
ISSN 2066-6594

Ann. Acad. Rom. Sci.
Ser. Math. Appl.

Vol. 13, No. 1-2/2021

ON AN OBLIQUE PROJECTION

METHOD FOR SOLVING THE

EIGENVALUE PROBLEM OF THE

COMPANION MATRIX∗

Gyurhan H. Nedzhibov†

Abstract

In the present research, we take another look at the relatively new
method for computing eigenvalues and eigenvectors of the Frobenius
companion matrix. The purpose of the paper is to interpret the method
considered in terms of oblique projection methods, i.e. as a Galerkin
type method. Based on this dependence, we derive some new theoreti-
cal results. We establish certain error estimates, which will contribute
to further studies of the convergence analysis of the method under con-
sideration.
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1 Introduction

We consider the particular eigenvalue problem: find a scalar λ ∈ C and a
nonzero vector x ∈ Cn such that

Ax = λx, (1)
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where A is the Frobenius companion matrix of order n with complex entries
and with only simple eigenvalues

A =


0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . .
. . . . . .

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

 . (2)

Let us denote by λ1, λ2, . . . , λn the two by two distinct eigenvalues of A.
Then it is immediate to verify that the eigenvector associated with λs has
the form

xs = (1, λs, λ
2
s, . . . , λ

n−1
s )T ,

for s = 1, . . . , n. Therefore the eigenvector matrix V of A is the well-known
Vandermonde matrix

V = V (λ) =


1 1 . . . 1
λ1 λ2 . . . λn

. . . . . .
. . . . . .

λn−11 λn−12 . . . λn−1n

 . (3)

Which implies that Fobenius companion matrix (2) has complete biorthog-
onal systems of right eigenvectors x1,x2, . . . ,xn (the columns of V ) and left
eigenvectors y∗1,y

∗
2, . . . ,y

∗
n (the rows of V −1). Thus we have the following

eigenvalue decomposition of (2)

A = V ΛV −1, (4)

where Λ = diag{λ1, . . . , λn}.
In our previous work [1] we developed a new iterative scheme for finding

all the eigenvalues and corresponding left, and right eigenvectors of the
companion matrix (2), see Algorithm-1.

Where z
(k)
i is the k-th approximation of the eigenvalue λi (i = 1, . . . , n).

The right and left approximate eigenvectors associated with eigenvalue λi
are denoted by v

(k)
i and w

(k)
i , respectively. On step 6 of Algorithm-1, the

two-sided Rayleigh quotient

ρ(x,y) = ρ(A,x,y) =
y∗Ax

y∗x
(5)

is used for computing the approximate eigenvalue. Formula (5) is introduced
for the first time by Ostrowski in [9] (see also [10, 11]).
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Algorithm-1 : Diagonalization of the Frobenius companion matrix

Input: A, initial vector z(0)(where z
(0)
i 6= z

(0)
j for i 6= j), tolerance ε� 1.

Output: Approximate eigenvalues and eigenvector matrices:
λ = (λ1, . . . , λn), V (λ), W (λ).
1: Set k=0.
2: While not converged do

3: Compute the Vandermonde matrix Vk = V (z(k)).

4: Compute the inverse Vandermonde matrix W ∗k = V (z(k))−1.
5: For i=1:n do
6: Compute next eigenvalue estimate

z
(k+1)
i = ρk = (w

(k)
i )∗Av

(k)
i ,

where v
(k)
i is the i-th column vector of Vk,

and (w
(k)
i )∗ is the i-th row vector of W ∗k

7: End for
8: Set k=k+1.

8: If ‖z(k+1) − z(k)‖2 < ε then

9: Set λ = z(k+1), V = Vk, W = W ∗k .
10: break
11: End If
12: End While

In [1] local convergence analysis of the introduced algorithm is provided.
It is proved that the asymptotic rate of convergence of the new scheme is
quadratic. The main result in [1] is the following theorem.

Theorem 1 Let x and y be right and left eigenvectors associated with the
eigenvalue λ of the Frobenius companion matrix Fp, which has n distinct
eigenvalues. Then limk→∞ vk = x and limk→∞wk = y if and only if
zk+1 = ρk = ρ(vk,wk) approaches λ and the asymptotic convergence rate is
quadratic.

