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Abstract

In this paper we study a special case of linearly perturbed discrete-
time algebraic Riccati equation. We give some sufficient conditions for
the existence of a positive definite solution of the considered equation.
We propose a basic fixed point iteration and its inversion free variant
for finding a positive definite solution. Moreover, by specially choosing
the initial value in the basic fixed point iteration we prove that it con-
verges to the largest solution. The theoretical results are illustrated
by numerical examples.
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1 Introduction
Consider the nonlinear matrix equation

X -A*XA+B*X 'B=1, (1)
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where A, B are n X n complex matrices, I is the identity matrix, and A*
denotes the conjugate transpose of A. Eq. (1) is a special case of the general
matrix equation

Y- C*YC —T1(Y) + [L+ C*YF + Hya(Y)]
X [R+F*YF +H(Y)|T[L+ C*YF + M (V)] = S, (2)

where Z* is the Moore-Penrose inverse of a matrix Z. Eq. (2) is known as
linearly perturbed discrete-time algebraic Riccati equation (LPDARE) and
have been investigated by many authors [1, 2] and the references therein.
Eq. (1) is a special case of the matrix equation

C*V +YC + S+ (Y) — [L + Y F 4 T15(Y)]
X [R4+Ta(Y)]T[L +YF +1o(Y)]* =0, (3)

also. The last equation appears in the stochastic control and have been
studied by many authors [3, 4, 5, 6]. Moreover, Eq. (1) is a combination
of the well-known equations X — A*XA =1 [7,8 and X + B*X !B =1
[9, 10, 11, 12, 13).

Now, we show the relationship between the equations (1) and (2) in two
particular cases. Firstly, in case of C = R =1Ix(Y) =II12(Y) =0, FF =1,
Hl(Y) = ATYAl (or F=R-= Hl(Y) = ng(Y) = 0, HQ(Y) = Y), and S is
a positive definite matrix, Eq. (2) is in type of Eq. (1). Secondly, consider
Eq. (2) for positive semidefinite solution Y in case of II;(Y) = AjY Aj,
L =1Iy(Y) = II12(Y) = 0, the matrix F is nonsingular and R is a positive
definite matrix, i.e, we reduce Eq. (2) to

Y —C*YC — Aj5YA + C*YF(R+F*YF) {(C*YF)*=5. (4
Let P=F *RF~!and Z =Y + P, then from Eq. (4) it follows
Z—-P—-C*Z—P)C—A{(Z—-P)A +C*(Z-P)Z Y (Z-P)C =85,

and
7 — AjZA) +C*PZ'PC =S+ P+ C*PC — A{PA,.

Now, let Q = S+ P + C*PC — AjPA; be a positive definite matrix,
therll by multiplying both hand side of the above equation with the matrix
Q™2 we obtain Eq (1) with

X=Q 3ZQ° 3, A=Q34,Q"2, and B=Q :PCQ 3.

Hence, Eq. (4) can be reduced to Eq. (1).
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In [14] have been studied a similar equation X — A*XA—B*X !B = 1.
In addition, there are some contributions in the literature to the solvability
and numerical solutions of the matrix equation X + A*X'A-B* X 'B =1
[15, 16, 17]. Konstantinov et al. [18] have investigated for the sensitivity of
the equation Ag+ Zle 0; A7 XPiA; = 0, which is another more general type
of Eq. (1).

Motivated by the investigations in [1, 2, 14, 15], we study Eq. (1) for the
existence of a positive definite solution, bounds of the solutions and iterative
methods for obtaining a solution. In addition, we consider some numerical
examples to illustrate the theoretical results.

Throughout this paper, C"*™ denotes the set of n x n complex matrices,
and H" the set of n xn Hermitian matrices. A > 0 (A > 0) means that A is a
Hermitian positive definite (semidefinite) matrix. If A—B > 0 (or A—B > 0)
we write A > B (or A > B). For N > M > 0 we use [M,o0), (M, o0), and
[M, N] to denote the sets of matrices {X : X > M}, {X : X > M}, and
{X : M < X < N}, respectively. We use A(C), A\, (C), 01(A), on(A),
p(A), and || A|| to denote the largest and the smallest eigenvalues of an n xn
Hermitian matrix C, the largest and the smallest singular values (0;(A) =

Ai(A*A)), the spectral radius (p(A) = max|A;(A)|), and the spectral norm
(I|A]l = 01(A)) of a n x n matrix A, respectively. The Hermitian solutions
Xg and X, of a matrix equation are called the smallest solution and the
largest solution, respectively if Xg < X < X, for any Hermitian solution X
of the equation.

