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Abstract

The D-dimensional Schrödinger equation for an isotropic sextic po-
tential is brought to a form compatible with the canonical bi-confluent
Heun differential equation. The quasi-exactly solvable properties of
the model are recovered by considering polynomial solutions for the
bi-confluent Heun equation which constrains the potential parameters
in terms of rotation quantum number, space dimension and order of
the exact solvability. It is shown that the state independence of the po-
tential can be maintained by using a see-saw adjustment between the
rotation quantum number and the exact solvability order. An analysis
on the exactly solvable instances of the sextic potential is presented in
correlation with the extended set of exactly solvable states.
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1 Introduction

The study of Heun’s differential equation [1] and its confluent forms is very
important in mathematics [2, 3, 4, 5, 6, 7, 8, 9] due to its many valuable
physics applications [10, 11, 12, 13, 14, 15, 16, 17]. Indeed, the special cases
of the confluent Heun equation include well known mathematical physics
equations, such as the Spheroidal, Generalized Spheroidal, Whittaker-Hill,
Razavy, Mathieu and many other equations. In particular, the confluent
Heun equation was consistently used in quantum mechanics for the pur-
pose of finding new categories of solvable potentials [18, 19, 20]. As the
Schrödinger equation is the cornerstone of quantum mechanical treatment
of physical systems, the information related to it is essential. Exact solu-
tions of the Schrödinger equation determined in a fully algebraic manner,
are directly related to the symmetry properties of the model. The study
of these solutions reveals real or hidden and unexpected properties of the
modeled physical systems and provides guidelines to construct consistent
perturbation approaches for quantitative calculations of relevant quantities
for more complex potentials. The limited number of exactly solvable poten-
tials include the Coulomb, Kratzer, harmonic oscillator, Davidson, Morse,
Pöschl-Teller, Scarf, Rosen-Morse, Eckart, Nathanzon and a few others. A
bridge between exact models and the exactly non-solvable potentials is of-
fered by the notion of quasi-exact solvability [22], which is understood as
the property of the model to have only a finite number of exact and explicit
analytical solutions for certain parametrizations of the considered poten-
tial. All these quasi-exactly solvable models arise as special cases of the
confluent Heun equation with polynomial solutions [14, 8]. In this sense, es-
pecially useful for physical phenomena are few double-well potentials, whose
low-lying eigenstates are related to the finite polynomial solutions of the con-
fluent Heun equation. In many cases, extension to multiple dimensions is
possible, however with particular changes in physical implications [14].

Here, the case of the quasi-exactly solvable multidimensional isotropic
sextic potential will be considered in terms of the polynomial solutions of the
bi-confluent Heun equation. The aim of the study is to obtain the restriction
of the potential parameters in terms of the dimension of the coordinate
space and using this condition to extend and optimize the number of exactly
solvable states for a certain set of potential parameters. Additionally, the
quasi-exactly solvable form of the potential is analyzed in what concerns the
number of exhibiting critical points.

The paper is structured as follows. In the next section, the general canon-
ical form of the bi-confluent Heun differential equation will be presented to-
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gether with the conditions which accommodate solutions of the polynomial
type. Section 3 will be devoted to the relation between the quasi-exactly
solvableD-dimensional Schrödinger equation for an isotropic sextic potential
and the bi-confluent Heun equation with polynomial solutions. In Section
4, an example calculation will be presented for the three-dimensional case.
The final conclusions will be drawn in the last section.

2 Polynomial solutions of the bi-confluent Heun
differential equation

The canonical form of the bi-confluent Heun differential equation is [2, 3, 4,
5, 6]:

yh′′(y) +
(
1 + α− βy − 2y2

)
h′(y)

+

{
(γ − α− 2)y − 1

2
[δ + β(1 + α)]

}
h(y) = 0. (1)

If α > 0, it admits solutions of the power series form [4]:

h(y) =
∞∑
p=0

Ap

(1 + α)pp!
yp, (2)

where A0 = 1, and

(x)p =
Γ(x+ p)

