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FREDHOLM TOEPLITZ OPERATORS

ON THE WEIGHTED BERGMAN

SPACES*
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Abstract

In this paper we have shown that if φ ∈ (L2
h(dAα))⊥ ∩ L∞(D) and

RangeT
(α)
φ is closed, then the Toeplitz operator T

(α)
φ ∈ L

(
L2
a(dAα)

)
is a Fredholm operator of index zero and T

(α)
φ is not of finite rank.

Several applications of the result were also obtained. We further show
that if φ ∈ L∞Mn

(D) is such that Tφ is Fredholm and of index zero in

L
(
L2,Cn

a (dAα)
)

then there exists ψ ∈ En×n = E⊗Mn such that Tφ+δψ
is invertible for all sufficiently small nonzero δ. Here E is a total sub-
space of L∞(D) and Mn is the set of all n× n matrices with complex
entries.
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keywords: Weighted Bergman spaces, Finite rank operator, Toeplitz
operator, Little Hankel operator, Bounded harmonic functions.

1 Introduction

Let dA(z) = 1
πdxdy = 1

π rdrdθ be the normalized area measure on the open
unit disk D = {z ∈ C : |z| < 1} in the complex plane C. For α > −1, let
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dAα(z) = (α+1)(1−|z|2)αdA(z), z ∈ D. Let L2(D, dAα) be the space of all
absolutely square-integrable Lebesgue measurable functions on D. Let the
weighted Bergman space of the disk D, L2

a(dAα) be the subspace consisting
of all analytic functions of L2(D, dAα). The space L2(D, dAα) is a Hilbert
space with respect to the inner product defined by

〈f, g〉 =

∫
D
f(z)g(z)dAα(z), f, g ∈ L2(D, dAα).

The weighted Bergman space L2
a(dAα) is a closed subspace of L2(D, dAα) [4]

and hence a reproducing kernel Hilbert space with the reproducing kernel
given by K(α)(z, w) = 1

(1−zw)α+2 , z, w ∈ D. The orthogonal projection Pα

from the Hilbert space L2(D, dAα) onto the closed subspace L2
a(dAα) is given

by Pαf(z) =
∫
DK

(α)(z, w)f(w)dAα(w). Let kz(w) = 1−|z|2
(1−wz)2 . The functions

k
1+α

2
z = K(α)(z,w)√

K(α)(w,w)
= (1−|w|2)1+

α
2

(1−wz)2+α are the normalized reproducing kernels

of L2
a(dAα). The sequence of functions { zn

γn,α
} form an orthonormal basis

[13] for L2
a(dAα) where γ2

n,α = ‖zn‖2 = (α + 1)
∫
D |z|

2n(1 − |z|2)αdA(z) =
Γ(n+1)Γ(α+1)

Γ(n+α+2) ∼ (n + 1)−α−1. Let L∞(D, dA) be the space of all essentially

bounded Lebesgue measurable functions on D. For ϕ ∈ L∞(D), define
‖ϕ‖∞ = ess sup {|ϕ(z)| : z ∈ D} <∞. The space L∞(D) is a Banach space
with respect to the ‖ · ‖∞. Let H∞(D) be the space of all bounded an-
alytic functions on D and h∞(D) be the space of all bounded harmonic

functions on D. L2
h(dAα) = L2

a(dAα) ⊕
(
L2
a(dAα)

)
0

where
(
L2
a(dAα)

)
0

={
f ∈ L2

a(dAα) : f(0) = 0
}

.

Given a function ϕ ∈ L∞(D), we define an operator T
(α)
ϕ on L2

a(dAα) by

T
(α)
ϕ f = Pα(ϕf), f ∈ L2

a(dAα). The operator T
(α)
ϕ is called the Toeplitz

operator on the weighted Bergman space with symbol ϕ. Since the pro-

jection Pα has norm 1, we have ‖T (α)
ϕ ‖ ≤ ‖ϕ‖∞. We can write T

(α)
ϕ

as an integral operator as, T
(α)
ϕ f(z) =

∫
D ϕ(w)K(α)(z, w)f(w)dAα(w) =∫

D
ϕ(w)f(w)

(1−zw)α+2dAα(w). Let L2
a(dAα) =

{
f : f ∈ L2

a(dAα)
}

. The space L2
a(dAα)

is a closed subspace of L2(D, dAα). The little Hankel operator h
(α)
φ with sym-

bol φ is defined by h
(α)
φ f = Pα(φf), f ∈ L2

a(dAα) where Pα is the orthogo-

nal projection from the Hilbert space L2(D, dAα) onto L2
a(dAα). Clearly,

‖h(α)
φ ‖ ≤ ‖φ‖∞. Define Jα from L2(D, dAα) into itself by (Jαf)(z) =

f(z), z ∈ D. The operator Jα is an unitary operator. For φ ∈ L∞(D),
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define S
(α)
φ from L2

a(dAα) into itself by S
(α)
φ f = Pα (Jα(φf)). The operator

S
(α)
φ is a linear operator and ‖S(α)

φ ‖ ≤ ‖φ‖∞. It is not difficult to verify that

h
(α)
φ = JαS

(α)
φ . Thus we shall refer in the sequel, both the operators h

(α)
φ

and S
(α)
φ as little Hankel operators on L2

a(dAα).

Let L2,Cn
a (dAα) = L2

a(dAα)⊗Cn and L∞Mn
(D) = L∞(D)⊗Mn whereMn(C) =

Mn, n ≥ 1 is the set of all n × n matrices with entries in C. The space
L2,Cn
a (dAα), n ≥ 1 is called the vector-valued weighted Bergman space. The

inner product on L2,Cn
a (dAα) is defined as

〈f, g〉
L2,Cn
a (dAα)

=

∫
D
〈f(z), g(z)〉CndAα(z).