2 Preliminaries

Firstly, we will present some results for the Stain’s equation

X -A"XA=0Q, (5)
where (Q is a positive definite matrix.
Lemma 1. [8] Let A, Q be square matrices.

(a) If p(A) < 1, then Eq. (5) has a unique solution Pg, and Pg > 0
(Pg > 0), when @ >0 (Q > 0).

(b) If there is some P > 0 such that P—A*P A is positive definite (semidef-
inite), then p(A) <1 (p(4) <1).

Remark 1. [17] From Lemma 1 it follows that, if p(A) < 1, Q1 < Q2
(@1 < Q2), and P;, i = 1,2, are the unique solutions of the equations
P— A*PA = Q;, i = 1,2, respectively, then P| < Py (P; < Py).
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Remark 2. In case of p(A) < 1 the unique solution Py of Eq. (5) has
representation

Pop=>) (A")FQA",
k=0

Now, we will present some results for the equation
X+B*X'B=0Q, (6)

where @) is a positive definite matrix.

In [10], the solvability of Eq. (6) has been studied in terms of properties of
the corresponding rational matrix-valued function ¥(\) = Q + AB + A~1B*.
The function 1) is called regular if det(y)(\)) is not identically zero, i.e., if
there exists at least one value A € C where det(1)()\)) # 0. Engwerda et al.
[10, Theorem 2.1] proved that Eq. (6) has a positive definite solution if and
only if ¢ is regular and ¥(A) > 0 for all A on the unit circle. In particular,
Eq. (6) has a positive definite solution if ¢)(A) > 0 for all A on the unit circle
[12]. Moreover:

Lemma 2. [10, Theorem 3.4] Suppose Q > 0 and assume Eq. (6) has a
positive definite solution. Then this equation has a largest and a smallest
solution M and N, respectively. Moreover M 1is the unique solution for
which X + AB is invertible for |\| < 1, while N is the unique solution for
which X + AB* is invertible for || > 1.

We have also p(M~1B) <1 [10, Theorem 2.2].

Let us denote by w(A) the numerical radius of a matrix A, i.e.,

w(A) = max |z* Ax|.

llell=
Lemma 3. [10, Theorem 5.2] Suppose B is nonsingular. Then Eq. (6) has
a positive definite solution X if and only if w(Q_%BQ_%) < %

The proof of [10, Theorem 5.2] also contains the following result.
Lemma 4. [12, Lemma 6.3] ¥(\) > 0 for all A\ on the unit circle if and
only ifw(Q_%BQ_%) < %

It is well-known [9, 10] that the largest positive definite solution M of
Eq. (6) can be found by the iterative method

X1 =Q—-B*X;'B, Xo=Q.

Moreover, we have M < X1 < Xi, k=0,1,....
Meini [13] has proposed a more effective algorithm (Cyclic reduction) for
computing the largest solution M of Eq. (6).



Positive definite solutions of a matrix equation 9

Lemma 5. [17] If there is some P > 0 such that P+ B*P71B < Q, then
Eq. (6) has a positive definite solution, as well as the largest positive definite
solution Xy, > P.

3 Conditions for the existence of a positive defi-
nite solution

We consider the equations (5) and (6) with right-hand side @ = I:
X—A"XA=1I, (7)

X+BX 'B=1I (8)

Note that (see Lemma 1 and Remark 1) Eq. (7) has a unique positive
definite solution Py if and only if p(A4) < 1.

Theorem 1. Let P; be a unique positive definite solution of Eq. (7) and
Eq. (1) has a positive definite solution X;. Then X4 < Pr.

