈ L(L2

a(D)) such that φ(z) =
〈Skz, kz〉. Let

Sf(x) =

∫
D
f(z)Θ(x, z̄)K(x, z̄)dA(z). (4.3)

Indeed,

Sf(x) = 〈Sf,Kx〉
= 〈f, S∗Kx〉

=

∫
D
f(z)〈S∗Kx,Kz〉dA(z)

=

∫
D
f(z)〈SKz,Kx〉dA(z)

=

∫
D
f(z)Θ(x, z̄)K(x, z̄)dA(z).

Then

〈SKy,Kx〉 =

∫
D
Ky(z)Θ(x, z̄)K(x, z̄)dA(z)

=

∫
D
Ky(z)Θ(x, z̄)Kx(z)dA(z)

= 〈Θ(x, z̄)Kx,Ky〉

= Θ(x, ȳ)〈Kx,Ky〉
= Θ(x, ȳ)〈Ky,Kx〉.
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Hence Θ(x, ȳ) =
〈SKy ,Kx〉
〈Ky ,Kx〉 and φ(z) = Θ(z, z̄) = 〈Skz, kz〉. We shall now

prove that S is positive, bounded. That is, there exists a constant c > 0
such that 0 ≤ 〈Sf, f〉 ≤ c‖f‖2 for all f ∈ L2

a(D). Since φ ∈ A, there exists
a constant c > 0 such that for all x, y ∈ D,

cK(x, ȳ)� Θ(x, ȳ)K(x, ȳ)� 0. (4.4)

Let f =
n∑
j=1

cjKxj where cj are constants, xj ∈ D for j = 1, 2, . . . , n. Then

from (4.4) it follows that 〈Sf, f〉 =
n∑

j,k=1

cj c̄kΘ(xk, x̄j)K(xk, x̄j) ≥ 0 and

〈Sf, f〉 =

n∑
j,k=1

cj c̄kΘ(xk, x̄j)K(xk, x̄j)

≤ c
n∑

j,k=1

cj c̄kK(xk, x̄j)

= c‖f‖2.

Since the set of vectors


n∑
j=1

cjKxj , xj ∈ D, j = 1, 2, . . . , n

 is dense in L2
a(D),

hence 0 ≤ 〈Sf, f〉 ≤ c‖f‖2 for all f ∈ L2
a(D) and thus S is bounded and

positive. The point to note is that et is a convex function and the line rt+ s
crosses et at t = logm and t = logM. Thus

et ≤ rt+ s ≤ re
s−r
r et (4.5)

on [logm, logM ] since the function G(t) = re
s−r
r et − rt − s is a convex

function, G
′
(t) = 0 at t = r−s

r ∈ [logm, logM ] as m ≤ L(m,M) ≤M and
the point t = r−s

r is a local minimum of G.
Now let R = logA. Then from (4.5) it follows that

〈eRkz, kz〉 ≤ 〈(rR+ s)kz, kz〉 = r〈Rkz, kz〉+ s ≤ re
s−r
r e〈Rkz ,kz〉.

This implies,

〈Akz, kz〉 ≤ re
s−r
r e〈(logA)kz ,kz〉

= re
s−r
r σz(A).
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This establishes the inequality.
Now since et < rt + s for t ∈ (logm, logM), the equality 〈eRkz, kz〉 =
〈(rR+s)kz, kz〉 holds if and only if kz is a linear combination of eigenvectors
corresponding to m and M. Further, r−s

s is the only zero of G and the
equality

r〈Rkz, kz〉+ s = re
s−r
r e〈Rkz ,kz〉

holds if and only if R̃(z) = r−s
r .

Remark 4.3. Let K = M
m . Then it is not difficult to verify that r = (K−1)m

logK

and b
a = log(Km1−K)

K−1 . Thus re
s−r
r = (K−1)K

1
K−1

e logK .

Hence it follows from the Theorem 4.2 that Ã(z) ≤ (K−1)K
1

K−1

e logK σz(A).
To verify the equaity let v and w be the unit eigenvectors corresponding to
eigenvalues m and M of A respectively. Now if kz =

√
1− t2v+ tw for some

t lying in (0, 1), then

logm1−t2M t2 = 〈Rkz, kz〉 =
r − s
r

= 1− log(Km1−K)

K − 1
= 1+log

(
K

1
1−Km

)
.

That is, t2 logK = 1 + logK
1

1−K . Hence t2 = 1
logK −

1
K−1 . Thus

kz =

√
k

k − 1
− 1

log k
v +

√
1

log k
− 1

k − 1
w.

Theorem 4.4. The function φ ∈ A and satisfies

CK(x, ȳ)� Θ(x, ȳ)K(x, ȳ)� mK(x, ȳ)� 0 (4.6)

for all x, y ∈ D and some constants C,m > 0 if and only if there exists a
positive, invertible operator A ∈ L(L2

a(D)) such that φ(z) = 〈Akz, kz〉 for all
z ∈ D.