With this inner product L2,Cn
a (dAα) is a Hilbert space. The norm defined

on L2,Cn
a (dAα) is given by

‖f‖2
L2,Cn
a (D,dAα)

=

∫
D
‖f(z)‖2CndAα(z).

It is a closed subspace of L2,Cn(D, dAα) = L2(D, dAα) ⊗ Cn. Let PCn
α de-

note the orthogonal projection from L2,Cn(D, dAα) onto L2,Cn
a (dAα). For

φ ∈ L∞Mn
(D), we define the Toeplitz operator Tφ from L2,Cn

a (dAα) into it-

self as Tφf = PCn
α (φf) and the Hankel operator Hφ from L2,Cn

a (dAα) into(
L2,Cn
a (dAα)

)⊥
= L2,Cn(D, dAα) 	 L2,Cn

a (dAα) as Hφf = (I − PCn
α )(φf).

For φ ∈ L∞Mn
(D), define ‖φ‖∞ = ess supz∈D‖φ(z)‖. If φ ∈ L∞Mn

(D), then it
is not difficult to see that ‖Tφ‖ ≤ ‖φ‖∞ and ‖Hφ‖ ≤ ‖φ‖∞. This is so as
‖PCn

α ‖ ≤ 1 and ‖I − PCn
α ‖ ≤ 1.

For φ ∈ L∞Mn
(D), we define the little Hankel operator Sφ from L2,Cn

a (dAα)

into itself as Sφf = PCn
α Jnα(φf) where Jnα : L2,Cn(D, dAα) → L2,Cn(D, dAα)

is defined as Jnαf(z) = f(z). The map Jnα is unitary. There are also

many equivalent ways of defining little Hankel operators. Let L2,Cn
a (dAα) =

L2
a(dAα)⊗Cn. For φ ∈ L∞Mn

(D), define hφ from L2,Cn
a (dAα) into L2,Cn

a (dAα)

as hφf = PCn
α (φf) where PCn

α is the orthogonal projection from L2,Cn(D, dAα)

onto L2,Cn
a (dAα). It is not difficult to verify that hφ = JnαSφ.

Let L(H) be the space of all bounded linear operators from the Hilbert
space H into itself. Let LC(H) be the set of all compact operators in L(H).
The quotient algebra L(H)/LC(H) is a Banach algebra called the Calkin
algebra. The natural homomorphism from L(H) onto L(H)/LC(H) is de-
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noted by π. An operator T in L(H) is a Fredholm operator if π(T ) is an
invertible element of L(H)/LC(H). The collection of Fredholm operators on
H is denoted by F(H). It follows from a theorem of Atkinson [1] that, an
operator T in L(H) is a Fredholm operator if and only if the range of T is
closed, dim kerT is finite and dim kerT ∗ is finite. Let F(L2

a(dAα)) be the
set of all Fredholm operators in L(L2

a(dAα)). The classical index j is the
function from F(L2

a(dAα)) to Z defined as j(T ) = dim kerT − dim kerT ∗.

In this paper we have shown that if φ ∈ (L2
h(dAα))⊥∩L∞(D) and RangeT

(α)
φ

is closed, then T
(α)
φ is a Fredholm operator of index zero and T

(α)
φ is not of

finite rank. The organization of the paper is as follows: In section 2, we

establish certain preliminary results. We have shown that kerh
(α)
φ = {0}

if and only if Range h
(α)
φ = L2

a(dAα) and kerH
Eαp

fH
= {0} if and only if

RangeH
Eαp

fH
= Eαp where φ ∈ L∞(D), H, f ∈ L2

a(dAα). We relate the con-

cept of common zero set and the rank of a Toeplitz operator. In section
3, we present the main results of the paper and some applications of these

results. We establish that if φ ∈ (L2
h(dAα))⊥ ∩ L∞(D) and RangeT

(α)
φ is

closed, then T
(α)
φ is a Fredholm operator of index zero and T

(α)
φ is not of

finite rank. Further if φ ∈ L∞Mn
(D) is such that Tφ is Fredholm and of index

zero in L
(
L2,Cn
a (dAα)

)
then there exists ψ ∈ En×n = E ⊗Mn such that

Tφ+δψ is invertible for all sufficiently small nonzero δ.

2 Preliminaries

In this section we present some elementary results that will be used in estab-
lishing the main results of the paper. We relate the kernel of little Hankel
operators and intermediate Hankel operators with the kernel of their ad-
joints. We relate the concept of common zero set and the rank of a Toeplitz
operator. For p ≥ 0, let Eαp = span{|z|2kzn, k = 0, ..., p ; n = 0, 1, 2, ...}. For
p ≥ 0, the spaces Eαp are closed subspaces of L2

a(dAα). For φ ∈ L∞(D),

we define the intermediate Hankel operator H
Eαp
φ : L2

a(dAα) → Eαp by

H
Eαp
φ (f) = P

(α)
p (φf), f ∈ L2

a(dAα) where P
(α)
p is the orthogonal projection

from L2(D, dAα) onto Eαp . Notice that L2
a(dAα) ⊆ Eαp ⊆ ((L2

a(dAα))0)⊥

where (L2
a(dAα))0 = {g ∈ L2

a(dAα) : g(0) = 0}.

