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Abstract

The synthesis problem of static output feedback controllers within
the anisotropic-norm setup is revisited. A tractable synthesis approach
involving iterations over a convex optimisation problem is suggested,
similarly to existing results for the H∞-norm minimisation case. The
results are formulated by a couple of Linear Matrix Inequalities cou-
pled via a bilinear equality, revealing, as in the H∞ case the duality
of between the control-type and filtering type LMIs and allowing a
tractable iterative method to cope with practical static output feed-
back synthesis problems. The resulting optimisation scheme is then
applied to a flight control problem, where the merit of the anisotropic
norm setup is shown to provide a useful trade-off between closed loop
response and feedback gains.

MSC: 37N35, 37N40, 39A30, 93C55

keywords: Discrete-time linear systems, static output feedback, sta-
bility, anisotropic norm, boundedness conditions, positive semidefinite pro-
gramming, H∞-norm

1 Introduction

The problems of optimal control and filtering received much attention over
the years. Solutions for these problems were presented by Kwakernaak and
Sivan [10]. Modelling errors were considered in [16]. When the external in-
put signals are of white noise type, H2−norm minimisation is applied, lead-
ing to the Kalman filter [6] and Linear Quadratic Gaussian (LQG) control.
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An alternative modelling of the exogenous inputs is based on determinis-
tic bounded energy signals associated with the H∞-norm based framework
([20]) applicable both to filtering ([5], [15]) and control ([21]). Many prac-
tical applications require an intermediate solution between H2 and H∞.
Since H2 is not entirely suitable when signals are strongly coloured and H∞
may result in poor performance when these signals are weakly coloured (e.g.
white noise), mixed H2/H∞ norm minimisation becomes useful (see, e.g. [2],
[12]). Another option to accomplish a compromise between the H2 and the
H∞ norms is to use the so-called a-anisotropic norm ([7], [19], [9]) defined
as follows: consider the discrete-time stable system denoted by F with the
state-space equations

x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t), t = 0, 1, ...

(1.1)

where A ∈ Rn×n, B ∈ Rn×m, Cf ∈ Rp×n, Df ∈ Rp×m. By definition, the
a-anisotropic norm of F is

|||F |||a = sup
G∈Ga

‖FG‖2
‖G‖2

, (1.2)

where G denotes a discrete-time stable filter of form

xf (t+ 1) = Afxf (t) +Bfv(t)
w(t) = Cfxf (t) +Dfv(t), t = 0, 1, ...

(1.3)

with m inputs and m outputs, where the inputs v ∈ Rm are independent
Gaussian white noises. In equation (1.2), Ga denotes the set of all sys-
tems (1.3) with the mean anisotropy Ā(G) ≤ a. The mean anisotropy of
stationary Gaussian sequences has been introduced in [7] and it represents
an entropy theoretic measure of the deviation of a probability distribution
from Gaussian distributions (for more details, see for instance [7] and ([13])).
Based on the Szegö-Kolmogorov theorem ([13]), in [8] it is proved that the
mean anisotropy of a signal generated by an m-dimensional Gaussian white
noise v(t) with zero mean and identity covariance applied to a stable linear
system G with m outputs has the form

Ā(G) = −1

2
ln det

(
mE

[
w̃(0)w̃(0)T

]
Tr (E [w(0)w(0)T ])

)
, (1.4)

where E[w̃(0)w̃(0)T ] is the covariance of the prediction error w̃(0) := w(0)−
E[w(0)|(w(k), k < 0]. In the case when the output w of the filter G is
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a zero mean Gaussian white noise (i.e. its optimal estimate is just zero),
w(0) cannot be estimated from its past values and w̃(0) = w(0) leading to
Ā(G) = 0. The relationship between the H2, H∞ and the a-anisotropic
norms are given by the following inequalities (see, for instance [19]):

1√
m
||F ||2 = |||F |||0 ≤ |||F |||a ≤ ||F ||∞ = lim

a→∞
|||F |||a (1.5)

showing that the a-anisotropic norm may be regarded as a relaxation of the
H∞ norm. In a study case presented in [17] it is concluded that using the
a-anisotropic norm instead of H∞ norm one may reduce the controller gains
and the controls effort. In [22] a static output feedback design have been
considered aiming to minimise the a-anisotropic norm of the resulting closed-
loop system. The main result proved in [22] states that the optimal static
output feedback gain may be obtained solving a non-convex optimisation
problem.

