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Abstract

In this paper we study a special case of linearly perturbed discrete-
time algebraic Riccati equation. We give some sufficient conditions for
the existence of a positive definite solution of the considered equation.
We propose a basic fixed point iteration and its inversion free variant
for finding a positive definite solution. Moreover, by specially choosing
the initial value in the basic fixed point iteration we prove that it con-
verges to the largest solution. The theoretical results are illustrated
by numerical examples.
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1 Introduction

Consider the nonlinear matrix equation

X −A∗XA+B∗X−1B = I , (1)
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where A,B are n × n complex matrices, I is the identity matrix, and A∗

denotes the conjugate transpose of A. Eq. (1) is a special case of the general
matrix equation

Y−C∗Y C −Π1(Y ) + [L+ C∗Y F + Π12(Y )]

× [R+ F ∗Y F + Π2(Y )]+[L+ C∗Y F + Π12(Y )]∗ = S , (2)

where Z+ is the Moore-Penrose inverse of a matrix Z. Eq. (2) is known as
linearly perturbed discrete-time algebraic Riccati equation (LPDARE) and
have been investigated by many authors [1, 2] and the references therein.
Eq. (1) is a special case of the matrix equation

C∗Y + Y C + S+ Π1(Y )− [L+ Y F + Π12(Y )]

× [R+ Π2(Y )]+[L+ Y F + Π12(Y )]∗ = 0 , (3)

also. The last equation appears in the stochastic control and have been
studied by many authors [3, 4, 5, 6]. Moreover, Eq. (1) is a combination
of the well-known equations X − A∗XA = I [7, 8] and X + B∗X−1B = I
[9, 10, 11, 12, 13].

Now, we show the relationship between the equations (1) and (2) in two
particular cases. Firstly, in case of C = R = Π2(Y ) = Π12(Y ) = 0, F = I,
Π1(Y ) = A∗1Y A1 (or F = R = Π1(Y ) = Π12(Y ) = 0, Π2(Y ) = Y ), and S is
a positive definite matrix, Eq. (2) is in type of Eq. (1). Secondly, consider
Eq. (2) for positive semidefinite solution Y in case of Π1(Y ) = A∗1Y A1,
L = Π2(Y ) = Π12(Y ) = 0, the matrix F is nonsingular and R is a positive
definite matrix, i.e, we reduce Eq. (2) to

Y − C∗Y C −A∗1Y A1 + C∗Y F (R+ F ∗Y F )−1(C∗Y F )∗ = S. (4)

Let P = F−∗RF−1 and Z = Y + P , then from Eq. (4) it follows

Z − P − C∗(Z − P )C −A∗1(Z − P )A1 + C∗(Z − P )Z−1(Z − P )C = S,

and
Z −A∗1ZA1 + C∗PZ−1PC = S + P + C∗PC −A∗1PA1.

Now, let Q = S + P + C∗PC − A∗1PA1 be a positive definite matrix,
then by multiplying both hand side of the above equation with the matrix
Q−

1
2 we obtain Eq (1) with

X = Q−
1
2ZQ−

1
2 , A = Q

1
2A1Q

− 1
2 , and B = Q−

1
2PCQ−

1
2 .

Hence, Eq. (4) can be reduced to Eq. (1).



Positive definite solutions of a matrix equation 7

In [14] have been studied a similar equation X −A∗XA−B∗X−1B = I.
In addition, there are some contributions in the literature to the solvability
and numerical solutions of the matrix equation X+A∗X−1A−B∗X−1B = I
[15, 16, 17]. Konstantinov et al. [18] have investigated for the sensitivity of
the equation A0 +

∑k
i=1 σiA

∗
iX

piAi = 0, which is another more general type
of Eq. (1).

Motivated by the investigations in [1, 2, 14, 15], we study Eq. (1) for the
existence of a positive definite solution, bounds of the solutions and iterative
methods for obtaining a solution. In addition, we consider some numerical
examples to illustrate the theoretical results.