Lemma 2.1. Let φ ∈ L∞(D). Then kerh
(α)
φ = {0} if and only if Range h

(α)
φ =

L2
a(dAα).
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Proof. Observe that
(
S

(α)
φ

)∗
= S

(α)
φ+

where φ+(z) = φ(z). It is easy to see

that f ∈ kerS(α)
φ if and only if f+ ∈ kerS(α)

φ+
. This implies if kerS

(α)
φ = {0}

then ker
(
S

(α)
φ

)∗
= {0}. Thus Range S

(α)
φ = L2

a(dAα). Conversely, if

Range S
(α)
φ = L2

a(dAα) then ker
(
S

(α)
φ

)∗
= {0} which implies kerS

(α)
φ =

{0}.
Clearly h

(α)
φ f = 0 for f ∈ kerh

(α)
φ . This implies JαS

(α)
φ f = 0 which fur-

ther implies S
(α)
φ f = 0. Thus f+ ∈ kerS(α)

φ+
. Hence Jαf

+ ∈ kerS(α)
φ+
Jα =

ker
(
h

(α)
φ

)∗
as S

(α)
φ+
Jα =

(
JαS

(α)
φ

)∗
=
(
h

(α)
φ

)∗
. Let g ∈ L2

a(dAα) and

g ∈ ker
(
h

(α)
φ

)∗
. This implies Jαg ∈ ker

(
S

(α)
φ

)∗
. Hence (Jαg)+ ∈ h

(α)
φ .

Therefore, (Jαg)+ ∈ h(α)
φ . That is, g ∈ kerh(α)

φ . Thus if f ∈ L2
a(dAα) then

f ∈ kerh(α)
φ if and only if f ∈ ker

(
h

(α)
φ

)∗
. Hence kerh

(α)
φ = {0} if and only

if ker
(
h

(α)
φ

)∗
= {0} and this is true if and only if Range h

(α)
φ = L2

a(dAα).

The result follows.

Lemma 2.2. Let H ∈ L2
a(dAα) and assume that f ∈ L2

a(dAα) is not a

polynomial. Then kerH
Eαp

fH
= {0} if and only if RangeH

Eαp

fH
= Eαp .

Proof. Notice that

kerH
∗Eαp
fH

= {g ∈ Eαp : Pα(fHg) = 0}

⊃ ker
(
h

(α)

fH

)∗
= {g ∈ L2

a(dAα) : Pα(fHg) = 0}.

If kerH
∗Eαp
fH

= {0} then ker
(
h

(α)

fH

)∗
= {0}. Hence kerh

(α)

fH
= {0}. Since for

h ∈ L2
a(dAα), H

Eαp

fH
h = h

(α)

fH
h + P

Eαp	(L2
a(dAα))

(fHh), we obtain kerH
Eαp

fH
=

{0}.
Now suppose kerH

Eαp

fH
= {0}. This implies kerh

(α)

fH
= {0}. Because if

kerh
(α)

fH
6= {0} then [5], [6], [7] there exists an inner function Gα ∈ L2

a(dAα)

such that Gα ∈ kerh
(α)

fH
. That is, h

(α)

fHGα
≡ 0. This is so as kerh

(α)

fH
=

kerS
(α)

fH
is an invariant subspace of z. Observe that for ψ ∈ L∞(D), h

(α)
ψ T

(α)
z =

h
(α)
ψz and

(
T

(α)
z h

(α)
ψ

)∗
=
(
h

(α)
ψ

)∗
T

(α)
z = S

(α)
ψ + JαT

(α)
z . Further for g ∈
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L2
a(dAα), S

(α)
ψ+JαT

(α)
z g = S

(α)
ψ+ (Jα(zg)) = Pα(Jα(ψ+zJαg)) = Pα(ψzg) =(

h
(α)
ψz

)∗
g. Similarly one can show that

(
T

(α)

zk
h

(α)
ψ

)∗
=
(
h

(α)

ψzk

)∗
for all k =

0, 1, ..., p. Thus h
(α)

fHGα
≡ 0 implies

(
T

(α)

zk
h

(α)

fHGα

)∗
≡ 0. Hence

(
h

(α)

fHGαzk

)∗
≡

0. This implies h
(α)

fHGαzk
≡ 0 for all k = 0, 1, ..., p. Hence fHGαz

k ∈(
L2
a(dAα)

)⊥
. That is,

〈
fHGαz

k, zkg
〉

= 0 for all g ∈ L2
a(dAα) and k =

0, 1, ..., p. Thus fHGα ∈ (Eαp )⊥. Hence kerH
Eαp

fH
6= {0}. Thus kerH

Eαp

fH
=

{0} implies kerh
(α)

fH
= {0}. Hence ker

(
h

(α)

fH

)∗
= {0}. This implies kerH

∗Eαp
fH

=

{0}. Because if kerH
∗Eαp
fH
6= {0} then there exist 0 6= g ∈ Eαp ∩L∞ such that

fHg ∈ (L2
a(dAα))⊥. That is, fHg ∈ (L2

a(dAα))⊥. This implies h
(α)

fHg
≡ 0

and therefore kerh
(α)

fH
⊇ gL2

a(dAα) ∩ L2
a(dAα) 6= {0}, g ∈ Eαp ∩ L∞ = H∞.

Thus kerH
Eαp

fH
= {0} if and only if kerH

∗Eαp
fH

= {0}.

If N is a subspace of L2
a(dAα), let Z(N) = {z ∈ D : f(z) = 0 for all f ∈

N} which is called the zero set of functions in N . Here if z1 is a zero of
multiplicity at most n of all functions in N then z1 appears n times in
the set Z(N) and they are treated as distinct elements of Z(N). In the

following proposition, we have shown that if φ ∈ L∞(D) is such that T
(α)
φ is

a finite rank Toeplitz operator and Card Z
(
ker

(
T

(α)
φ

)∗)
= Rank of T

(α)
φ

then φ ≡ 0. With the following result we begin to link the ideas of subspaces
and zero-sets.

Proposition 2.1. If N is a subspace of L2
a(dAα) of finite codimension in

L2
a(dAα) then

Z(N) = {z ∈ D : f(z) = 0 for all f ∈ N}

is a finite set.

Proof. Suppose Z(N) is an infinite set. Let {zj}∞j=1 be distinct points of

Z(N) and let f1, f2, f3, ..., fn be functions in L2
a(dAα) such that

fi(z1) = ... = fi(zi−1) = 0, fi(zi) = 1 for all i ≥ 2.

