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Abstract

The synthesis problem of static output feedback controllers within
the anisotropic-norm setup is revisited. A tractable synthesis approach
involving iterations over a convex optimisation problem is suggested,
similarly to existing results for the H,,-norm minimisation case. The
results are formulated by a couple of Linear Matrix Inequalities cou-
pled via a bilinear equality, revealing, as in the H,, case the duality
of between the control-type and filtering type LMIs and allowing a
tractable iterative method to cope with practical static output feed-
back synthesis problems. The resulting optimisation scheme is then
applied to a flight control problem, where the merit of the anisotropic
norm setup is shown to provide a useful trade-off between closed loop
response and feedback gains.
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1 Introduction

The problems of optimal control and filtering received much attention over
the years. Solutions for these problems were presented by Kwakernaak and
Sivan [10]. Modelling errors were considered in [16]. When the external in-
put signals are of white noise type, Ho—norm minimisation is applied, lead-
ing to the Kalman filter [6] and Linear Quadratic Gaussian (LQG) control.
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An alternative modelling of the exogenous inputs is based on determinis-
tic bounded energy signals associated with the H.,-norm based framework
([20]) applicable both to filtering ([5], [15]) and control ([21]). Many prac-
tical applications require an intermediate solution between Hs and H.
Since Hj is not entirely suitable when signals are strongly coloured and H
may result in poor performance when these signals are weakly coloured (e.g.
white noise), mixed Hs/H s norm minimisation becomes useful (see, e.g. [2],
[12]). Another option to accomplish a compromise between the Hy and the
H norms is to use the so-called a-anisotropic norm ([7], [19], [9]) defined
as follows: consider the discrete-time stable system denoted by F' with the
state-space equations

z(t+1) = Az(t) + Bu(t)

y(t) = Cx(t) + Du(t),t =0,1,... (1.1)

where A € R™™", B € R™™, Cy € RP*", Dy € RP*™. By definition, the
a-anisotropic norm of F' is

| F'Gl|2

[[|F[|]la = sup , (1.2)
“ 7 Gea, G2
where G denotes a discrete-time stable filter of form
zr(t+1) = Asxp(t)+ Bro(t) (1.3)

w(t) = Cfl‘f(t) + va(t),t =0,1,...

with m inputs and m outputs, where the inputs v € R™ are independent
Gaussian white noises. In equation (1.2), G, denotes the set of all sys-
tems (1.3) with the mean anisotropy A(G) < a. The mean anisotropy of
stationary Gaussian sequences has been introduced in [7] and it represents
an entropy theoretic measure of the deviation of a probability distribution
from Gaussian distributions (for more details, see for instance [7] and ([13])).
Based on the Szegd-Kolmogorov theorem ([13]), in [8] it is proved that the
mean anisotropy of a signal generated by an m-dimensional Gaussian white
noise v(t) with zero mean and identity covariance applied to a stable linear
system G with m outputs has the form

_ 1 mE [w(0)w(0)”
AG) = ~5 In det (TT E [w(O)w(O)T])>’ (1.4)

where E[w(0)w(0)7] is the covariance of the prediction error @(0) := w(0) —
Elw(0)|(w(k),k < 0]. In the case when the output w of the filter G is
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a zero mean Gaussian white noise (i.e. its optimal estimate is just zero),
w(0) cannot be estimated from its past values and @w(0) = w(0) leading to
A(G) = 0. The relationship between the Hy, H. and the a-anisotropic
norms are given by the following inequalities (see, for instance [19]):

1 .
ﬁ!\F\b = [[1E1llo < [[[Fllla < [[Flloc = lim [[[F]]]q (1.5)

showing that the a-anisotropic norm may be regarded as a relaxation of the
H norm. In a study case presented in [17] it is concluded that using the
a-anisotropic norm instead of H, norm one may reduce the controller gains
and the controls effort. In [22] a static output feedback design have been
considered aiming to minimise the a-anisotropic norm of the resulting closed-
loop system. The main result proved in [22] states that the optimal static
output feedback gain may be obtained solving a non-convex optimisation
problem.