Throughout this paper, Cn×n denotes the set of n×n complex matrices,
andHn the set of n×n Hermitian matrices. A > 0 (A ≥ 0) means that A is a
Hermitian positive definite (semidefinite) matrix. If A−B > 0 (or A−B ≥ 0)
we write A > B (or A ≥ B). For N ≥ M > 0 we use [M,∞), (M,∞), and
[M,N ] to denote the sets of matrices {X : X ≥ M}, {X : X > M}, and
{X : M ≤ X ≤ N}, respectively. We use λ1(C), λn(C), σ1(A), σn(A),
ρ(A), and ‖A‖ to denote the largest and the smallest eigenvalues of an n×n
Hermitian matrix C, the largest and the smallest singular values (σi(A) =√
λi(A∗A)), the spectral radius (ρ(A) = max |λi(A)|), and the spectral norm

(‖A‖ = σ1(A)) of a n × n matrix A, respectively. The Hermitian solutions
XS and XL of a matrix equation are called the smallest solution and the
largest solution, respectively if XS ≤ X ≤ XL for any Hermitian solution X
of the equation.

2 Preliminaries

Firstly, we will present some results for the Stain’s equation

X −A∗XA = Q, (5)

where Q is a positive definite matrix.

Lemma 1. [8] Let A,Q be square matrices.

(a) If ρ(A) < 1, then Eq. (5) has a unique solution PQ, and PQ ≥ 0
(PQ > 0), when Q ≥ 0 (Q > 0).

(b) If there is some P > 0 such that P−A∗PA is positive definite (semidef-
inite), then ρ(A) < 1 (ρ(A) ≤ 1).

Remark 1. [17] From Lemma 1 it follows that, if ρ(A) < 1, Q1 ≤ Q2

(Q1 < Q2), and Pi, i = 1, 2, are the unique solutions of the equations
P −A∗PA = Qi, i = 1, 2, respectively, then P1 ≤ P2 (P1 < P2).
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Remark 2. In case of ρ(A) < 1 the unique solution PQ of Eq. (5) has
representation

PQ =
∞∑
k=0

(A∗)kQAk.

Now, we will present some results for the equation

X +B∗X−1B = Q, (6)

where Q is a positive definite matrix.
In [10], the solvability of Eq. (6) has been studied in terms of properties of

the corresponding rational matrix-valued function ψ(λ) = Q+λB+λ−1B∗.
The function ψ is called regular if det(ψ(λ)) is not identically zero, i.e., if
there exists at least one value λ ∈ C where det(ψ(λ)) 6= 0. Engwerda et al.
[10, Theorem 2.1] proved that Eq. (6) has a positive definite solution if and
only if ψ is regular and ψ(λ) ≥ 0 for all λ on the unit circle. In particular,
Eq. (6) has a positive definite solution if ψ(λ) > 0 for all λ on the unit circle
[12]. Moreover:

Lemma 2. [10, Theorem 3.4] Suppose Q > 0 and assume Eq. (6) has a
positive definite solution. Then this equation has a largest and a smallest
solution M and N , respectively. Moreover M is the unique solution for
which X + λB is invertible for |λ| < 1, while N is the unique solution for
which X + λB∗ is invertible for |λ| > 1.

We have also ρ(M−1B) ≤ 1 [10, Theorem 2.2].
Let us denote by ω(A) the numerical radius of a matrix A, i.e.,

ω(A) = max
‖x‖=1

|x∗Ax|.

Lemma 3. [10, Theorem 5.2] Suppose B is nonsingular. Then Eq. (6) has

a positive definite solution X if and only if ω(Q−
1
2BQ−

1
2 ) ≤ 1

2 .

The proof of [10, Theorem 5.2] also contains the following result.

Lemma 4. [12, Lemma 6.3] ψ(λ) > 0 for all λ on the unit circle if and

only if ω(Q−
1
2BQ−

1
2 ) < 1

2 .

It is well-known [9, 10] that the largest positive definite solution M of
Eq. (6) can be found by the iterative method

Xk+1 = Q−B∗X−1k B, X0 = Q.