For example, we could take the functions (fi) to be the polynomials. Then
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f1, f2, ... are linearly independent modulo N i.e. if

α1f1 + α2f2 + ...+ αnfn ∈ N

where α1, α2, ..., αn ∈ C then α1 = α2 = ... = αn = 0. This contradicts the
assumption that N has finite codimension in L2

a(dAα). Since each zero of
an analytic function has finite multiplicity, the result is proved.

Let k
1+α

2
z be the normalised reproducing kernel for the Bergman space

L2
a(dAα). When |z| → 1, k

1+α
2

z → 0 weakly and the normalised reproducing

kernels k
1+α

2
z , z ∈ D span L2

a(dAα) [13].

Theorem 2.3. If φ ∈ L∞(D) is such that T
(α)
φ is a finite rank Toeplitz

operator and Card Z
(
ker

(
T

(α)
φ

)∗)
= Rank of T

(α)
φ then φ ≡ 0.

Proof. Suppose T
(α)
φ is a finite rank. Then RangeT

(α)
φ is finite dimen-

sional and is a closed subspace of L2
a(dAα). Let n = dim RangeT

(α)
φ .

Thus ker
(
T

(α)
φ

)∗
= (RangeT

(α)
φ )⊥ has finite codimension. Therefore by

Proposition 2.1, Z
(
ker

(
T

(α)
φ

)∗)
, the common zero set of ker

(
T

(α)
φ

)∗
is

a finite set. Without loss of generality, we shall assume the elements of

Z
(
ker

(
T

(α)
φ

)∗)
are distinct. Suppose Z

(
ker

(
T

(α)
φ

)∗)
= {a1, a2, ..., an}.

Here a1, a2, ..., an are all distinct. Then ker
(
T

(α)
φ

)∗
⊂ {f ∈ L2

a(dAα) :

f(ai) = 0, i = 1, 2, ..., n}. But {f ∈ L2
a(dAα) : f(ai) = 0, i = 1, 2, ..., n} =

{f ∈ L2
a(dAα) : 〈f, k1+α

2
ai 〉 = 0, i = 1, 2, ..., n} =

{
k

1+α
2

a1 , k
1+α

2
a2 , ..., k

1+α
2

an

}⊥
.

Thus sp
{
k

1+α
2

a1 , k
1+α

2
a2 , ..., k

1+α
2

an

}
⊂
(
ker

(
T

(α)
φ

)∗)⊥
= RangeT

(α)
φ . In case

of repeated zeros (if a is a zero of order m, say) the derivatives of the cor-

responding reproducing kernel up to order m − 1, i.e., k
1+α

2
a , ∂∂ak

1+α
2

a , ...,
∂m−1

∂am−1k
1+α

2
a are included in the spanned set [7]. Now since RangeT

(α)
φ has

dimension n and k
1+α

2
a1 , k

1+α
2

a2 , ..., k
1+α

2
an are linearly independent therefore

RangeT
(α)
φ = sp

{
k

1+α
2

a1 , k
1+α

2
a2 , ..., k

1+α
2

an

}
. Thus ker

(
T

(α)
φ

)∗
=
{
k

1+α
2

a1 , k
1+α

2
a2 ,

..., k
1+α

2
an

}⊥
= {f ∈ L2

a(dAα) : f(ai) = 0, i = 1, 2, ..., n} is an invariant sub-

space of the Bergman shift operator T
(α)
z defined on L2

a(dAα). Since T
(α)
φ

is finite rank implies
(
T

(α)
φ

)∗
is finite rank therefore one can show that
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kerT
(α)
φ is also an invariant subspace of L2

a(dAα). Let P be the set of

all polynomials in L2
a(dAα) and M = kerT

(α)
φ . Since RangeT

(α)
φ has di-

mension n, therefore T
(α)
φ 1, T

(α)
φ z, ..., T

(α)
φ zn are linearly dependent. This

implies there exists a non-zero polynomial p of degree at most n such that

T
(α)
φ p = 0. That is, φp ∈ (L2

a(dAα))⊥. Using the facts that codimension

of M is finite, and T
(α)
z M ⊂ M , it follows that P ∩ M is a nontrivial

ideal of P. Since P is a principal ideal ring, there exists q ∈ P such that

P ∩M = qP, see [8]. Thus, T
(α)
φq g = 0 for all polynomials g ∈ P. This

implies T
(α)
φq z

k = 0 for all k ≥ 0. That is, φq ∈ (zkL2
a(dAα))⊥ for all k ≥ 0.

Hence φq ∈ ∩k≥0(zkL2
a(dAα))⊥ = (∪k≥0z

kL2
a(dAα))⊥. Therefore, it follows

that φq ⊥ zkzn for all k, n ≥ 0. Now, φq ∈ L∞ ⊂ L2 implies that φq = 0.
Thus φ = 0 except at the zeros of q which is a polynomial of degree at most
n. Hence φ ≡ 0 as φ ∈ L∞(D).

For z and w in D, let φz(w) = z−w
1−zw . These are involutive Mobius

transformations on D. In fact

1. φz ◦ φz(w) ≡ w;

2. φz(0) = z, φz(z) = 0;

3. φz has a unique fixed point in D.

Given z ∈ D and f any measurable function on D, we define a function

Uzf(w) = k
1+α

2
z (w)f(φz(w)). Since |k1+α

2
z |2 is the real Jacobian determinant

of the mapping φz (see [14]), Uz is easily seen to be a unitary operator on
L2(D, dAα) and L2

a(dAα). It is also easy to check that U∗z = Uz, thus Uz is

a self-adjoint unitary operator. If φ ∈ L∞(D, dA) and z ∈ D then UzT
(α)
φ =

T
(α)
φ◦φzUz. This is because PαUz = UzPα and for f ∈ L2

a(dAα), T
(α)
φ◦φzUzf =

T
(α)
φ◦φz((f◦φz)k

1+α
2

z ) = Pα((φ◦φz)(f◦φz)k
1+α

2
z ) = Pα(Uz(φf)) = UzPα(φf) =

UzT
(α)
φ f . Let Aut(D) be the Lie group of all automorphisms (biholomorphic

mappings) of D, and G0 the isotropy subgroup at 0; i.e., G0 = {ψ ∈ Aut(D) :
ψ(0) = 0}. Notice also that φa(z), as a function in a, is one-one and onto
for any fixed z in D.

