BEREZIN TRANSFORM OF INVERTIBLE POSITIVE OPERATORS*

Namita Das[†]

Madhusmita Sahoo[‡]

DOI https://doi.org/10.56082/annalsarscimath.2021.1-2.70

Abstract

In this paper we introduce a class $\mathcal{A} \subset L^{\infty}(\mathbb{D})$ such that if $\phi \in \mathcal{A}$ and satisfies certain positive-definite condition, then there exists a $\psi \in \mathcal{A}$ such that $\phi(z) \leq \alpha e^{\psi(z)}$, for some constant $\alpha > 0$. Further, if $\phi(z) = \langle Ak_z, k_z \rangle$, for some bounded positive, invertible operator \mathcal{A} from the Bergman space $L^2_a(\mathbb{D})$ into itself then $\psi(z) = \langle (\log \mathcal{A})k_z, k_z \rangle$. Here $k_z, z \in \mathbb{D}$ are the normalized reproducing kernel of $L^2_a(\mathbb{D})$. Applications of these results are also discussed.

2010 Mathematics Subject Classification: 32A36; 47B38.

keywords: Berezin transform, Bergman space, Invertible operators, Positive operators, Reproducing kernel.

1 Introduction

Let dA(z) be the area measure on the open unit disk \mathbb{D} in the complex plane \mathbb{C} normalized so that the area of the disk is 1. That is, $dA(z) = \frac{1}{\pi} dx dy$. Let

^{*}Accepted for publication in revised form on July 7-th, 2020

[†]namitadas4400yahoo.co.in, P.G.Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar- 751004, Odisha, India.

[‡]smita_782006@yahoo.co.in, School of Applied Sciences (Mathematics), KIIT Deemed to be University, Campus-3(Kathajori Campus), Bhubaneswar-751024, Odisha, India.