The aim of the present paper is to derive solvability conditions for the
static output feedback problem with respect to the anisotropic norm ex-
pressed in terms of convex optimisation conditions suitable for tractable
numerical implementation.

The paper is organised as follows: in Section 2 some preliminaries and
known results are briefly presented. In Section 3 the static output feedback
minimisation problem with respect to the anisotropic norm is formulated
and an iterative solution is derived. Section 4 presents a case study together
with comments on the numerical results. Finally, Section 5 includes some
concluding remarks.

Notation. Throughout the paper the superscript ‘T ’ stands for matrix
transposition, R denotes the set of scalar real numbers whereas Z+ stands
for the non-negative integers. Moreover, Rn denotes the n dimensional
Euclidean space, Rn×m is the set of all n×m real matrices, and the notation
P > 0 (P ≥ 0), for P ∈ Rn×n means that P is symmetric and positive
definite (positive semi-definite). The trace of a matrix Z is denoted by
Tr(Z), and |v| denotes the Euclidian norm of an n-dimensional vector v.
Finally note that the terms Lyapunov and Riccati equations in this paper,
refer to generalised versions of the standard equations appearing in the H2

and H∞ control literature.
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2 Preliminaries and Motivation

Consider the following discrete-time system F , described by

x(t+ 1) = Ax(t) +Bw(t)
y(t) = Cx(t) +Dw(t), t = 0, 1, ...

(2.1)

In the following, some known useful results are briefly reminded.

Definition 1. The H2-type norm of the system (2.1) is defined as

‖F‖2 =

[
lim
`→∞

1

`

∑̀
t=0

E
[
yT (t)y(t)

]] 1
2

,

where {y(t)}t∈Z+ is the output of the system (1.3) with zero initial conditions
generated by the sequence {w(t)}t∈Z+ of independent random vectors with
the property that E [w(t)] = 0 and E

[
w(t)wT (t)

]
= Im, {w(t)}t∈Z+.

The next result provides a method to compute the H2 norm of the system
of (2.1) (see e.g. ([4]).

Lemma 1. The H2 type norm of the system (2.3) is given by

‖F‖2 =
(
Tr
(
BTXB +DTD

)) 1
2

where X ≥ 0 is the solution of the generalised Lyapunov equation X =
ATXA+ CTC.

Definition 2. The H∞ norm of the stable discrete-time system of form
(2.1) is defined as

‖F‖∞ = sup
θ∈[0,2π)

λ
1
2
max

(
F T
(
e−jθ

)
F
(
ejθ
))

,

where λmax denotes the maximal eigenvalue and F (·) is the transfer function
of the system.

The H∞ norm is characterised by the following result, well-known as the
Bounded Real Lemma (BRL).

Lemma 2. The stable system (2.1) has the norm ‖F‖∞ < γ for a certain
γ > 0 if and only if the Riccati equation

P =ATPA+
(
ATPB + CTD

) (
γ2I −BTPB −DTD

)−1

·
(
ATPB + CTD

)T
+ CTC

has a stabilizing solution P ≥ 0 such that Ψ1/γ2 := γ2I−BTPB−DTD > 0.
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It is reminded ([4]) that a symmetric solution P of the above algebraic
Riccati equation is called a stabilising solution if the system x(t + 1) =

(A+BK)x(t) is stable, where by definition K := Ψ−1
1/γ2

(
ATPB + CTD

)T
.

The following BRL-like result characterising the anisotropic norm has
been proved in ([8]).

Theorem 1. The system of (1.3) satisfies |||F |||a ≤ γ for a given γ > 0
if and only if there exists q ∈

(
0,min

(
γ−2, ‖F‖−2

∞
))

such that the Riccati
equation

X = ATXA+
(
ATXB + CTD

) (
1
q I −B

TXB −DTD
)−1

×
(
ATXB + CTD

)T
+ CTC

(2.2)

has a stabilising solution X ≥ 0 satisfying the following conditions

Ψq :=
1

q
I −BTXB −DTD > 0 (2.3)

and

det

(
1

q
− γ2

)
Ψ−1
q ≤ e−2a. (2.4)

We conclude this section by providing motivation to use the anisotropic
norm. To this end, we denote η =

√
1/q and restate the result of Theorem

3 above, as ||F ||∞ < η so that det(η2 − γ2)Ψ−1
q ≤ e−2a. Namely, η2 − γ2 ≤

(detΨq)
1/me−2a/m. Using the general inequality (see [3]) (detΨq)

1/m ≤ TrΨq

m
valid for any Ψq ≥ 0, and noting that Ψq = η2I − BTXB − DTD, the
following motivating result of [22] was obtained.