Proposition 2.2. If φ ∈ L∞(D) then T
(α)
φ is finite rank if and only if T

(α)
φ◦φz

is finite rank. In this case Rank of T
(α)
φ = Rank of T

(α)
φ◦φz .
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Proof. Notice that f ∈ kerT (α)
φ if and only if Uzf ∈ kerT (α)

φ◦φz . Further since

Uz is unitary, dimker
(
T

(α)
φ

)∗
= dimker

(
T

(α)
φ◦φz

)∗
. Thus dim RangeT

(α)
φ =

codim ker
(
T

(α)
φ

)∗
= codim ker

(
T

(α)
φ◦φz

)∗
= dim RangeT

(α)
φ◦φz .

For φ ∈ L∞(D), let φ̃(z) = 〈T (α)
φ k

1+α
2

z , k
1+α

2
z 〉, the Berezin transform of

φ. It is easy to check that
(
H

(α)
φ

)∗
H

(α)
φ = T

(α)
|φ|2 − T

(α)

φ
T

(α)
φ (see [13]). The

following also holds.

Proposition 2.3. For φ ∈ L∞(D), MO(φ)2(z) = |̃φ|2(z) − |φ̃(z)|2 ≤∥∥∥H(α)
φ k

1+α
2

z

∥∥∥2
+
∥∥∥H(α)

φ
k

1+α
2

z

∥∥∥2
.

Proof. Observe that∥∥∥H(α)
φ k

1+α
2

z

∥∥∥ =
∥∥∥(I − Pα)(φk

1+α
2

z )
∥∥∥ = ‖(I − Pα)Uz(φ ◦ φz)‖

= ‖Uz(I − Pα)(φ ◦ φz)‖ = ‖(I − Pα)(φ ◦ φz)‖ = ‖φ ◦ φz − Pα(φ ◦ φz)‖ .

Similarly, we have∥∥∥H(α)

φ
k

1+α
2

z

∥∥∥ =
∥∥φ ◦ φz − Pα(φ ◦ φz)

∥∥ =
∥∥∥φ ◦ φz − Pα(φ ◦ φz)

∥∥∥ .
Since φ̃(z) = Pα(φ ◦ φz)(0) and Pαg(z) = g(0) for any g ∈ L2

a(dAα) and all
z ∈ D, we have

MO(φ)2(z) = |̃φ|2(z)− |φ̃(z)|2

= ‖φ ◦ φz − Pα(φ ◦ φz)(0)‖2

= ‖φ ◦ φz − Pα(φ ◦ φz)‖2 + ‖Pα(φ ◦ φz)− Pα(φ ◦ φz)(0)‖2

=
∥∥∥H(α)

φ k
1+α

2
z

∥∥∥2
+
∥∥∥Pα(φ ◦ φz)− Pα(φ ◦ φz)(0)

∥∥∥2

=
∥∥∥H(α)

φ k
1+α

2
z

∥∥∥2
+
∥∥∥Pα(φ ◦ φz − Pα(φ ◦ φz))

∥∥∥2

≤
∥∥∥H(α)

φ k
1+α

2
z

∥∥∥2
+
∥∥∥φ ◦ φz − Pα(φ ◦ φz)

∥∥∥2

=
∥∥∥H(α)

φ k
1+α

2
z

∥∥∥2
+
∥∥∥H(α)

φ
k

1+α
2

z

∥∥∥2
.
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Proposition 2.4. If T ∈ L(L2
a(dAα)) and

〈
Tk

1+α
2

z , k
1+α

2
z

〉
= 0 for all z ∈ D

then T ≡ 0.

Proof. Define ρα(T )(z) =
〈
Tk

1+α
2

z , k
1+α

2
z

〉
for all z ∈ D. If ρα(T ) = 0

identically, then also 〈TKα
z ,K

α
z 〉 = Kα(z, z)ρα(T )(z) = 0 identically where

Kα
z = Kα(., z) is the unnormalized reproducing kernel. Thus the func-

tion F (x, y) = 〈TKα
x ,K

α
z 〉 ; which is holomorphic in x and y, vanishes

on the “anti-diagonal” x = y. Passing to the variables u, v defined by
x = u + iv, y = u − iv, we get a holomorphic function G(u, v) of u, v,
which vanishes when u, v are real. Thus F (x, y) = G(u, v) ≡ 0. Thus even〈
TKα

x ,K
α
y

〉
= 0 for any x, y. Since linear combinations of Kα

x , x ∈ D are
dense in L(L2

a(dAα)); it follows that T ≡ 0.

Notice that if for all z ∈ D, Pα(φ ◦ φz) = Pα(φ ◦ φz)(0) = 0 then

UzT
(α)
φ k

1+α
2

z = UzT
(α)
φ Uz1 = T

(α)
φ◦φz1 = 0. Hence T

(α)
φ k

1+α
2

z = 0 for all

z ∈ D and therefore
〈
T

(α)
φ k

1+α
2

z , k
1+α

2
z

〉
= 0 for all z ∈ D. By proposition

2.4, T
(α)
φ ≡ 0 and thus φ ≡ 0.

3 Fredholm Toeplitz operators of index zero

In this section we prove the main results of the paper. We have shown

that if φ ∈ (L2
h(dAα))⊥ ∩ L∞(D) and RangeT

(α)
φ is closed, then T

(α)
φ is a

Fredholm operator of index zero and T
(α)
φ is not of finite rank. Further we

show that if φ ∈ L∞Mn
(D) such that Tφ ∈ F

(
L2,Cn
a (dAα)

)
and j(Tφ) = 0,

then there exists ψ ∈ En×n such that Tφ+δψ is invertible for all sufficiently
small nonzero δ.