Our main objective in this work is to interpret the aforementioned al-
gorithm in terms of projection methods. By using this dependence we will
establish new error bounds for this algorithm. The rest of the paper is or-
ganized as follows. In Section 2 we give a short introduction to projection
methods for solving the eigenvalue problem. Interpretation of the Algorithm-
1 as a projection method is shown in Section 3. In Section 4 we derive some
error bounds and the conclusion is in Section 5.
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2 Projection methods for eigenvalue problems

Given twom−dimensional subspaces K and L of Cn, the basic idea of projec-
tion methods is to approximate the exact eigenpair (λ,x) to the eigenvalue
problem (1), by an approximate eigenpair (λ̂, x̂), with λ̂ ∈ C and x̂ ∈ K,
such that the following Petrov-Galerkin condition is satisfied

Ax̂− λ̂x̂ ⊥ L (6)

for some given inner product. The subspace K reffered to as the subspace
of approximants or the right subspace and L as the left subspace.

There are two main classes of projection methods: orthogonal projection
(Ritz-Galerkin) and oblique projection methods (see for more details [2, 3,
5, 6]). In the case of orthogonal projection methods the subspace K is the
same as L, while in oblique projection techniques subspace K is different
from L.

We can translate in matrix form the approximate eigenvector x̂ in some
basis and express the Petrov-Galerkin condition. Let assume that we have
a basis {v1, . . . ,vm} of K and denote by V the matrix with column vec-
tors v1, . . . ,vm. By analogy, let {w1, . . . ,wm} be a basis of L and denote
by W the matrix with column vectors w1, . . . ,wm. Usually, the following
additional assumption is required

W ∗V = I, (7)

which means that the two bases are biorthogonal, i.e. (vi,wj) = δij . Now
we can translate the approximate problem into this basis and solve it nu-
merically. Letting

x̂ = V u

the condition (6) becomes

〈(A− λ̂I)V u,wj〉 = 0, j = 1, . . . ,m .

Therefore, u and λ̂ must satisfy

Bmu = λ̂u, (8)

where
Bm = W ∗AV. (9)

In this way, we reduced the initial eigenvalue problem to the smaller m×m
eigenvalue problem. Each eigenvalue λ̂ of Bm is called a Ritz value, and V u
is called Ritz vector, where u is the eigenvector of Bm associated with λ̂.
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In the case of orthogonal projection methods the matrix Bm has the form
Bm = V ∗AV . In this case, the method for solving the reduced eigenvalue
problem (8) is also known as the Rayleigh-Ritz procedure.

We can also reformulate projection methods in terms of projection op-
erators as follows.

Case 1. Orthogonal projection methods. Let PK be the orthogonal pro-
jector onto K, then condition (6) has the form

Ax̂− λ̂x̂ ⊥ K (10)

or equivalently,
PK(A− λ̂I)x̂ = 0, (λ̂ ∈ C, x̂ ∈ K)

or
PKAx̂ = λ̂x̂. (11)

Hence, we have replaced the initial problem (1) by an eigenvalue problem for
the linear transformation PKA|K which is from K to K. The last equation
is equivalent to

PKAPKx̂ = λ̂x̂, ( λ̂ ∈ C, x̂ ∈ K), (12)

which involves the operator

Am = PKAPK. (13)

This is an extension of PKA|K to the whole space. Equation (11) will be
referred to as the Galerkin approximation problem.

Case 2. Oblique projection methods. Let QLK be the oblique projector
onto K and orthogonal to L. This projector has the following properties:

QLKz ∈ K and (I −QLK)z ⊥ L. (14)

for any vector z ∈ Cn. Then the orthogonality condition (6) is equivalent
to

QLK(A− λ̂I)x̂ = 0, (λ̂ ∈ C, x̂ ∈ K)

or
QLKAx̃ = λ̃x̃. (15)

Thus, the eigenvalue problem for matrix A is replaced by the eigenvalue
problem of the linear operator QLKA|K. In this case, we can define an ex-
tension Am by analogy to the definition of (13) in two different ways. One
possible presentation could be

Am = QLKAQ
L
K (16)
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or, the more useful extension

Am = QLKAPK. (17)

Then by analogy to (12) we get the approximation problem

Amx̂ = λ̂x̂, ( λ̂ ∈ C, x̂ ∈ K) . (18)

Therefore in both cases (12) and (18), the Ritz values are actually the eigen-
values of the operator Am, and the Ritz vectors are the corresponding eigen-
vectors belonging to K.