The aim of the present paper is to derive solvability conditions for the
static output feedback problem with respect to the anisotropic norm ex-
pressed in terms of convex optimisation conditions suitable for tractable
numerical implementation.

The paper is organised as follows: in Section 2 some preliminaries and
known results are briefly presented. In Section 3 the static output feedback
minimisation problem with respect to the anisotropic norm is formulated
and an iterative solution is derived. Section 4 presents a case study together
with comments on the numerical results. Finally, Section 5 includes some
concluding remarks.

Notation. Throughout the paper the superscript ‘T’ stands for matrix
transposition, R denotes the set of scalar real numbers whereas Z, stands
for the non-negative integers. Moreover, R"™ denotes the n dimensional
Euclidean space, R™*™ is the set of all n x m real matrices, and the notation
P>0 (P >0), for P € R"™" means that P is symmetric and positive
definite (positive semi-definite). The trace of a matrix Z is denoted by
Tr(Z), and |v| denotes the Euclidian norm of an n-dimensional vector v.
Finally note that the terms Lyapunov and Riccati equations in this paper,
refer to generalised versions of the standard equations appearing in the Ho
and H, control literature.
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2 Preliminaries and Motivation

Consider the following discrete-time system F', described by

z(t+1) = Ax(t)+ Bw(t)

y(t) = Cz(t)+Dw(t), t=0,1,... (2.1)
In the following, some known useful results are briefly reminded.

Definition 1. The Hs-type norm of the system (2.1) is defined as

2

L
1Fl, = | Jim =SB 0u0)]|
t=0

where {y(t) }rez, is the output of the system (1.3) with zero initial conditions
generated by the sequence {w(t)}iez, of independent random vectors with
the property that E [w(t)] =0 and E [w(t)w’ (t)] = Ly, {w(t)} ez, -

The next result provides a method to compute the Hy norm of the system
of (2.1) (see e.g. ([4]).

Lemma 1. The Hs type norm of the system (2.3) is given by
1
|F|ls = (Tr (B"XB + D" D))?

where X > 0 is the solution of the generalised Lyapunov equation X =

ATX A+ CTC.

Definition 2. The H,, norm of the stable discrete-time system of form
(2.1) is defined as

IFloc = sup_ N (F7 (7Y F (7))

where Amax denotes the maximal eigenvalue and F(-) is the transfer function
of the system.

The Ho, norm is characterised by the following result, well-known as the
Bounded Real Lemma (BRL).

Lemma 2. The stable system (2.1) has the norm |F|ls < v for a certain
v > 0 if and only if the Riccati equation

P=A"PA+ (A"PB+C"D) (I - B"PB—-D"D)”"
(ATPB+CTD)" +CTC
has a stabilizing solution P > 0 such that ¥y .2 := v I-BT"PB—DTD > 0.
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It is reminded ([4]) that a symmetric solution P of the above algebraic
Riccati equation is called a stabilising solution if the system z(t + 1) =

(A + BK)x(t) is stable, where by definition K := W}, (ATPB+CTD)".
The following BRL-like result characterising the anisotropic norm has

been proved in ([8]).

Theorem 1. The system of (1.3) satisfies |||F||la < v for a given v > 0
if and only if there exists ¢ € (0,min (y~2, |F||52)) such that the Riccati
equation

-1
X = ATXA+ (ATXB+C'D) (- B'XB - D'D)

x (ATXB+CTD)" +cTC 22
has a stabilising solution X > 0 satisfying the following conditions
U, = ;I ~-B'XB-D'D>0 (2.3)
and
det <(11 — 'y2> vl <e? (2.4)

We conclude this section by providing motivation to use the anisotropic
norm. To this end, we denote n = /1/q and restate the result of Theorem
3 above, as ||F||o < 7 so that det(n® —~?)¥;1 < e 2% Namely, n* —* <
(det®,)1/me=2a/™ Using the general inequality (see [3]) (det®¥,)Y/™ < %
valid for any ¥, > 0, and noting that ¥, = n’I — BTXB — DT D, the
following motivating result of [22] was obtained.