For ψ ∈ L∞(D), define B
(α)

ψ
: L2

h(dAα) → (L2
h(dAα))⊥ as B

(α)

ψ
f =

(I −Qα)(ψf) where Qα is the orthogonal projection from L2(D, dAα) onto

L2
h(dAα). The operator B

(α)

ψ
is well defined and it is easy to see that

Qα(znzk) =

{
n−k+1
n+1 zn−k if k ≤ n;

k−n+1
k+1 zk−n if k ≥ n.

Further we can verify that B
(α)
zn (zk) ⊥ B

(α)
zn (zj) if j 6= k and if φ =

∞∑
k=s0

akz
k, as0 6= 0 (that is,a0 = ... = as0−1 = 0 ) then B

(α)
φ (zn) =

∞∑
k=s0

ak·
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·B(α)
zn (zk). It is shown in [12] that if Ψ and Ω are two functions in L2

a(dAα)

such that Ψ(0) = 0 = Ω(0) then the operators B
(α)
Ψ and B

(α)

Ω
are not of

finite rank in L2
h(dAα). In fact the set

{
B

(α)
Ψ (zn)

}p
n=1

is linearly indepen-

dent for all p > 0 and the set
{
B

(α)

Ω
(zk)

}p
k=1

is linearly independent for all

p > 0. If g ∈ L2
h(dAα) and g = Ψ + Ω, where Ψ and Ω are from L2

a(dAα)

then B
(α)

Ω
= B

(α)
g |L2

a(dAα) is of finite rank if and only if Ω ≡ 0 and sim-

ilarly B
(α)
Ψ = B

(α)
g |L2

a(dAα)
is of finite rank if and only if Ψ ≡ 0. Notice

that for f ∈ L2
a(dAα), B

(α)

f
L2
h(dAα) = B

(α)

f
L2
a(dAα) and we shall also write

B
(α)

f
|L2
a(dAα) = B

(α)

f
. Thus B

(α)

f
: L2

a(dAα) → (L2
h(dAα))⊥ is defined as

B
(α)

f
h = (I − Qα)(fh) for all h ∈ L2

a(dAα) and kerB
(α)

f
= {h ∈ L2

a(dAα) :

fh ∈ L2
h(dAα)}.

From [2], it follows that if f is not constant, kerB
(α)

f
= sp{1}. If f ≡

constant then kerB
(α)

f
= L2

a(dAα), hence B
(α)

f
≡ 0. Now

(
B

(α)

f

)∗
maps(

L2
h(dAα)

)⊥
into L2

a(dAα) and
(
B

(α)

f

)∗
k = Pα(fk) for all k ∈

(
L2
h(dAα)

)⊥
.

It therefore follows that for f ∈ L2
a(dAα),

Range
(
B

(α)

f

)∗
=

{
{0} if f ≡ constant;

(sp{1})⊥ if f 6= constant.

Theorem 3.1. If φ ∈ (L2
h(dAα))⊥ ∩ L∞(D) and RangeT

(α)
φ is closed, then

T
(α)
φ is a Fredholm operator of index zero and T

(α)
φ is not of finite rank.

Proof. Given that T
(α)
φ 1 =

(
T

(α)
φ

)∗
1 = 0, hence φ ∈

(
L2
h(dAα)

)⊥
. If ψ ∈

L∞(D) then it is not difficult to verify that S
(α)

ψ
≡ 0 if and only if ψ ∈(

L2
a(dAα)

)⊥
. Thus S

(α)

φ
≡ 0 and S

(α)

φ
f = 0 for all f ∈ L2

a(dAα). Hence(
φf
)
∈
(
L2
a(dAα)

)⊥
for all f ∈ L2

a(dAα) and

ker
(
T

(α)
φ

)∗
=
{
f ∈ L2

a(dAα) :
(
φf
)
∈
(
L2
a(dAα)

)⊥}
=
{
f ∈ L2

a(dAα) :
(
φf
)
∈
(
L2
h(dAα)

)⊥}
.
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Thus

ker
(
T

(α)
φ

)∗
=
{
f ∈ L2

a(dAα) :
(
φf
)
∈
(
L2
h(dAα)

)⊥}
=
{
f ∈ L2

a(dAα) :
〈
φf, g

〉
= 0 for all g ∈ L2

h(dAα)
}

=
{
f ∈ L2

a(dAα) :
〈
φ, fg

〉
= 0 for all g ∈ L2

h(dAα)
}

=
{
f ∈ L2

a(dAα) :
〈
φ, (I −Qα)(fg)

〉
= 0 for all g ∈ L2

h(dAα)
}

=
{
f ∈ L2

a(dAα) :
〈
φ,B

(α)

f
g
〉

= 0 for all g ∈ L2
h(dAα)

}
.

Case-1: Let f ∈ L2
a(dAα) be a polynomial of degree k ≥ 1, and H(z) =

zk+1 ∈ L2
a(dAα). Then fH ∈ (Eαp )⊥ for all p ≥ 0 and H

Eαp

fH
≡ 0. Since

fzk /∈ (Eαp )⊥, and kerH
Eαp

f
is an invariant subspace of z, hence kerH

Eαp

f
=

zk+1L2
a(dAα). Therefore H

∗Eαp
fH
≡ 0 and kerH

∗Eαp
fH

= zk+1Eαp for all p ≥ 0.