There are different ways to construct the subspaces K and L. We can
work with subspaces of both fixed and variable dimensions. Some of the
well-known examples when the subspace dimension is fixed to one are the
Power method and Rayleigh quotient iteration (see [3, 10]). In other pro-
jection methods the dimension of the subspace K is increasing, usually one
starts with a subspace of dimension one, and the dimension increases by one
at each iteration step. Some of the most popular methods of this type use
the so-called Krylov subspace. Such examples are Arnoldi method, Lanc-
zos method and incomplete orthogonalization (see [2, 4]). Methods like
Davidson method and Jacobi-Davidson method are examples with increas-
ing subspace dimension and without using Krylov subspaces (see [7, 8]).

3 Algorithm-1 as a projection method

In this section, we will show that the presented Algorithm-1 can be formu-
lated in terms of projection methods. Without loss of generality we fix the
value of index i on step 6 of Algorithm-1. Let denote by

Ki = span{v(k)
i } (19)

the right subspace and by

Li = span{(w(k)
i )∗} (20)

the left subspace associated with λi at iteration step k. It is obvious that
the biorthogonality condition (7) is valid. Then the corresponding reduced
eigenvalue problem (8)-(9) of (1) has the following trivial form

(w
(k)
i )∗Av

(k)
i y = λ̂iy ,
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where the matrix Bm is a scalar (m=1) and it is identical to the Rayleigh
quotient (5). In other words, we unambiguously obtain the Ritz value

λ̂i = z
(k+1)
i = ρ(v

(k)
i ,w

(k)
i ) .

which is the next approximation of λi. Furthermore, it is immediate to

verify that the residual vector of approximate eigenpair (λ̂i,v
(k)
i )

r
(k)
i = Av

(k)
i − λ̂iv

(k)
i

is orthogonal to Li, i.e. the Petrov-Galerkin condition (6) is satisfied. With
this, we confirmed that the approach of Algorithm-1 is an oblique projection
method with subspaces Ki and Li having dimensions fixed to one.

4 Convergence analysis

Our main purpose in this section is to apply some of the known convergence
results on Projection methods to the considered Algorithm-1. We aim to
show the relation between the solutions of the main eigenvalue problem (1)
and the approximate problem (18). A natural way to derive error bounds
is by using the approach of residual vectors. In our case we can investigate
either of the residuals (Am − λI)x or (A − λ̂I)x̂, where (λ,x) is the exact
eigenpair and (λ̂, x̂) is the corresponding approximate eigenpair, and Am is
defined by (16) or (17).

The quantity which plays an important role in convergence analysis of
projection methods is the distance between the exact eigenvector x and
the right subspace K defined by ‖(I − PK)x‖, where PK is the orthogonal
projector onto K. This quantity can also be interpreted as the sin(α) (in
the case of ‖x‖ = 1) of the acute angle between the eigenvector x and K.

Let now consider Algorithm-1 for the fixed value of the index i. The
orthogonal projector PKi onto Ki defined by (19) has the form

PKi =
v
(k)
i (v

(k)
i )∗

‖v(k)
i ‖2

(21)

and the oblique projector QLiKi
onto Ki along the orthogonal complement of

Li defined by (20) has the form

QLiKi
= v

(k)
i (w

(k)
i )∗ . (22)

If we consider the exact eigenpair (λi,xi) as an approximate eigenpair of
the operator Am, then the following estimates hold for the corresponding
residual vector. For the sake of simplicity, we omit the superscript (k).
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Theorem 2 Let denote by γi = ‖QLiKi
‖2‖A‖2, where QLiKi

and PKi are de-
fined by (21) and (22) respectively. Then the following inequalities are hold

(i) ‖(Am − λiI)PKixi‖ ≤ γi‖(I − PKi)xi‖ , (23)

(ii) ‖(Am − λiI)xi‖ ≤
√
|λi|2 + γ2i ‖(I − PKi)xi‖ , (24)

for i = 1, . . . , n, where Am = QLiKi
APKi.

Proof : (i). It is immediate to verify that

(A− λiI)PKixi = (A− λiI)(PKi − I)xi

and since
QLiKi

PKi = PKi , (25)

we get

(Am − λiI)PKixi = QLiKi
(A− λiI)PKixi = −QLiKi

(A− λiI)(I − PKi)xi .