Proof. Suppose φ ∈ A and (4.6) holds. Then from Theorem 4.2, it follows
that there exists a positive linear operator A ∈ L(L2

a(D)) such that φ(z) =

〈Akz, kz〉. Now let f =

n∑
j=1

cjKxj where cj ’s are constants, xj ∈ D for
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j = 1, 2, . . . , n. Since

〈Af, f〉 =

〈
A

 n∑
j=1

cjKxj

 ,
n∑
j=1

cjKxj

〉

=

n∑
j,k=1

cj c̄kΘ(xk, x̄j)K(xk, , x̄j)

and

m‖f‖2 = m〈f, f〉 = m
n∑

j,k=1

cj c̄kK(xk, x̄j),

it follows from (4.6) that 〈Af, f〉 ≥ m‖f‖2. As the set of vectors
n∑
j=1

cjKxj , xj ∈ D, j = 1, 2, . . . , n


is dense in L2

a(D), hence 0 ≤ 〈Af, f〉 ≥ m‖f‖2 for all f ∈ L2
a(D). That is,

A ≥ mI where I is the identity operator in L(L2
a(D)). Hence A is invertible.

Conversely, suppose A is a bounded, positive operator in L(L2
a(D)) which is

also invertible. Then from Theorem 4.2, it follows that φ(z) = 〈Akz, kz〉 ∈ A
and there exists a constant m > 0 such that A ≥ mI. Hence if f =
n∑
j=1

cjKxj where cj ’s are constants, xj ∈ D, j = 1, 2, . . . , n, then 〈Af, f〉 =

n∑
j,k=1

cj c̄kΘ(xk, x̄j)K(xk, x̄j) and m‖f‖2 = m〈f, f〉 = m

n∑
j,k=1

cj c̄kK(xk, x̄j).

As 〈Af, f〉 ≥ m‖f‖2, hence Θ(x, ȳ)K(x, ȳ) � mK(x, ȳ) for all x, y ∈ D.
The theorem follows.

Corollary 4.5. Let φ ∈ A and satisfies

CK(x, ȳ)� Θ(x, ȳ)K(x, ȳ)� mK(x, ȳ)� 0

for all x, y ∈ D and some constant C,m > 0. Then there exists ψ ∈ A
such that φ(z) ≤ αeψ(z), for some constant α. If φ(z) = Ã(z), A ∈ G then

ψ(z) = l̃ogA(z) and ρ(A)(z) ≤ αeρ(logA)(z) for all z ∈ D.

Proof. Let φ ∈ A. Then from Theorem 4.4, it follows that there exists
a positive, invertible operator A ∈ L(L2

a(D)) such that φ(z) = 〈Akz, kz〉
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for all z ∈ D. Hence A ∈ G. Let ψ(z) = 〈(logA)kz, kz〉, z ∈ D. Since
logA ∈ L(L2

a(D)) is positive and ψ(z) = ρ(logA)(z) ∈ A. From the Theorem
4.2, it follows that ρ(A)(z) = Ã(z) ≤ αeρ(logA)(z) and φ(z) ≤ αeψ(z) for all
z ∈ D.

Corollary 4.6. Let φ ∈ A and satisfies

CK(x, ȳ)� Θ(x, ȳ)K(x, ȳ)� mK(x, ȳ)� 0

for all x, y ∈ D and some constant C,m > 0. The following hold:

(i) Suppose φ(z) = 〈Akz, kz〉, z ∈ D, 0 < m ≤ A ≤M and t ∈ R. Then

ρ(At)(z) ≤ αeρ(logAt)(z)

for all z ∈ D and where α is a constant depending on m,M and t. In

fact, α = (Kt−1)K
t

Kt−1

e logKt .

(ii) For each t real, there exists a function ψt ∈ A such that ψt ≤ αetφ

where α is a constant depending on t and φ. In fact, if φ(z) = 〈Bkz, kz〉 =
B̃(z) z ∈ D, then ψt(z) = ρ(etB)(z) and ψt(z) ≤ αetφ(z) where

α =
etL − etl

te(L− l)
exp

(
t(Letl − letL)

etL − etl

)

and 0 < l ≤ B ≤ L and ρ(etB)(z) ≤ αetB̃(z).

Proof. Let K = M
m . Then mt ≤ At ≤M t for t ≥ 0. The inequality (i) follows

from Theorem 4.2 for t ≥ 0 since Kt = Mt

mt . For t < 0, M t ≤ At ≤ mt and

K−t =
(
M
m

)−t
= mt

Mt. Thus by Theorem 4.2,

〈Atkz, kz〉 ≤
(K−t − 1)K

−t
K−t−1

e logK−t
σz(A

t)

=
(Kt − 1)K

t
Kt−1

e logKt
σz(A

t).

To establish (ii), let B = logA, l = logm and L = logM. From (i), it

follows that 〈etBkz, kz〉 = 〈Atkz, kz〉 and etB̃(z) = σz(A
t). The inequality

(ii) follows.
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