Moreover, we have M ≤ Xk+1 ≤ Xk, k = 0, 1, . . ..
Meini [13] has proposed a more effective algorithm (Cyclic reduction) for

computing the largest solution M of Eq. (6).
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Lemma 5. [17] If there is some P > 0 such that P + B∗P−1B ≤ Q, then
Eq. (6) has a positive definite solution, as well as the largest positive definite
solution XL ≥ P .

3 Conditions for the existence of a positive defi-
nite solution

We consider the equations (5) and (6) with right-hand side Q = I:

X −A∗XA = I, (7)

X +B∗X−1B = I. (8)

Note that (see Lemma 1 and Remark 1) Eq. (7) has a unique positive
definite solution PI if and only if ρ(A) < 1.

Theorem 1. Let PI be a unique positive definite solution of Eq. (7) and
Eq. (1) has a positive definite solution X+. Then X+ ≤ PI .

Proof. Let PI be a unique positive definite solution of Eq. (7) and let X+

be a positive definite solution of Eq. (1), i.e.,

PI −A∗PIA = I

X+ −A∗X+A = I −B∗X−1+ B

By subtraction of the above equations, we have

PI −X+ −A∗(PI −X+)A = B∗X−1+ B. (9)

Since B∗X−1+ B ≥ 0 and ρ(A) < 1, by Lemma 1 (i) and (9), we have
PI −X+ ≥ 0.

Theorem 2. Suppose Eq. (8) has a positive definite solution and let M be
the largest solution. Then Eq. (1) has a positive definite solution X+ ≥ M
if and only if ρ(A) < 1. Let PI be a unique positive definite solution of
Eq. (7), then X+ ∈ [M,PI ]. Moreover,

(i) if M < X+, then ρ(X−1+ B) ≤ 1,

(ii) if M < X+ and B is nonsingular, then ρ(X−1+ B) < 1,

(iii) if A is nonsingular, then M < X+ and ρ(X−1+ B) < 1.
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Proof. Let Eq. (8) have positive definite solutions and let M be the largest
solution.

Suppose Eq. (1) has a positive definite solution X+ ≥M . Then

X+ −A∗X+A = I −B∗X−1+ B ≥ I −B∗M−1B = M > 0

and by Lemma 1 (b), it follows ρ(A) < 1. Thus, Eq. (7) has a unique positive
definite solution PI and by Theorem 1 it follows X+ ≤ PI .

Hence, X+ ∈ [M,PI ].
Now, suppose ρ(A) < 1, i.e. Eq. (7) has a unique positive definite

solution PI .
By subtraction of the equations

PI −A∗PIA = I and M +B∗M−1B = I,

we obtain
PI −M = A∗PIA+B∗M−1B ≥ 0.

Consider a map F , defined by

F (X) = I +A∗XA−B∗X−1B, X ∈ (0, ∞). (10)

We will show that F ([M,PI ]) ⊂ [M,PI ]. Let X ∈ [M,PI ]. Then

F (X) = I +A∗XA−B∗X−1B
≤ I +A∗PIA = PI

and

F (X) ≥ I +A∗MA−B∗M−1B
≥ I −B∗M−1B = M.

Therefore, for all X ∈ [M,PI ], F (X) ∈ [M,PI ], i.e. F ([M,PI ]) ⊂
[M,PI ]. Since [M,PI ] is a convex, closed and bounded set and the map
F is continuous on [M,PI ], by Brouwer’s fixed point theorem [19, p.17] it
follows that there exists a solution X+ ∈ [M,PI ] of Eq. (1).

Now, by substraction of the equations M +B∗M−1B = I and

X+ −A∗X+A+B∗X−1+ B = I,

we have
X+ −M −B∗X−1+ (X+ −M)X−1+ B = R, (11)

where R = A∗X+A+B∗X−1+ (X+ −M)M−1(X+ −M)X−1+ B.
Note that R ≥ 0. In addition, R > 0, if A is nonsingular or if X+ > M

and B is nonsingular. Thus, from (11) and Lemma 1 we obtain (i), (ii) and
(iii).
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Theorem 3. If there are numbers β ≥ α > 0 satisfying the inequalities

β2A∗A+ β(1− β)I ≤ B∗B ≤ α2A∗A+ α(1− α)I, (12)

then Eq. (1) has a positive definite solution X∗ in [αI, βI].