Lemma 3. Consider the system F' of (1.1). Let n and o respectively satisfy
[Flloo <n and [|Fll2 <o

The a-anisotropic norm of the system of (1.3) is then upper bounded by the
following linear interpolation between its Ho, and Hs norms. Namely,
2
,)/2 > 772(1 o e—2a/m> + %e—&z/m

We, therefore, see that in view of (1.5) one may interpret the a-anisotropic
norm, the following approrimate relation

FNG 2 1 FI1Z(L = e2™) + || F||[§e /™

providing a useful insight to the a-anisotropic norm, which approximation
can be interpreted also as just mized Hoo/Ho optimisation, however, in the
ezact proportions dictated by the Lemma, in terms of e~ 2/™.
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3 Static Output Feedback
Consider the following plant
x(t+1) = Ax(t)+ Biw(t) + Bau(t) (3.1)

where we seek for a stabilising static control matrix K, such that u(t) =
Ky(t), where y(t) = Coz(t) will minimize

Z(t) = Cl$(t) + Dlgu(t) + Dllw(t) (32)

in the sense of bounded anisotropic norm.
Define the cost function associated to the above problem

J(K) = [[[Fee(K)][la (3.3)

where F.¢(K) denotes the closed loop system obtained from (3.1) and (3.2)
with the static output feedback ug(t) = Ky(t), having the realisation

z(t+1) = (A+ B2KCo)x(t) + Biw(t)
Z(t) = (Cl + DuKCg)Z(t) + an(t) .

Using Theorem 1, if follows that the above closed loop system F.,(K) is
stable and it has the a-anisotropic norm less than a given v > 0 if and only
if there exist a ¢ € (0, min(y 2, ||Fe[5?)) and a symmetric matrix X > 0
such that

El(X,K) EQ(X,K)

(L.2)" 114+ BIxB +Df,Dy | <7 (34)

where one denoted

E1(X,K) = — X 4+ (A + ByKCy)T X (A + ByKCy) + (Cy + D1oKCo)T
- (C1 + D12 KCy)

SQ(X, K) = (A + BQKCQ)T XB; + (Cl + D12K02)T Dy

and

1

1 a 1 m

S e (det (I - BI'B, - D1T1D11>) . (3.5)
q q

Based on Schur complements arguments, in [22] it follows that the inequality
(3.4) is equivalent with the condition
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Z+PTKQ+ QTKTP <0, (3.6)
where by definition
-X o0 ATx cf 0 7
o -ir BI'x DI 0 0
- q T ._ T._
Z . XA XB -X 0 , P XB, , 91 0 . (3.7)
Ci1 Dn 0 I D 0

Further, using the so-called Projection lemma (see e.g. [14]), one obtains
that the inequality (3.6) is feasible with respect to K if and only if the
following conditions are accomplished

WEZWp <0 (3.8)
and
W&ZWg < 0, (3.9)

where Wp and Wy are any bases of the null spaces of P and Q, respectively.
Since a base of the null space of P is

I 0 0
0 I 0
00 Wa
where W := %1 is the orthogonal complement of [ B DY, |. Simi-
2
larly, a base of the null space of Q is
Ws 0 0
| Wy 00
Wo=1|"" |, (3.11)
0 0 I

where V := [ S//i
simplify the inequality of (3.8) we next express

} is the orthogonal complement of [ Cy 0 ] In order to

roo o qfiy b
T _
Wi=|101 0 0 00 x1 ol
00 wf wi
00 0 I
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namely
I 0 0 O
wT — I 0 07l 0 O
P=10 w?t 00 X 1o
00 0 I
with the above definition of W. Therefore, (3.8) is simply expressed as
I 0 M1 Mqs I 0
R b e | U
where M is given by
M1 My ]
M =
[Msz Mas

with

X 0 A B 1"
M11:|: :|7M12:|: 1:|7

_1
0 | L C, Dy (3.13)