Proof. Let Pr be a unique positive definite solution of Eq. (7) and let X
be a positive definite solution of Eq. (1), i.e.,

Pr—A'PA = I
Xy - A'X;A = I-B*X.'B

By subtraction of the above equations, we have
P — X, —A"(P—-X.)A=B*X.'B. (9)

Since B*X'B > 0 and p(A) < 1, by Lemma 1 (i) and (9), we have
Pr— X+ >0. 0

Theorem 2. Suppose Eq. (8) has a positive definite solution and let M be
the largest solution. Then Eq. (1) has a positive definite solution Xy > M
if and only if p(A) < 1. Let P be a unique positive definite solution of
Eq. (7), then X4 € [M, Pr]. Moreover,

(i) if M < X4, then p(X;'B) <1,
(i) if M < X1 and B is nonsingular, then p(XJ:lB) <1,

(iii) if A is nonsingular, then M < X and p(X'B) < 1.
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Proof. Let Eq. (8) have positive definite solutions and let M be the largest
solution.
Suppose Eq. (1) has a positive definite solution X; > M. Then
Xy —A'XyA=1-B*X{'B>1-B*M'B=M >0

and by Lemma 1 (b), it follows p(A) < 1. Thus, Eq. (7) has a unique positive
definite solution P and by Theorem 1 it follows X, < Pr.
Hence, X} € [M, Py].
Now, suppose p(4) < 1, i.e. Eq. (7) has a unique positive definite
solution FPjy.
By subtraction of the equations
P —A*PfA=1 and M +B*M'B=1,
we obtain
Py — M= A*PfA+B*M~'B >0.
Consider a map F, defined by
F(X)=I+A*XA—-B*X'B, X €(0, ). (10)
We will show that F([M, Pr]) C [M, Pr]. Let X € [M, Pr]. Then
F(X) = I+A*XA-B*X'B
< I+ A"PIA=Pr
and
I+A*MA-B*M'B
I-B*M'B=M.
Therefore, for all X € [M,P;], F(X) € [M,Py], i.e. F([M,Pr]) C
[M, Pr]. Since [M, Py| is a convex, closed and bounded set and the map
F' is continuous on [M, Pr], by Brouwer’s fixed point theorem [19, p.17] it

follows that there exists a solution X € [M, P| of Eq. (1).
Now, by substraction of the equations M + B*M~'B = I and

Xi - A*X A+ B*X;'B=1,

F(X)

AV

we have
Xy-M-BXYXy-M)X.'B=R, (11)
where R = A*X A+ B* X' (Xy - M)M (X, - M)X{'B.
Note that R > 0. In addition, R > 0, if A is nonsingular or if X, > M
and B is nonsingular. Thus, from (11) and Lemma 1 we obtain (i), (ii) and
(111). O
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Theorem 3. If there are numbers 8 > a > 0 satisfying the inequalities
BPA*A+B(1 - B < B*B < ?A*A+a(l —a)l, (12)
then Eq. (1) has a positive definite solution X, in [ad, BI].

Proof. The proof is similar to proof of Theorem 2. Consider the map F
defined in (10). Let X € [al, 8], then by inequalities in (12) we have

I+ A*XA—-B*X~'B
< I+ BA*A—-pB7'B*B < jlI,

e
s
I

F(X) > IT+aA*A—a 'B*B>al.

Therefore, for all X € [al,pI], F(X) € [al,pI], i.e. F([al,BI]) C
[al, BI]. By Brouwer’s fixed point theorem it follows that there exists a
solution of Eq. (1) in [ad, BI]. O

Corollary 1. If 01(A) < 1 and 03(B)(1 — 02(A)) < 1/4 are satisfied, then
there are numbers > a > 0 satisfying the inequalities (12).