Γ(x)
= x(x+ 1)...(x+ p− 1). (3)

is a Pochhammer symbol [21]. The coefficients Ap must then satisfy the
three-term recurrence relation

Ap+2 −Ap+1

{
(p+ 1)β +

1

2
[δ + β(1 + α)]

}
+Ap(γ − 2− α− 2p)(p+ 1)(p+ α+ 1) = 0, (4)

which is obtained from Eq.(1) when inserting (2) into it. In order to have
polynomial solutions, the power series (2) must be firstly bounded below,
which results in the initial condition A−1 = 0 for the recurrence relation.
The truncation from above of the power series is conditioned by

γ − 2− α = 2n, n = 0, 1, 2, .., (5)
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and

An+1 = 0. (6)

Applying these conditions to the recurrence relation (4), one can easily see
that all coefficients Ap with p > n vanish and the series (2) is indeed trun-
cated to a polynomial of degree n. The last condition actually represents a
set of linear equations for the non-vanishing coefficients An:

−1

2
[δ + β(1 + α)]A0 +A1 = 0, (7)

2n(1 + α)A0 −
{
β +

1

2
[δ + β(1 + α)]

}
A1 +A2 = 0,

4(n− 1)(2 + α)A1 −
{

2β +
1

2
[δ + β(1 + α)]

}
A2 +A3 = 0,

..........................................

2n(n+ α)An−1 +

{
nβ +

1

2
[δ + β(1 + α)]

}
An = 0. (8)

The system of linear equations can be written in a matrix form as:

MA =



∆0 1 0 0 : 0 0
Γ1 ∆1 1 0 : 0 0
0 Γ2 ∆2 1 : 0 0
.. .. .. .. .. .. ..
0 0 0 0 : ∆n−1 1
0 0 0 0 : Γn−1 ∆n





A0

A1

A2

..
An−1
An

 = 0, (9)

where

∆k = −1

2
[δ + β(1 + α)]− kβ, (10)

Γk = 2k(n− k + 1)(k + α). (11)

Finally, one can see that the second restriction (6) amounts to the compat-
ibility condition

detM = 0. (12)

The truncation of the power series (2) infer that the associated model is
quasi-exactly solvable [22], that is only a limited set of its states can be
explicitly determined in an algebraic manner. As a matter of fact, quasi-
exact solvability is directly connected to polynomial solutions of the general
Heun equation [14, 8, 23]. The quasi-exact solvability of Schrödinger equa-
tions which can be brought to the bi-confluent Heun equation form is of two
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types. If the energy is contained explicitly in the first condition (5), then
it is said that the model’s quasi-exact solvability is of type two, else the
energy is determined from the compatibility condition (6) and the quasi-
exact solvability is of type one [14]. Note however, that in the first case
the compatibility condition will be used to determine the other parameters
involved in the first condition (5) and consequently defining the energy. For
example, oscillator-like potentials lead to quasi-exactly solvable problems of
first type, while Coulomb-like potentials are of the second type.

3 Sextic potential in D dimensions

For a particle moving in an isotropic potential in D dimensions, the hyper-
radial equation has the form:[

− d2

dr2
− D − 1

r

d

dr
+
l(l +D − 2)

r2
+ V (r)− Enl

]
Ψnrl(r) = 0. (13)

The energy units are such that ~ = 2m = 1, while l is the quantum number
associated to the orthogonal group of rotations in D dimensions SO(D).
The index nr denotes distinct solutions of the equation for fixed l. The
above equation is written in a convenient Schrödinger canonical form[

− d2

dr2
+
λ(λ+ 1)

r2
+ V (r)− Enl

]
Φnrl(r) = 0, (14)

with the help of the change of function Φnrl(r) = r(D−1)/2Ψnrl(r) and using
the notation λ = l + (D − 3)/2. In what follows one will consider a sextic
potential of the following form:

V (r) = Ar2 +Br4 + Cr6. (15)

It is easy to verify that the energy eigenvalue of the Schrödinger equation
for such a potential satisfies the scaling property:

E(A,B,C) = C−
1
4E(AC−

1
2 , BC−

3
4 , 1). (16)