Lemma 3. Consider the system F of (1.1). Let η and σ respectively satisfy

||F ||∞ < η and ||F ||2 < σ

The a-anisotropic norm of the system of (1.3) is then upper bounded by the
following linear interpolation between its H∞ and H2 norms. Namely,

γ2 ≥ η2(1− e−2a/m) +
σ2

m
e−2a/m

We, therefore, see that in view of (1.5) one may interpret the a-anisotropic
norm, the following approximate relation

|||F |||2a ≈ |||F |||2∞(1− e−2a/m) + |||F |||20e−2a/m

providing a useful insight to the a-anisotropic norm, which approximation
can be interpreted also as just mixed H∞/H2 optimisation, however, in the
exact proportions dictated by the Lemma, in terms of e−2a/m.
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3 Static Output Feedback

Consider the following plant

x(t+ 1) = Ax(t) +B1w(t) +B2u(t) (3.1)

where we seek for a stabilising static control matrix K, such that u(t) =
Ky(t), where y(t) = C2x(t) will minimize

z(t) = C1x(t) +D12u(t) +D11w(t) (3.2)

in the sense of bounded anisotropic norm.
Define the cost function associated to the above problem

J(K) = |||Fc`(K)|||a (3.3)

where Fc`(K) denotes the closed loop system obtained from (3.1) and (3.2)
with the static output feedback u2(t) = Ky(t), having the realisation

x(t+ 1) = (A+B2KC2)x(t) +B1w(t)
z(t) = (C1 +D12KC2)x(t) +D11w(t) .

Using Theorem 1, if follows that the above closed loop system Fc`(K) is
stable and it has the a-anisotropic norm less than a given γ > 0 if and only
if there exist a q ∈

(
0,min(γ−2, ‖Fc`‖−2

∞ )
)

and a symmetric matrix X > 0
such that [

E1(X,K) E2(X,K)
(1, 2)T −1

q I +BT
1 XB1 +DT

11D11

]
< 0 (3.4)

where one denoted

E1(X,K) :=−X + (A+B2KC2)T X (A+B2KC2) + (C1 +D12KC2)T

· (C1 +D12KC2)

E2(X,K) := (A+B2KC2)T XB1 + (C1 +D12KC2)T D11

and

1

q
− γ2 < e−

2a
m

(
det

(
1

q
I −BT

1 B1 −DT
11D11

)) 1
m

. (3.5)

Based on Schur complements arguments, in [22] it follows that the inequality
(3.4) is equivalent with the condition
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Z + PTKQ+QTKTP < 0, (3.6)

where by definition

Z :=


−X 0 ATX CT1

0 −1
q I BT

1 X DT
11

XA XB1 −X 0
C1 D11 0 −I

 ,PT :=


0
0

XB2

D12

 , QT :=


CT2
0
0
0

 . (3.7)

Further, using the so-called Projection lemma (see e.g. [14]), one obtains
that the inequality (3.6) is feasible with respect to K if and only if the
following conditions are accomplished

W T
PZWP < 0 (3.8)

and

W T
QZWQ < 0, (3.9)

where WP and WQ are any bases of the null spaces of P and Q, respectively.
Since a base of the null space of P is

WP =


I 0 0
0 I 0
0 0 X−1W1

0 0 W2

 (3.10)

where W :=

[
W1

W2

]
is the orthogonal complement of

[
BT

2 DT
12

]
. Simi-

larly, a base of the null space of Q is

WQ =


W3 0 0
W4 0 0
0 I 0
0 0 I

 (3.11)

where V :=

[
W3

W4

]
is the orthogonal complement of

[
C2 0

]
. In order to

simplify the inequality of (3.8) we next express

W T
P =

 I 0 0 0
0 I 0 0
0 0 W T

1 W T
2



I 0 0 0
0 I 0 0
0 0 X−1 0
0 0 0 I

 ,
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namely

W T
P =

[
I 0
0 W T

]
I 0 0 0
0 I 0 0
0 0 X−1 0
0 0 0 I


with the above definition of W . Therefore, (3.8) is simply expressed as[

I 0
0 W T

] [
M11 M12

MT
12 M22

] [
I 0
0 W

]
< 0 (3.12)

where M is given by

M :=

[
M11 M12

MT
12 M22

]
with

M11 =

[
−X 0

0 −1
q I

]
,M12 =

[
A B1

C1 D11

]T
,

M22 =

[
−X−1 0

0 −I

]
.