Proof. Let 01(A) < 1 and 0?(B)(1 — 02(A)) < 1/4, then we have also

n

on(A) <1 and 02(B)(1 — 03(A)) < 1/4. Thus, the equations
(1—02(A)a? —a+i(B) =0,

(1 —0f(A)B? — B+ on(B) =0

have solutions «y, 5;,1 = 1, 2, respectively, where
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Thus,
a%(B) < all-a)+ O£20'72L<A) — «a€ o, al, (13)
B(1—B) + 5207 (A) < 0n(B) <= B e (-0, iU [By, 00).  (14)

Therefore, for all a € (a1, az] and 8 € [f2, 00) the inequalities in (12)
are satisfied. ]

Corollary 2. Let A, B be the matrixz coefficients in Eq. (1). Then
(a) the identity matriz I is a solution of Eq. (1) if and only if B*B = A*A;

(b) if B* B < A*A and p(A) < 1, then Eq. (1) has a solution X' € [I, Py],
where Py is the unique solution of Eq. (7).

(c) if A*A< B*B < a?A*A+ (1 —a)I for some a € [1,1), then Eq. (1)
has a solution X" € [al,I].

Proof. The proof of (a) is pretty straightforward.

(b) Let B*B < A*A and p(A) < 1. Then from p(A) < 1 it follows that
Eq. (7) has a unique positive definite solution Py > I.

Consider the map F defined in (10). Let X € [I, P;], then

F(X) < I—I—A*P[A:P[,
F(X) > I+A*"A-B*B>1.

Therefore, for all X € [I, Pf], F(X) € [I, Pr]. By Brouwer’s fixed point
theorem it follows that there exists a solution X’ € [I, Pj] of Eq. (1).
The statement (c¢) is in case of # =1 in Theorem 3. O

4 Iterative algorithms

We propose two iterative algorithms for obtaining a positive definite solution
of Eq. (1).

Algorithm 1 (Basic fixed point iteration). For a matriz Xo, compute
X =T+ A*X,A-B*X;'B, i=0,1,....

Theorem 4. Let p(A) < 1, w(B) < 3, B be a nonsingular matriz, and let
Pr and M be a unique positive definite solution of Eq. (7) and the largest
solution of Eq. (8), respectively. Then Eq. (1) has the largest positive def-
inite solution X, € [M,Pr] and Algorithm 1 with Xo = Pr and Xy = M
generates two matriz sequences {X;} and { X[} with the following properties
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(a) Xi > Xit1 > Xg,i=0,1,..., and lim X; = X,

1—00

(b)) X! <X/, <Xp,i=0,1,..., and lim X] = X' < X, where X' a
1—r 00
solution of Eq. (1).
Proof. Since p(A) < 1, by Lemma 1 Eq. (7) has a unique positive definite
solution P;. Since w(B) < % and B is a nonsingular matrix, by Lemma 2
and Lemma 3, Eq. (8) has a largest positive definite solution M. Thus,
by Theorem 2 it follows that Eq. (1) has a positive definite solution X €
[Ma PI]
Now, we consider Algorithm 1 with Xo = P;. Then

X1=I+A*PIA—B*P;'B<T+ A*P/A = X

and
X, >I+A' X, A-B*X['B=X,.

Assume that X < X < Xp_1. Then
Xpp1 =TI+ A*X)A-B*X;'B< I+ A*Xy_1A— B*X; ' B =X

and
Xp1 > I+ A* X A-B*X'B=X,.

Hence, by induction X; > X;11 > X4 for ¢ = 0,1,.... Thus, the se-
quence {X;} converge to a positive definite solution X; > X . Therefore,
X7, is the largest solution of Eq. (1). The statement (a) is proven.

The statement (b) can be proven by analogy. O

Remark 3. Under conditions of the Theorem 4, if Eq. (1) has more than
one solution in [M, Pr], then X' is the smallest solution in [M, Py].

Theorem 5. If there are numbers 5 > a > 0 satisfying the inequalities
(12), then Algorithm 1 with Xo = BI and X, = al generates two matric
sequences {X;} and {X]} for which Xj < Xj | < X;41 < X5, i=0,1,...,
and lim X; = Xg, lim; XZ( = Xo < X3, where X, and Xg are solutions
1—>00

of Eq. (1).

Proof. We have by Theorem 3 that Eq. (1) has a positive definite solution
X, € [al, BI]. Now, we consider Algorithm 1 with X¢ = SI. Then, by the
left inequality in (12), we have

X1:I—|—BA*A—;B*B§5]:XO
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and
X1 >I+A'X,A-B*X'B=X,.