Proof. The proof is similar to proof of Theorem 2. Consider the map F
defined in (10). Let X ∈ [αI, βI], then by inequalities in (12) we have

F (X) = I +A∗XA−B∗X−1B
≤ I + βA∗A− β−1B∗B ≤ βI,

F (X) ≥ I + αA∗A− α−1B∗B ≥ αI.

Therefore, for all X ∈ [αI, βI], F (X) ∈ [αI, βI], i.e. F ([αI, βI]) ⊂
[αI, βI]. By Brouwer’s fixed point theorem it follows that there exists a
solution of Eq. (1) in [αI, βI].

Corollary 1. If σ1(A) < 1 and σ21(B)(1− σ2n(A)) < 1/4 are satisfied, then
there are numbers β ≥ α > 0 satisfying the inequalities (12).

Proof. Let σ1(A) < 1 and σ21(B)(1 − σ2n(A)) < 1/4, then we have also
σn(A) < 1 and σ2n(B)(1− σ21(A)) < 1/4. Thus, the equations

(1− σ2n(A))α2 − α+ σ21(B) = 0,

(1− σ21(A))β2 − β + σ2n(B) = 0

have solutions αi, βi, i = 1, 2, respectively, where

α1 =
1−

√
1− 4σ21(B)(1− σ2n(A))

2(1− σ2n(A))
,

α2 =
1 +

√
1− 4σ21(B)(1− σ2n(A))

2(1− σ2n(A))
,

β1 =
1−

√
1− 4σ2n(B)(1− σ21(A))

2(1− σ21(A))
,

β2 =
1 +

√
1− 4σ2n(B)(1− σ21(A))

2(1− σ21(A))
,

and

0 ≤ β1 ≤ α1 < α2 ≤ β2.
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Thus,

σ21(B) ≤ α(1− α) + α2σ2n(A) ⇐⇒ α ∈ [α1, α2], (13)

β(1− β) + β2σ21(A) ≤ σ2n(B) ⇐⇒ β ∈ (−∞, β1] ∪ [β2, ∞). (14)

Therefore, for all α ∈ (α1, α2] and β ∈ [β2, ∞) the inequalities in (12)
are satisfied.

Corollary 2. Let A, B be the matrix coefficients in Eq. (1). Then

(a) the identity matrix I is a solution of Eq. (1) if and only if B∗B = A∗A;

(b) if B∗B ≤ A∗A and ρ(A) < 1, then Eq. (1) has a solution X ′ ∈ [I, PI ],
where PI is the unique solution of Eq. (7).

(c) if A∗A ≤ B∗B ≤ α2A∗A+α(1−α)I for some α ∈ [12 , 1), then Eq. (1)
has a solution X ′′ ∈ [αI, I].

Proof. The proof of (a) is pretty straightforward.
(b) Let B∗B ≤ A∗A and ρ(A) < 1. Then from ρ(A) < 1 it follows that

Eq. (7) has a unique positive definite solution PI ≥ I.
Consider the map F defined in (10). Let X ∈ [I, PI ], then

F (X) ≤ I +A∗PIA = PI ,

F (X) ≥ I +A∗A−B∗B ≥ I.

Therefore, for all X ∈ [I, PI ], F (X) ∈ [I, PI ]. By Brouwer’s fixed point
theorem it follows that there exists a solution X ′ ∈ [I, PI ] of Eq. (1).

The statement (c) is in case of β = 1 in Theorem 3.

4 Iterative algorithms

We propose two iterative algorithms for obtaining a positive definite solution
of Eq. (1).

Algorithm 1 (Basic fixed point iteration). For a matrix X0, compute

Xi+1 = I +A∗XiA−B∗X−1i B, i = 0, 1, . . . .