(3.13)

Then, from (3.12), using the Schur complement of M11 it follows that

W T (M22 −MT
12M−1

11M12)W < 0 . (3.14)

Substituting the definition for Mij , i, j = 1, 2 and recalling the definition
η2 = 1

q we obtain the following convenient form of (3.14)

W T

[
−Y +AY AT +B1B

T
1 AY CT1 +B1D

T
11

C1Y A
T +D11B

T
1 −ΦY

]
W < 0 (3.15)

where

ΦY := η2I − C1Y C
T
1 −D11D

T
11

and where we have defined

η−2Y = X−1 . (3.16)

We next repeat the same lines to simplify (3.9) as well. To this end, we
partition

WQ =

[
V 0
0 I

]
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and readily obtain using Schur complements, that (3.9) is equivalent to

V T (N11 −N12N−1
22 N

T
12)V < 0

where

N11 =

[
−X 0

0 −1
q I

]
,N12 =

[
XA XB1

C1 D11

]T
,N22 =

[
−X 0

0 −I

]
.(3.17)

We, therefore, obtain the following form of (3.9)

V T

[
−X +ATXA+ CT1 C1 ATXB1 + CT1 D11

BT
1 XA

+DT
11C1 −ΦX

]
V < 0 (3.18)

where ΦX := η2I − BT
1 XB1 −DT

11D11. We summarise the above results in
the following result.

Theorem 2. The closed loop system Fc`(K) is stable and it has the a-
anisotropic norm less than a given γ > 0 if there exist symmetric matrices
X > 0 and Y > 0 and a scalar η satisfying the dual LMIs (3.15) and (3.18)
together with the convex condition

η2 − det(ΦX)1/me−2a/m < γ2 (3.19)

and the additional bilinear condition

XY = η2I . (3.20)

If the conditions of the above theorem are satisfied then the static output
gain may be obtained solving the linear matrix inequality (3.6) with respect
to K.

However, the above requires a solution of a set of Bilinear Matrix In-
equalities (BMI) due to the XY = η2I equality. One way to tackle the BMI
is to adopt a by first relaxing XY = η2I by[

X ηI
ηI Y

]
> 0 (3.21)

Then if one minimises Tr{XY }, the bilinear constraint of (3.20) is satisfied.
To this end, a sequential linearisation algorithm (see e.g. [24]) can be used.
In the initialisation step, the convex problem comprised of the inequalities
(2.4), (3.21) and (2.2) is solved for a given γ > 0, and k = 0, Xk = 0 and



A.-M. Stoica, I. Yaesh 225

Yk = 0 are set. Next step where k is set to k + 1 and X,Y are found so as
to minimise

fk := Tr{XkY +XYk}

subject to (3.15) and (3.18). Then Xk = X and Yk = Y are set. This step
is repeated until fk is small enough. A related algorithm requiring also line
search but with improved convergence properties has been suggested in [11]
and will be applied in the calculations below of the numerical example of
the next section. To this end we note that one could choose also X = Ỹ −1

rather than η−2Y = X−1. In such a case, the inequality (3.15) is replaced
by

W T

[
−Ỹ +AỸ AT + qB1B

T
1 AỸ CT1 + qB1D

T
11

C1Y A
T + qD11B

T
1 −ΦỸ

]
W < 0

where ΦỸ is defined to be

ΦỸ := I − C1Ỹ C
T
1 − qD11D

T
11

and (3.21) becomes [
X I

I Ỹ

]
> 0 (3.22)

Although this different choice of Y reveals the duality between the control
and filtering type inequalities in a less obvious manner, it is more convenient
to deal with. Note that to apply [11] one needs to define a new variable
q = η−2 where in addition to XỸ = I also the scalar valued bilinear equality
constraint η2q = 1 has to be satisfied. To this end, one needs also to consider
the relaxed version [

η2 1
1 q

]
> 0 (3.23)

so that the minimization steps involve now searching for X,Y, η2, q are found
so as to minimise

fk := Tr{XkY +XYk}+ η2
kq + η2qk

subject to (3.15), (3.18), (3.22) and (3.23).