Assume that X, < X < X,_1. Then
Xp1 =1+ A*X)A-B* X 'B< I+ A*X;_1A- B*X; ', B= X,

and
Xpp1 > T+ A*X,A— B*X,'B = X,.

Hence, by induction X; > X;11 > X, fori =0,1,.... Thus, the sequence
{X;} converges to a positive definite solution X3 > X,.

Now, we consider Algorithm 1 with X = «f. Then, by the right in-
equality in (12), we have

1
Xi=I+aA*A— =-B*B>al = X|
«

and
X <I+A*X,A-B*X_'B=X,.
By induction we have X; < X/ | < X, for i = 0,1,.... Thus, the sequence
{X/} converges to a positive definite solution X, < X,.
Therefore, X] < Xj | < Xo < Xu < Xp < Xip1 <X, 1=0,1,.... O

Now, we motivated by the investigations of Zhan [11], and Guo and
Lancaster [12] for Eq. (6), consider an inversion free variant of Algorithm 1.

Algorithm 2 (An inversion free variant of the basic fixed point iteration).
For the matrices Xg and 0 < Yy < Xo_l, compute
Yo = Yi(2 — XiY3), o
Xip1 =1+ A*X;A— B*Y; B, o

Lemma 6. [11, Lemma 3.2/ Let C' and P be Hermitian matrices of the
same order and let P > 0. Then CPC + P~1 > 2C.

Theorem 6. Let P; be a unique positive definite solution of Eq. (7) and
Eq. (1) has a positive definite solution. Then the matriz sequence {X;}
generated by Algorithm 2 with Xo = Pr and Yy = /|| Xo||co is monotone
decreasing and converges to the mazximal solution X, .
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Proof. We prove the theorem by induction. Let X1 be a positive definite
solution of Eq. (1).
By Theorem 1 we have Xo = Py > X ;. Thus

Y, = m[ <pt<Xxih
We compute
Vi= QP - P — > 1=,
1Pr |0 1Prlloc ™~ [1Prlloo

X\ =1+A"PIA—-B*Y'B<I+ A*PiA=P; = X,.
We have by Lemma 6 that
Y1 =2Yp - YoXo¥o < X' < X[
Thus
X1 =I+A"PPA-B*Y'1B>1+ A*X,A-B*X'B=X,.

Therefore, Yo < V1 < X;', Xo > X1 > X4

Assume that Y, <Y, < X;l and X;_1 > X > X4+. Once again, by
Lemma 6 we have

Vi1 =2V, — Ve XY < X' < X0
Hence,
Xpp1 =1+ A XA - BYp B>T+ A X, A-B*X'B=X,.
Since Y, < ka_ll < X,:l, we have
Vi1 = Yo = Yi(Yy = Xp)Y 2 0,
and
Xpr1 — X = —A"(Xj—1 — Xx)A — B* (Y1 — Yi)B <0.

Therefore, X; > X;41 > X4, Y; <Y1 < X_;l, fori=1,2,..., and the
limits lim;_ oo X5, lim; o Y; exist. Let lim; ,oo X; = X and lim; ,Y; =Y.
Then X > X, for every positive definite solution X of Eq. (1). Taking
limits in Algorithm 2 yields

Y =Y XY,
X=I+A"XA-BYB.

Thus, Y =X tand X =1+ A*XA - B*X'B.

Hence, X = X, the largest positive definite solution of Eq. (1). O]
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5 Numerical examples

In this section we carry out numerical experiments for computing the pos-
itive definite solutions of Eq. (1) by Algorithms 1 and 2. We use notations
{X;} and {X[} for sequences generated by Algorithm 1 with Xy = P; (or
Xo = BI) and Xj = M (or X{, = al), respectively (see theorems 4 and 5),
and {X]'} generated by Algorithm 2 with X = Pr and Yy’ = I /|| Pr||« (see
Theorem 6).

Let us res(X) = | X — A*XA + B*X !B — I||». As practical stop-
ping criterions we use || Xz — Xg_1]l,, < 10719 where k is the number of
iterations.