Theorem 4. Let ρ(A) < 1, ω(B) ≤ 1
2 , B be a nonsingular matrix, and let

PI and M be a unique positive definite solution of Eq. (7) and the largest
solution of Eq. (8), respectively. Then Eq. (1) has the largest positive def-
inite solution XL ∈ [M,PI ] and Algorithm 1 with X0 = PI and X ′0 = M
generates two matrix sequences {Xi} and {X ′i} with the following properties
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(a) Xi ≥ Xi+1 ≥ XL, i = 0, 1, . . ., and lim
i→∞

Xi = XL,

(b) X ′i ≤ X ′i+1 ≤ XL, i = 0, 1, . . ., and lim
i→∞

X ′i = X ′ ≤ XL, where X ′ a

solution of Eq. (1).

Proof. Since ρ(A) < 1, by Lemma 1 Eq. (7) has a unique positive definite
solution PI . Since ω(B) ≤ 1

2 and B is a nonsingular matrix, by Lemma 2
and Lemma 3, Eq. (8) has a largest positive definite solution M . Thus,
by Theorem 2 it follows that Eq. (1) has a positive definite solution X+ ∈
[M,PI ].

Now, we consider Algorithm 1 with X0 = PI . Then

X1 = I +A∗PIA−B∗P−1I B ≤ I +A∗PIA = X0

and
X1 ≥ I +A∗X+A−B∗X−1+ B = X+.

Assume that X+ ≤ Xk ≤ Xk−1. Then

Xk+1 = I +A∗XkA−B∗X−1k B ≤ I +A∗Xk−1A−B∗X−1k−1B = Xk

and
Xk+1 ≥ I +A∗X+A−B∗X−1+ B = X+.

Hence, by induction Xi ≥ Xi+1 ≥ X+ for i = 0, 1, . . .. Thus, the se-
quence {Xi} converge to a positive definite solution XL ≥ X+. Therefore,
XL is the largest solution of Eq. (1). The statement (a) is proven.

The statement (b) can be proven by analogy.

Remark 3. Under conditions of the Theorem 4, if Eq. (1) has more than
one solution in [M,PI ], then X ′ is the smallest solution in [M,PI ].

Theorem 5. If there are numbers β ≥ α > 0 satisfying the inequalities
(12), then Algorithm 1 with X0 = βI and X ′0 = αI generates two matrix
sequences {Xi} and {X ′i} for which X ′i ≤ X ′i+1 ≤ Xi+1 ≤ Xi, i = 0, 1, . . .,
and lim

i→∞
Xi = Xβ, limi→∞X

′
i = Xα ≤ Xβ, where Xα and Xβ are solutions

of Eq. (1).

Proof. We have by Theorem 3 that Eq. (1) has a positive definite solution
X∗ ∈ [αI, βI]. Now, we consider Algorithm 1 with X0 = βI. Then, by the
left inequality in (12), we have

X1 = I + βA∗A− 1

β
B∗B ≤ βI = X0
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and

X1 ≥ I +A∗X∗A−B∗X−1∗ B = X∗.

Assume that X∗ ≤ Xk ≤ Xk−1. Then

Xk+1 = I +A∗XkA−B∗X−1k B ≤ I +A∗Xk−1A−B∗X−1k−1B = Xk

and

Xk+1 ≥ I +A∗X∗A−B∗X−1∗ B = X∗.

Hence, by induction Xi ≥ Xi+1 ≥ X∗ for i = 0, 1, . . .. Thus, the sequence
{Xi} converges to a positive definite solution Xβ ≥ X∗.

Now, we consider Algorithm 1 with X ′0 = αI. Then, by the right in-
equality in (12), we have

X ′1 = I + αA∗A− 1

α
B∗B ≥ αI = X ′0

and

X ′1 ≤ I +A∗X∗A−B∗X−1∗ B = X∗.

By induction we have X ′i ≤ X ′i+1 ≤ X∗ for i = 0, 1, . . .. Thus, the sequence
{X ′i} converges to a positive definite solution Xα ≤ X∗.

Therefore, X ′i ≤ X ′i+1 ≤ Xα ≤ X∗ ≤ Xβ ≤ Xi+1 ≤ Xi, i = 0, 1, . . ..

Now, we motivated by the investigations of Zhan [11], and Guo and
Lancaster [12] for Eq. (6), consider an inversion free variant of Algorithm 1.