Other two relationships can be found such that to obtain parameter free
factor for the harmonic (r2) or the quartic (r4) term. The choice made here,
will become useful in comparing the results with the quasi-exactly solvable
model of Ref.[22]. Leaving aside the scale dependence, all information can
be obtained by solving just the sextic potential:

V (r) = ar2 + br4 + r6. (17)
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In order to solve the Schrödinger equation for this potential by means of
Heun functions, one first make the change of variable y = r2/

√
2. The new

differential equation then reads as[
y
d2

dy2
+

1

2

d

dy
− λ(λ+ 1)

4y
− 1

4

(
ay + 2by2 + 4y3 − E

)]
Φ̃nrl(y) = 0, (18)

where Φ̃nrl(y) = Φnrl(
√
y
√

2).

Making now the change of function Φ̃nrl(y) = y
λ+1
2 e−

x
4
(
√
2b+2x)h(y), one

arrives at the following equation

yh′′(y) +

(
λ+

3

2
− b√

2
y − 2y2

)
h′(y)

+

{(
b2

8
− λ− 5

2
− a

2

)
y +

√
2

4

[
E − b

2
(2λ+ 3)

]}
h(y) = 0. (19)

Comparing it with (1), the following correspondences can be made:

α = λ+
1

2
, β =

b√
2
, δ = − E√

2
, γ =

1

2

(
b2

4
− a
)
, (20)

and

∆k =

√
2

4

[
E − b

(
λ+

3

2
+ 2k

)]
, (21)

Γk = k(n− k + 1)(2k + 2λ+ 1). (22)

In order to have finite polynomial solutions, the first condition (5) becomes
a relation between the potential parameters, the rotation quantum number
λ and the truncation order n:

a =
b2

4
− 2λ− 5− 4n =

b2

4
− 2l −D − 4n− 2. (23)

In order to have a state-independent potential, the coefficients a and b must
be invariant with the change of rotation quantum number l and the trunca-
tion order n. This is realized, if the following condition is fulfilled:

l + 2n = K = const. (24)

A see-saw variation of l and n can work within this restriction [24, 25, 26, 27,
28]. Indeed, increasing l with two units, will trigger the decrease of n with a
single unit. Setting a maximum value nMax for n, one can exactly determine
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only the odd-l or even-l states, with l-dependent number of solutions for the
r variable.

Let us turn to the general form of the sextic potential, whose critical
points are r = 0 and

r± =

√
1

3

(
−b±

√
b2 − 3a

)
. (25)

Plugging in the above equation the identities (23) and (24), one obtains the
quasi-exactly solvable form of the sextic potential

VQE(r) =

(
b2

4
− 2(K + 1)−D

)
r2 + br4 + r6, (26)

whose non-zero critical points are given by

r± =

√√√√1

3

(
−b±

√
b2

4
+ 6(K + 1) + 3D

)
. (27)

Judging by the number of critical points, there are three different cases:
1) For b > 2

√
2(K + 1) +D, the potential (26) has a single minimum in

r = 0. The domain of existence for this case decreases with the increase of
the dimensions number D and the number of exactly solvable states involved
in the quantity K.

2) The critical point r = 0 of the potential (26) becomes a maximum,
and an additional minimum appears at r+ if −2

√
2(K + 1) +D < b <

2
√

2(K + 1) +D. The increase of 2(K+1)+D quantity causes the increase
of the existence interval, the lowering in energy of the potential minimum
and the displacement of the minimum position to higher r values. The effect
of b variation is opposite.

3) Finally, potential (26) can have simultaneously minima in r = 0 and
r+, separated by a maximum in r− when b < −2

√
2(K + 1) +D. In this

case, increasing 2(K + 1) +D leads to an energy lowering for the maximum
and non-zero minimum of the potential, and to their shifting to low and
respectively larger values of r. While larger values of b correspond to a
simultaneously increased maximum and decreased minimum of the potential,
both being displaced to higher r values.

The total wave function corresponding to the D-dimensional Schrödinger
equation for a quasi-exactly solvable sextic potential can be written as fol-
lows:

Ψnrl(r) = Nnrlr
le−

r4

4
− br

2

4

nMax− l+τ2∑
p=0

Anr
p(

l + D
2

)
p
p!