We use the Matlab function dlyap for computing the unique positive
definite solution Pr of Eq. (7), and Cyclic reduction algorithm [13, Algo-
rithm 3.1.] for computing the largest solution M of Eq. (8) if there exist.

Example 1. We consider Eq. (1) with matrix coefficients

0.7 0.15 0.1 02 02 0.1
A= 001 08 006 |, B=| 02 015 0.15
0.02 0.03 0.83 0.1 0.15 0.25

By using diyap and Cyclic reduction algorithm, we have

0.8265 —0.1684 —0.1582 2.0161 0.6338 0.6009
M~ | -0.1684 0.8316 —0.1633 |, Pr~ | 0.6338 3.5247 1.2988
—0.1582 —-0.1633  0.8214 0.6009 1.2988 4.0809

In Table 1 we report the results of experiments for Example 1. We
obtain X7 ~ Xgg and X' ~ X/, by Algorithm 1 with Xy = P; and
X}, = M, respectively, and X =~ X{; by Algorithm 2. Moreover, we have
1 Xso — X/o1lloe = 5.0950e — 10 and || X%, — Xsol|.. = 2.0438¢ — 11. Hence,
XL = X'

Table 1: Numerical results of Example 1.

Algorithm Xo k|1 Xk —Xk-illo res(Xx)
1. (BFPI) M 101  8.7228¢— 11  6.8676e — 11
1. (BFPI) P 89 8.5141e — 11 6.7034e — 11

2. (IFV-BFPI) P; 89  9.2056e — 11  7.2477¢ — 11
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Example 2. We consider Eq. (1) with matrix coefficients

0.7 0.2 0.3 1 2 0 O
A= 0 08 06 |, B= 3 2 15 0
0 0 08 1 15 25

By using dlyap and Cyclic reduction algorithm, we have

0.8025 —-0.0976 —0.0601 1.9608 0.6239 1.5314
M=~ 1 -0.0976 09135 -0.0727 |, Pr~ | 0.6239 3.5502 6.3649
—0.0601 —0.0727  0.8887 1.5314 6.3649 26.4569

In Table 2 we report the results of experiments for Example 2. We obtain
X1, =~ X7 and X' = X{, by Algorithm 1 with Xg = P; and X = M,
respectively, and Xy, ~ X7 by Algorithm 2. Moreover, || X7 — Xg,ll,, =
4.1598¢ — 10 and || X7 — X6/, = 4.9603e — 12. Hence, for Example 2
X, = X', also.

Table 2: Numerical results of Example 2.

Algorithm Xo k| Xk — Xi-1lloo res(Xy)
1. (BFPI) M 84  9.5680e — 11 6.9057e — 11
1. (BFPI) P 76 T7.695de—11  5.5539% — 11

2. (IFV-BFPI) P; 76 7.902le —11  5.7024e — 11

Example 3. We consider Eq. (1) with matrix coefficients

0 0 0 0 0 11 21 23 25 32
252 0 0 0 | 23160 42 33
A=—| 23 2748 0 0 |, B=—| 23 60 34 18 26
501 35 45 16 42 0 3001 95 42 18 44 30

66 21 24 65 46 32 33 26 30 50

By using dlyap we compute the unique positive definite solution P; of
Eq. (7), since p(A) = 0.96 < 1. For Example 3, Theorem 4 can not be used,
since w(B) = p(B) = 0.5396 > 0.5. But, A*A > B*B. Thus, by Corollary 2
(b) we have that Eq. (1) has a solution X’ € [I, P;]. We use Algorithm 1
with Xo = Pr and X{j = I (with a = 1).

In Table 3 we report the results of experiments for Example 3. We obtain
| X412 — Xigalloo = 1.0984e — 08 and || X5, — X412/, = 4.7026e — 10.
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Table 3: Numerical results of Example 3.
Algorithm Xo k|1 Xk —Xkoillo res(Xg)
1. (BFPI) I 464  7.2760e — 12  2.3283¢ — 10
1. (BFPI) Pr 412 3.6380e —11  4.0939e — 10

2. (IFV-BFPI) P; 434 7.1054e —15  9.6634e — 13
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