Algorithm 2 (An inversion free variant of the basic fixed point iteration).
For the matrices X0 and 0 < Y0 ≤ X−10 , compute{

Yi+1 = Yi(2I −XiYi),

Xi+1 = I +A∗XiA−B∗Yi+1B,
i = 0, 1, . . . .

Lemma 6. [11, Lemma 3.2] Let C and P be Hermitian matrices of the
same order and let P > 0. Then CPC + P−1 ≥ 2C.

Theorem 6. Let PI be a unique positive definite solution of Eq. (7) and
Eq. (1) has a positive definite solution. Then the matrix sequence {Xi}
generated by Algorithm 2 with X0 = PI and Y0 = I/‖X0‖∞ is monotone
decreasing and converges to the maximal solution XL.
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Proof. We prove the theorem by induction. Let X+ be a positive definite
solution of Eq. (1).

By Theorem 1 we have X0 = PI ≥ X+. Thus

Y0 =
1

‖PI‖∞
I ≤ P−1I ≤ X−1+ .

We compute

Y1 =
1

‖PI‖∞
(2‖PI‖∞I − PI)

1

‖PI‖∞
≥ 1

‖PI‖∞
I = Y0,

X1 = I +A∗PIA−B∗Y1B ≤ I +A∗PIA = PI = X0.

We have by Lemma 6 that

Y1 = 2Y0 − Y0X0Y0 ≤ X−10 ≤ X−1+ .

Thus

X1 = I +A∗PIA−B∗Y1B ≥ I +A∗X+A−B∗X−1+ B = X+.

Therefore, Y0 ≤ Y1 ≤ X−1+ , X0 ≥ X1 ≥ X+.
Assume that Yk−1 ≤ Yk ≤ X−1+ and Xk−1 ≥ Xk ≥ X+. Once again, by

Lemma 6 we have

Yk+1 = 2Yk − YkXkYk ≤ X−1k ≤ X−1+ .

Hence,

Xk+1 = I +A∗XkA−B∗Yk+1B ≥ I +A∗X+A−B∗X−1+ B = X+.

Since Yk ≤ X−1k−1 ≤ X
−1
k , we have

Yk+1 − Yk = Yk(Y
−1
k −Xk)Yk ≥ 0,

and
Xk+1 −Xk = −A∗(Xk−1 −Xk)A−B∗(Yk+1 − Yk)B ≤ 0.

Therefore, Xi ≥ Xi+1 ≥ X+, Yi ≤ Yi+1 ≤ X−1+ , for i = 1, 2, . . ., and the
limits limi→∞Xi, limi→∞ Yi exist. Let limi→∞Xi = X and limi→∞ Yi = Y .
Then X ≥ X+ for every positive definite solution X+ of Eq. (1). Taking
limits in Algorithm 2 yields

Y = Y XY,

X = I +A∗XA−B∗Y B.

Thus, Y = X−1 and X = I +A∗XA−B∗X−1B.
Hence, X = XL the largest positive definite solution of Eq. (1).
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5 Numerical examples

In this section we carry out numerical experiments for computing the pos-
itive definite solutions of Eq. (1) by Algorithms 1 and 2. We use notations
{Xi} and {X ′i} for sequences generated by Algorithm 1 with X0 = PI (or
X0 = βI) and X ′0 = M (or X ′0 = αI), respectively (see theorems 4 and 5),
and {X ′′i } generated by Algorithm 2 with X ′′0 = PI and Y ′′0 = I/‖PI‖∞ (see
Theorem 6).

Let us res(X) = ‖X − A∗XA + B∗X−1B − I‖∞. As practical stop-
ping criterions we use ‖Xk −Xk−1‖∞ ≤ 10−10, where k is the number of
iterations.

We use the Matlab function dlyap for computing the unique positive
definite solution PI of Eq. (7), and Cyclic reduction algorithm [13, Algo-
rithm 3.1.] for computing the largest solution M of Eq. (8) if there exist.

Example 1. We consider Eq. (1) with matrix coefficients

A =

 0.7 0.15 0.1
0.01 0.8 0.06
0.02 0.03 0.83

 , B =

 0.2 0.2 0.1
0.2 0.15 0.15
0.1 0.15 0.25

 .