Because of (I−PKi) is an orthogonal projector, it follows that ‖I−PKi‖ = 1.
Using that and the Cauchy-Schwarz inequality we get the first result.

(ii). The following equalities are hold

(Am − λiI)xi = (Am − λiI)(PKixi + (I − PKi)xi)
= (Am − λiI)PKixi + (Am − λiI)(I − PKi)xi) .

Using the equality Am(I − PKi) = 0 we get

(Am − λiI)xi = (Am − λiI)PKixi − λi(I − PKi)xi) .

It easy to verify that the two terms in the right-hand side are orthogonal.
Then by using the Pythaga’s formula, we get the second result, which proves
the theorem.

This theorem is analogous of a result obtained by Saad in [2]. We remark
that the Theorem 2 states the accuracy of the exact eigenpair with respect
to the approximate problem. The following corollary is straightforward.

Corollary 1 The statements (i) and (ii) in Theorem 3 remain valid if we
replace the matrix Am with Ãm = QLiKi

AQLiKi
.

Proof : It repeats the proof of Theorem 3 by using (25) and the equality
AmPKi = ÃmPKi .

To investigate the distance between the Ritz value and the exact eigen-
value we can use the following theorem.
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Theorem 3 Let A be diagonalizable with eigenvalue decomposition (4)

A = V ΛV −1,

where Λ = diag{λ1, . . . , λn}. Let (λ̂i, x̂i) be an approximate eigenpair of A
computed by Algorithm-1 with the corresponding residual vector

ri = (A− λ̂iI)x̂i , (i = 1, . . . , n) .

Then there exists an eigenvalue λi of A such that

|λi − λ̂i| ≤ k(V )‖ri‖ , (26)

where k(V ) = ‖V ‖‖V −1‖ denotes the condition number of V .

Proof : The result is obvious if λi = λ̂i. Let assume that λi 6= λ̂i, then the
matrix A− λiI is nonsingular and we have

(A− λ̂iI)−1 = V (Λ− λ̂iI)−1V −1 ,

which implies

1 ≤ ‖x̂i‖ = ‖(A− λ̂iI)−1ri‖ = ‖V (Λ− λ̂iI)−1V −1ri‖ ≤ k(V )
‖ri‖

minj |λj − λ̂i|
.

Rearranging the terms we get the result of the theorem.
A similar approach to Theorem 3 for studying the convergence of Ritz

values is the next theorem, where both left and right residuals are used. This
is the two-sided analogous of the known Bauer-Fike theorem (see [2, 11]).

Theorem 4 Let we have the eigenvalue decomposition (4) of A

A = V ΛV −1,

where Λ = diag{λ1, . . . , λn}. Let (λ̂i, x̂i, ŷi) be an approximate eigentriplet
of A computed by Algorithm-1 with the corresponding residual vectors

ri = (A− λ̂iI)x̂i and s∗i = ŷ∗i (A− λ̂iI) , (i = 1, . . . , n) .

Then there exists an eigenvalue λi of A such that

|λi − λ̂i| ≤
√
k(V )‖ri‖‖si‖ , (27)

where k(V ) denotes the condition number of V .
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Proof : If λ̂i is an eigenvalue of A the result is obvious. Let suppose the
opposite. Then the matrix A− λiI is nonsingular and we have

1 = |ŷ∗i x̂i| = |s∗i (A− λ̂iI)−2ri| = |s∗iV (Λ− λ̂iI)−2V −1ri| ≤

by using that the matrix (Λ− λ̂iI) is diagonal

≤ k(V )‖si‖‖ri‖‖(Λ− λ̂iI)−2‖ ,

which implies by rearranging the terms

min
λi
|λi − λ̂i| ≤ k(V )‖si‖‖ri‖.

From the last expression, we get the result of the theorem.
It is important to remark that the estimates obtained in Theorem 3

and Theorem 4 depend on the quantity k(V ) which is not known, and so
these are a priori results. Such estimates are of great value in assessing the
relative performance of algorithms.

5 Conclusion

Our goal in this study was a further exploration of a relatively new iterative
method that we introduced in a previous work. We have shown that this
method can be considered as an oblique projection method. Using this rela-
tion we proved some analogs of known results from the theory of projection
methods. We established an a posterior error bound and error bounds by
using the residuals. Although the resulting bounds are not easy to calcu-
late, they give considerable insight. We believe that the obtained results
will contribute to further investigation of the considered method.
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