Now

ker
(
B

(α)

f

)∗
=
{
g ∈ (L2

h(dAα))⊥ : Pα(fg) = 0
}

=
{
g ∈ (L2

h(dAα))⊥ : fg ∈ (L2
a(dAα))⊥

}
and kerH

∗Eαp
f

=
{
g ∈ Eαp : fg ∈ (L2

a(dAα))⊥
}

. Hence ker
(
B

(α)

f

)∗⋂
Eαp =

kerH
∗Eαp
f

⋂
(L2

h(dAα))⊥ and therefore

ker
(
B

(α)

f

)∗
=
⋃
p≥0

(
ker
(
B

(α)

f

)∗⋂
Eαp

)
=
⋃
p≥0

(
kerH

∗Eαp
f

⋂
(L2

h(dAα))⊥
)

=

⋃
p≥0

kerH
∗Eαp
f

⋂(L2
h(dAα))⊥

=

⋃
p≥0

zk+1Eαp

⋂(L2
h(dAα))⊥ = {0}.

Thus if φ ∈ (L2
h(dAα))⊥ and φ 6= 0 then

(
B

(α)

f

)∗
φ 6= 0.
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Case-2: If f ∈ L2
a(dAα) is a constant, then B

(α)

f
≡ 0 and hence(

B
(α)

f

)∗
≡ 0 and therefore

(
B

(α)

f

)∗
φ = 0 if φ 6= 0.

Case-3: If f ∈ L2
a(dAα) is not a polynomial then fg /∈ (Eαp )⊥ for

any g ∈ L2
a(dAα), g 6= 0, p ≥ 0. Hence kerH

Eαp

f
= {0} and therefore

by Lemma 2.2, we obtain kerH
∗Eαp
f

= {0} for all p ≥ 0. This implies

ker
(
B

(α)

f

)∗
=
⋃
p≥0

(
kerH

∗Eαp
f

⋂
(L2

h(dAα))⊥
)

= {0} and
(
B

(α)

f

)∗
φ 6= 0 if

φ ∈ (L2
h(dAα))⊥ and φ 6= 0.

Thus from the above three cases, it follows that

ker
(
T

(α)
φ

)∗
=
{
f ∈ L2

a(dAα) :
〈
φ,B

(α)

f
g
〉

= 0 for all g ∈ L2
h(dAα)

}
.

=
{
f ∈ L2

a(dAα) :
(
B

(α)

f

)∗
φ = 0

}
.

=

{
L2
a(dAα) if φ ≡ 0;

sp{1} if φ 6= 0.

Hence either φ ≡ 0 or T
(α)
φ is not of finite rank.

Notice that if φ ∈ (L2
h(dAα))⊥0 then Pαφ ≡ (Pαφ)(0) ≡ b, a constant.

Lemma 3.2. Let L be the vector space consisting of all square matrices of
order k that are singular. Then there is a sequence of elementary operations
(row and column operations) which when applied to the matrices of L results
in a set of matrices all of which have entry zero in the same position.

Proof. We shall use mathematical induction to establish the Lemma. As-
sume the Lemma is valid for matrices of order < k. Notice that if A ∈ L and

A 6= 0 then A can be written in the form A =

(
Ir×r 0s×s
0r×r 0s×s

)
by elementary

row and column operations where r + s = k, r > 0, s > 0. Without loss
of generality, we shall assume to begin with that A ∈ L. Let B ∈ L and

assume B =

(
B11 B12

B21 B22

)
where B11 and B21 are of order r and B12 and

B22 are of orders s. Then det(B+λA) = 0 for any λ ∈ C. Now det(B+λA)
is a polynomial in λ whose highest coefficient is detB22. Hence detB22 = 0
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for any B ∈ L. This implies that the set of lower right hand blocks of the
matrices of L is a vector space of singular matrices of order < k. Using
our induction hypothesis, we obtain that there is a sequence of elementary
operations which when applied to these blocks results in a set of matrices
all of which have entry zero in the same position. The lemma follows.

Let X be a Banach space and X∗ be its dual space. A subspace M of
X∗ is said to be total if for every 0 6= x ∈ X there is an f ∈ M such that
f(x) 6= 0. Let E be a total subspace of L∞(D) (thought as a set of linear
functionals on L1(D, dA) ). Let En×n = E ⊗Mn and A = {Tφ : φ ∈ En×n}.

Theorem 3.3. Let φ ∈ L∞Mn
(D) such that Tφ ∈ F

(
L2,Cn
a (dAα)

)
and j(Tφ) =

0. Then there exists ψ ∈ En×n such that Tφ+δψ is invertible for all suffi-
ciently small nonzero δ.

Proof. First assume that there exists no ψ ∈ En×n such that Tφ+δψ is in-
vertible for all sufficiently small nonzero δ. We shall show then that there

exists 0 6= f ∈ kerTφ such that Tψf ∈
(
kerT ∗φ

)⊥
. Let Tφ ∈ F

(
L2,Cn
a (dAα)

)
and j(Tφ) = 0 where φ ∈ L∞Mn

(D). Let ψ ∈ L∞Mn
(D). Then Tφ+δψ also

belongs to F
(
L2,Cn
a (dAα)

)
and j(Tφ+δψ) = 0 for sufficiently small δ. If

Tφ+δψ is not invertible in L
(
L2,Cn
a (dAα)

)
then ker(Tφ+δψ) 6= {0}. Hence

for each sequence (δn)∞n=1 tending to 0, there exist vectors f
δn

satisfying
‖f

δn
‖ = 1 and Tφ+δnψfδn = 0 for all n ∈ N. Let f

δn
= g

δn
+h

δn
, g

δn
∈ kerTφ

and h
δn
∈ (kerTφ)⊥. Then Tφ+δnψfδn = 0 implies Tφhδn = −δnTψfδn .