By using dlyap and Cyclic reduction algorithm, we have

M ≈

 0.8265 −0.1684 −0.1582
−0.1684 0.8316 −0.1633
−0.1582 −0.1633 0.8214

, PI ≈

2.0161 0.6338 0.6009
0.6338 3.5247 1.2988
0.6009 1.2988 4.0809

.
In Table 1 we report the results of experiments for Example 1. We

obtain XL ≈ X89 and X ′ ≈ X ′101 by Algorithm 1 with X0 = PI and
X ′0 = M , respectively, and XL ≈ X ′′89 by Algorithm 2. Moreover, we have
‖X89 −X ′101‖∞ = 5.0950e − 10 and ‖X ′′89 −X89‖∞ = 2.0438e − 11. Hence,
XL ≡ X ′.

Table 1: Numerical results of Example 1.

Algorithm X0 k ‖Xk −Xk−1‖∞ res(Xk)

1. (BFPI) M 101 8.7228e− 11 6.8676e− 11
1. (BFPI) PI 89 8.5141e− 11 6.7034e− 11
2. (IFV-BFPI) PI 89 9.2056e− 11 7.2477e− 11
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Example 2. We consider Eq. (1) with matrix coefficients

A =

 0.7 0.2 0.3
0 0.8 0.6
0 0 0.8

 , B =
1

8

 2 0 0
2 1.5 0
1 1.5 2.5

 .

By using dlyap and Cyclic reduction algorithm, we have

M ≈

 0.8025 −0.0976 −0.0601
−0.0976 0.9135 −0.0727
−0.0601 −0.0727 0.8887

, PI ≈
 1.9608 0.6239 1.5314

0.6239 3.5502 6.3649
1.5314 6.3649 26.4569

.
In Table 2 we report the results of experiments for Example 2. We obtain

XL ≈ X76 and X ′ ≈ X ′84 by Algorithm 1 with X0 = PI and X ′0 = M ,
respectively, and XL ≈ X ′′76 by Algorithm 2. Moreover, ‖X76 −X ′84‖∞ =
4.1598e − 10 and ‖X ′′76 −X76‖∞ = 4.9603e − 12. Hence, for Example 2
XL ≡ X ′, also.

Table 2: Numerical results of Example 2.

Algorithm X0 k ‖Xk −Xk−1‖∞ res(Xk)

1. (BFPI) M 84 9.5680e− 11 6.9057e− 11
1. (BFPI) PI 76 7.6954e− 11 5.5539e− 11
2. (IFV-BFPI) PI 76 7.9021e− 11 5.7024e− 11

Example 3. We consider Eq. (1) with matrix coefficients

A =
1

50


40 0 0 0 0
25 42 0 0 0
23 27 48 0 0
35 45 16 42 0
66 21 24 65 46

 , B =
1

300


11 21 23 25 32
21 31 60 42 33
23 60 34 18 26
25 42 18 44 30
32 33 26 30 50

 .

By using dlyap we compute the unique positive definite solution PI of
Eq. (7), since ρ(A) = 0.96 < 1. For Example 3, Theorem 4 can not be used,
since ω(B) = ρ(B) = 0.5396 > 0.5. But, A∗A ≥ B∗B. Thus, by Corollary 2
(b) we have that Eq. (1) has a solution X ′ ∈ [I, PI ]. We use Algorithm 1
with X0 = PI and X ′0 = I (with α = 1).

In Table 3 we report the results of experiments for Example 3. We obtain
‖X412 −X ′464‖∞ = 1.0984e− 08 and ‖X ′′434 −X412‖∞ = 4.7026e− 10.
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Table 3: Numerical results of Example 3.

Algorithm X0 k ‖Xk −Xk−1‖∞ res(Xk)

1. (BFPI) I 464 7.2760e− 12 2.3283e− 10
1. (BFPI) PI 412 3.6380e− 11 4.0939e− 10
2. (IFV-BFPI) PI 434 7.1054e− 15 9.6634e− 13
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