(
r2√

2

)p

, (28)
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where τ = 0 for even l states, and τ = 1 for odd l states, while nr denotes
the order of the solution for the secular equation involving the coefficients
Ap. The norm Nnrl can be determined in terms of hypergeometric functions
of the first kind [21].

At this point, it is instructive to compare this formalism with the one-
dimensional quasi-exactly solvable model of Ref.[22], whose differential op-
erator is

− d2

dx2
+

(
2s− 3

2

) (
2s− 1

2

)
x2

+

[
b′2 − 4a′

(
s+

1

2
+ n

)]
x2 + 2a′b′x4 + a′2x6. (29)

The above equation can be easily recovered from the formulas (13) and (26)
by matching the involved parameters as:

a′ = 1, b′ =
b

2
, 2s = l +

D

2
, (30)

and with integer n having the same significance of exact solvability order.

4 Three-dimensional case

In order to clarify the procedure, one will treat here the case of D = 3 for
a maximal truncation order nMax = 1 and consider only the even l states.
This choice amounts to K = 2 and to the following state-independent form
of the quasi-exactly solvable sextic potential

VQE(r) =

(
b2

4
− 9

)
r2 + br4 + r6. (31)

As can be seen, the results will have a parametric dependence only on b.
For l = 0, the truncation order is n = 1 and the compatibility condition for
the non-vanishing coefficients A0 and A1 reads:

det

∣∣∣∣ ∆0 1
Γ1 ∆1

∣∣∣∣ = 0. (32)

It can be expanded into a quadratic equation for the energy[
E − b

(
l +

5

2

)]2
− b2 − 8(2l + 3) = 0. (33)
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The two solution for the energy are then

E00 = b

(
l +

5

2

)
−

√
b2 + 16

(
l +

3

2

)
, (34)

E10 = b

(
l +

5

2

)
+

√
b2 + 16

(
l +

3

2

)
, (35)

with the corresponding wave-functions:

Ψ00(r) = N00e
− r

4

4
− br

2

4

1 +
b−

√
b2 + 16

(
l + 3

2

)
4
(
l + 3

2

) r2

 , (36)

Ψ10(r) = N10e
− r

4

4
− br

2

4

1 +
b+

√
b2 + 16

(
l + 3

2

)
4
(
l + 3

2

) r2

 , (37)

where coefficients A0 = 1 and A1 were determined from the two-dimensional
system of linear equations with compatibility condition (32).

Now, for l = 2 and n = 0, there is a single solution which is simply

E02 = b

(
l +

3

2

)
, Ψ02(r) = N02r

2e−
r4

4
− br

2

4 . (38)

5 Conclusions

The emergence of polynomial solutions for the bi-confluent Heun differential
equation was discussed in connection to the notion of quasi-exact solvabil-
ity. The formalism was used to investigate the quasi-exact solvability of the
D-dimensional Schrödinger equation for an isotropic sextic potential. This
was done by bringing the corresponding Schrödinger equation, through a
change of variable and function, to a canonical bi-confluent Heun form. The
conditions for polynomial solutions of the bi-confluent Heun equation are
transposed into constrains on the potential parameters in terms of rotation
quantum number, space dimension and order of the exact solvability. The
properties of the sextic potential within these constraints suggest distinct
responses to the variation of the involved quantities associated with to three
well defined phases, where the potential have specific critical point charac-
teristics. A mathematical artifice is used to adapt the formalism to state
independent potentials with extended number of exactly solvable states in
what concerns both radial and rotational quantum numbers. An illustrative
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example of the method was presented for the three-dimensional case. In
conclusion, the present study provides a complete description of the quasi-
exact solvability property of the isotropic sextic potential in connection to
the polynomial solutions of the bi-confluent Heun equation, which is easily
transposable to concrete applications. Also, it was shown that the mech-
anism assuring the potential’s state independence leads to an extension of
the quasi-exact solvability’s utility, reflected in a greater number of exactly
solvable states associated the considered potential.
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