Therefore Tφhδn → 0 and by the invertibility of Tφ as an operator from
(kerTφ)⊥ to RangeTφ we obtain h

δn
→ 0. Since kerTφ is finite dimen-

sional, there is a subsequence of g
δn

which converges to a vector f . It
is not difficult to see that f ∈ kerTφ and ‖f‖ = 1. Moreover, since
each Tψfδn = −δ−1

n Tφfδn ∈ RangeTφ and RangeTφ is closed, we have

Tψf ∈ RangeTφ =
(
kerT ∗φ

)⊥
. Now assume that Tφ is Fredholm and

j(Tφ) = 0. Assume dim kerTφ = dim kerT ∗φ = n < ∞. Let {f1, f2, ..., fn}
be a basis for kerTφ and {g1, g2, ..., gn} be a basis for kerT ∗φ . Suppose the
conclusion of the theorem is false. From the first part, it follows that for
each Tψ ∈ A there is a nonzero vector f =

∑
αifi ∈ kerTφ such that

〈Tψf, gj〉 = 0, j = 1, ..., n. Hence for all Tψ ∈ A the n×n matrix (〈Tψfi, gj〉)
is singular. Since A is vector space, the set of all such matrices is also linear
and Lemma 3.2 can be applied in this setting. But any set of elementary
row and column operations applied to these matrices has the effect of simply
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replacing the independent sets {fi} and {gj} by other independent sets {f ′i}
and {g′j}. Thus from Lemma 3.2 it follows that for some such pair of indepen-

dent sets and for some fixed i and j,
〈
Tψf

′
i , g
′
j

〉
= 0 for all Tψ ∈ A. But this

is not possible for the following reasons. Notice that A = {Tψ : ψ ∈ En×n}.
Let 0 6= f = (f1, f2, ..., fn) ∈ L2,Cn

a (dAα) and 0 6= g = (g1, g2, ..., gn) ∈
L2,Cn
a (dAα). Then there is a ψ = (ψij) ∈ En×n such that 〈Tψf, g〉 6= 0. Since

PCn
α g = g, we obtain 〈ψf, g〉 6= 0 or

n∑
i,j=1

∫
ψijfjgi 6= 0. There are indices i0,

j0 such that fj0 6= 0, gi0 6= 0 as f and g are nonzero vectors in L2,Cn
a (dAα).

So [3] the product fj0gi0 is not almost everywhere equal to zero. Hence we
can find ψi0j0 belonging to E such that

∫
ψi0j0fj0gi0 6= 0. Set ψij = 0 if

i 6= i0 or j 6= j0. This defines a ψ such that 〈Tψf, g〉 6= 0. Thus we obtain
there exists ψ ∈ En×n such that Tφ+δψ is invertible for all sufficiently small
nonzero δ.

Corollary 3.1. Let φ ∈ CMn(D) = C(D) ⊗Mn. The space of invertible
Toeplitz operators in T = {Tφ : φ ∈ CMn(D)} is dense in the space of
Fredholm Toeplitz operators of index zero in T .

Proof. The proof follows from the Theorem 3.3 as C(D) is a total subspace
of L∞(D).

Corollary 3.2. Let φ ∈ (L2
h(dAα))⊥ ∩ L∞(D) and suppose RangeT

(α)
φ is

closed. Then either T
(α)
φ is invertible or T

(α)
φ = W (α) + F (α) where W (α) ∈

L(L2
a(dAα)) is invertible and is not a Toeplitz operator and F (α) is a nonzero

finite rank operator in L(L2
a(dAα)).

Proof. From Theorem 3.1, it follows that T
(α)
φ is Fredholm and of index

zero. Now there are two possibilities. Either T
(α)
φ is invertible or T

(α)
φ

is not invertible. Suppose T
(α)
φ is not invertible. It follows from [11] that

T
(α)
φ = W (α)+F (α) whereW (α) is invertible and F (α) is a finite rank operator

in L(L2
a(dAα)). If F (α) ≡ 0 then T

(α)
φ = W (α) is invertible. If F (α) 6≡ 0 and

W (α) = T
(α)
ψ for some ψ ∈ L∞(D). Then F (α) = T

(α)
φ − T

(α)
ψ = T

(α)
φ−ψ

is a finite rank Toeplitz operator in L(L2
a(dAα)). From [9] it follows that

F (α) ≡ 0. But F (α) 6≡ 0. Thus T
(α)
φ = W (α)+F (α) where F (α) ∈ L(L2

a(dAα))

is a nonzero finite rank operator and W (α) ∈ L(L2
a(dAα)) is invertible and

is not a Toeplitz operator. The corollary follows.
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Corollary 3.3. If for φ ∈ L∞(D), T
(α)
φ is invertible and ψ ∈ C0(D) (con-

tinuous functions on D vanishing on the boundary) is such that T
(α)
φ−ψ is

one-one, then T
(α)
φ−ψ is invertible.

Proof. Notice that for ψ ∈ C0(D) the Toeplitz operator T
(α)
ψ ∈ L(L2

a(dAα))

is compact [13]. Given that T
(α)
φ is invertible. The result follows from

[10].

Corollary 3.4. Let φ ∈ (L2
h(dAα))⊥ ∩ L∞(D). Suppose

γ(T
(α)
φ ) = inf

{
‖T (α)

φ f‖ : f ∈ L2
a(dAα), ‖f‖ = 1, f ∈

(
kerT

(α)
φ

)⊥}
> 0

and W (α) ∈ L
(
L2
a(dAα)

)
is such that ‖T (α)

φ −W
(α)‖ < γ(T

(α)
φ ). If RangeW (α)

is closed then W (α) is a Fredholm operator of index zero.

Proof. Since γ(T
(α)
φ ) > 0, hence it follows from [4] that RangeT

(α)
φ is closed.

From Theorem 3.1, it follows that T
(α)
φ is Fredholm of index zero. Now since

‖T (α)
φ − W (α)‖ < γ(T

(α)
φ ), it again follows from [4], that dim kerW (α) =

dim ker
(
W (α)

)∗
= 0. As RangeW (α) is closed, we obtain that W (α) is a

Fredholm operator of index zero.
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