226 Anisotropic norm

4 Application to Flight Control

We next consider the numerical example of [25] with the synthesis of pitch
control loop for the F4E aircraft. Consider

d
dt

 Nz

q
δe

 =

 a11 a12 a13

a21 a22 a23

0 0 −30

 Nz

q
δe

+

 b1

0
30

u +

 0
1
0

ω
z =

 1 0 0
0 1 0
0 0 0

 x +

 0
0
1

u

y =

[
1
0

0
1

0
0

]
x

The state-vector consists, of the load-factor Nz, the pitch-rate q and
elevon angle δe. The latter relates to the elevon command u via a first-order
servo model of a bandwidth of 30rad/ sec. The parameters ai,j , i = 1, 2; j =
1, 2, 3, b1 are given in [25] at the four operating points listed in the following
table:

Operating point 1 2 3 4
Mach number .5 .9 .85 1.5
Altitude (ft) 5000 35000 5000 35000

a11 -.9896 -.6607 -1.702 -.5162
a12 17.41 18.11 50.72 29.96
a13 96.15 84.34 263.5 178.9
a21 .2648 .08201 .2201 -.6896
a22 -.8512 -.6587 -1.418 -1.225
a23 -11.39 -10.81 -31.99 -30.38
b1 -97.78 -272.2 -85.09 -175.6

Table 7: The parameters of the four operating points.

Discrete-time representation of the above systems have been obtained
with the sampling period Ts = 0.001 sec. The static output controller u =
Ky with K =

[
K1 K2

]
will be designed for each of the four operating

points, applying Theorem 2, applying the iterative procedure by [11] to deal
with the bilinear equality. We will first take mean anisotropy level of a
that tends to ∞, to obtain the H∞ controller. Next we take a = 0.2. The
upper bound on γ for H∞ control was taken as envelope point dependent
γpoints∞ =

[
0.3 0.6 1 0.25

]
. The results of those designs are depicted

in Fig. 1 and Fig. 2 where closed-loop singular values as well as the design
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bound and the actual norm (H∞ and a-anisotropic) are shown. As could
be expected, the maximum singular values are somewhat lower for the H∞
design. The singular values of the closed-loop system in the H∞ design,
and for the a-anistropic design, are presented comparatively in Fig. 3. The
gains of those two designs are given in Tables 8 and 9 respectively. A close
scrutiny of the gains and the singular values reveals that the sub-optimal
a-anisotropic design allow a fine trade-off between the maximum singular
value and the gain values. Namely, considerably lower gain vector norms
are obtained at the cost of a rather small sacrifice in the maximum singular
value.

Operating point 1 2 3 4
Mach number .5 .9 .85 1.5
Altitude (ft) 5000 35000 5000 35000

K1 0.9740 1.8608 19.0757 1.7339
K2 2.4035 0.4528 155.5975 3.5705

Table 8: The H∞ gains of the four operating points.

Operating point 1 2 3 4
Mach number .5 .9 .85 1.5
Altitude (ft) 5000 35000 5000 35000

K1 1.0394 2.2678 0.7369 1.3616
K2 0.9204 0.2091 5.9818 0.9821

Table 9: The sub-optimal a-anisotropic gains of the four operating points.

5 Conclusions

A synthesis scheme for static output feedback controllers has been derived,
under the setup of a-anisotropic norm which is based on an intermediate
topology between H2 and H∞. Given a required norm-bound, set of Linear
Matrix Inequalities, along with a geometric-mean convex inequality, and an
additional bilinear equality, characterise sub-optimal controllers as in[18],
however revealing the duality in the style of [26] between the control and
filtering type Linear Matrix Inequalities. The latter dual form is convenient
to use with the iterative algorithm of [11] to alleviate the bilinear equality.
The resulting control design procedure is useful e.g. in the aerospace in-
dustry for flight control loops, where controllers with classical ”cook-book”
structures in the style of Proportional-Integral-Derivative controllers. An
example from the field of flight control is given comparing H∞ design with
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Figure 1: Tzw −H∞design
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Figure 2: Tzw sub-optimal a-anisotropic design

a couple of a-anisotropic designs applying the above mentioned iterative al-
gorithm of [11]. The results suggest that the latter offers a considerable
reduction in the gains at the cost of small increase in the closed-loop max-
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Figure 3: Tzw singular values comparison for H∞ and sub-optimal a-
anisotropic design

imum singular values. Those results encourage further experimenting with
the a-anisotropic setup for static-output feedback control and motivates fur-
ther research also along the lines of [17] and [18] and the references therein.
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