Moy | X0

n=| 0 5

Then, from (3.12), using the Schur complement of M;; it follows that
W1 (Mag — MM M)W < 0. (3.14)

Substituting the definition for M;;,7,7 = 1,2 and recalling the definition

n? = % we obtain the following convenient form of (3.14)
_ T T T T
W %}‘gi Dtﬁ;fl arat f Pl <o 3as)
where
dy =’ — C,YCT — D1, DY
and where we have defined
N2y =X"1. (3.16)

We next repeat the same lines to simplify (3.9) as well. To this end, we
partition
V o0
o= | v
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and readily obtain using Schur complements, that (3.9) is equivalent to

VT(N11 — N12N231N?;)V <0

where
[-x 0 (XA xB 1" .. [-X 0
TR I BT [ Sl IR R
We, therefore, obtain the following form of (3.9)
- X +ATXA+CTCy ATXB +CI'D
T 101 1 i Pn
Vv { BTXA*DT.C, oy V<0 (3.18)

where ®x := n?I — BI X By — DT, D1;. We summarise the above results in
the following result.

Theorem 2. The closed loop system Fo(K) is stable and it has the a-
anisotropic norm less than a given v > 0 if there exist symmetric matrices
X >0 andY > 0 and a scalar n satisfying the dual LMIs (3.15) and (3.18)

together with the convexr condition
7 — det(®x)me 2™ < 42 (3.19)
and the additional bilinear condition
XY =»°I. (3.20)

If the conditions of the above theorem are satisfied then the static output
gain may be obtained solving the linear matrix inequality (3.6) with respect
to K.

However, the above requires a solution of a set of Bilinear Matrix In-
equalities (BMI) due to the XY = n?I equality. One way to tackle the BMI
is to adopt a by first relaxing XY = 1’1 by

[;‘} ’y]>o (3.21)

Then if one minimises Tr{X Y}, the bilinear constraint of (3.20) is satisfied.
To this end, a sequential linearisation algorithm (see e.g. [24]) can be used.

In the initialisation step, the convex problem comprised of the inequalities
(2.4), (3.21) and (2.2) is solved for a given v > 0, and k = 0, X} = 0 and
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Y, = 0 are set. Next step where k is set to £k + 1 and X, Y are found so as
to minimise

subject to (3.15) and (3.18). Then X, = X and Y;, =Y are set. This step
is repeated until f; is small enough. A related algorithm requiring also line
search but with improved convergence properties has been suggested in [11]
and will be applied in the calculations below of the numerical example of
the next section. To this end we note that one could choose also X = Y1
rather than 772Y = X!, In such a case, the inequality (3.15) is replaced
by

Y + AY AT 4 ¢B, BT AYCYT + ¢B, DY,

T
W C1YAT + qDllB? _(I)Y W <0
where @y is defined to be
by =1 - C1YC] — gD DY)
and (3.21) becomes
X I
[ [ } >0 (3.22)

Although this different choice of Y reveals the duality between the control
and filtering type inequalities in a less obvious manner, it is more convenient
to deal with. Note that to apply [11] one needs to define a new variable
q = 1~ 2 where in addition to X Y = I also the scalar valued bilinear equality
constraint n?q = 1 has to be satisfied. To this end, one needs also to consider
the relaxed version

[ 7712 ; ] >0 (3.23)

so that the minimization steps involve now searching for X,Y,n?, ¢ are found
SO as to minimise

fo =Tr{XyY + XY} + n,%q + 172q;,C

subject to (3.15), (3.18), (3.22) and (3.23).
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4 Application to Flight Control

We next consider the numerical example of [25] with the synthesis of pitch
control loop for the F4E aircraft. Consider

N, ail a2 a13 N, by 0
%q:a21a22a23 q |+ 0 [u+ |1 |w
O 0 0 =30 O 30 0

1 0 [0
z=10 1 O0|[x+ |0 |u
(000 1
1 0 o0 'X
Y“l o 1 o0 |

The state-vector consists, of the load-factor N,, the pitch-rate ¢ and
elevon angle d.. The latter relates to the elevon command u via a first-order
servo model of a bandwidth of 30rad/sec. The parameters a; ;,i =1,2;j =
1,2,3, by are given in [25] at the four operating points listed in the following
table:

Operating point 1 2 3 4
Mach number ) 9 .85 1.5
Altitude (ft) 5000 | 35000 | 5000 | 35000

ail -.9896 | -.6607 | -1.702 | -.5162
ais 17.41 18.11 | 50.72 | 29.96
ais 96.15 | 84.34 | 263.5 | 178.9
as1 .2648 | .08201 | .2201 | -.6896
oo ~8512 | -.6587 | -1.418 | -1.225
as3 -11.39 | -10.81 | -31.99 | -30.38
by -97.78 | -272.2 | -85.09 | -175.6

Table 7: The parameters of the four operating points.

Discrete-time representation of the above systems have been obtained
with the sampling period Ty = 0.001 sec. The static output controller u =
Ky with K = [ K Ko ] will be designed for each of the four operating
points, applying Theorem 2, applying the iterative procedure by [11] to deal
with the bilinear equality. We will first take mean anisotropy level of a
that tends to oo, to obtain the H,, controller. Next we take a = 0.2. The
upper bound on « for H,, control was taken as envelope point dependent
Vpointsco = [ 0.3 06 1 0.25 ] The results of those designs are depicted
in Fig. 1 and Fig. 2 where closed-loop singular values as well as the design
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bound and the actual norm (H. and a-anisotropic) are shown. As could
be expected, the maximum singular values are somewhat lower for the H,
design. The singular values of the closed-loop system in the H,, design,
and for the a-anistropic design, are presented comparatively in Fig. 3. The
gains of those two designs are given in Tables 8 and 9 respectively. A close
scrutiny of the gains and the singular values reveals that the sub-optimal
a~anisotropic design allow a fine trade-off between the maximum singular
value and the gain values. Namely, considerably lower gain vector norms
are obtained at the cost of a rather small sacrifice in the maximum singular
value.

Operating point 1 2 3 4
Mach number .5 .9 .85 1.5
Altitude (ft) 5000 35000 5000 35000
Ky 0.9740 | 1.8608 | 19.0757 | 1.7339
Ky 2.4035 | 0.4528 | 155.5975 | 3.5705

Table 8: The H, gains of the four operating points.

Operating point 1 2 3 4
Mach number .5 .9 .85 1.5
Altitude (ft) 5000 35000 5000 35000
K 1.0394 | 2.2678 | 0.7369 | 1.3616
Ky 0.9204 | 0.2091 | 5.9818 | 0.9821

Table 9: The sub-optimal a-anisotropic gains of the four operating points.

5 Conclusions

A synthesis scheme for static output feedback controllers has been derived,
under the setup of a-anisotropic norm which is based on an intermediate
topology between Hy and Hy,. Given a required norm-bound, set of Linear
Matrix Inequalities, along with a geometric-mean convex inequality, and an
additional bilinear equality, characterise sub-optimal controllers as in[18],
however revealing the duality in the style of [26] between the control and
filtering type Linear Matrix Inequalities. The latter dual form is convenient
to use with the iterative algorithm of [11] to alleviate the bilinear equality.
The resulting control design procedure is useful e.g. in the aerospace in-
dustry for flight control loops, where controllers with classical ” cook-book”
structures in the style of Proportional-Integral-Derivative controllers. An
example from the field of flight control is given comparing H,, design with
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Figure 2: T, sub-optimal a-anisotropic design

a couple of a-anisotropic designs applying the above mentioned iterative al-
gorithm of [11]. The results suggest that the latter offers a considerable
reduction in the gains at the cost of small increase in the closed-loop max-
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Figure 3: T, singular values comparison for H. and sub-optimal a-
anisotropic design

imum singular values. Those results encourage further experimenting with
the a-anisotropic setup for static-output feedback control and motivates fur-
ther research also along the lines of [17] and [18] and the references therein.
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