
ISSN 2066-6594

Ann. Acad. Rom. Sci.
Ser. Math. Appl.

Vol. 12, No. 1-2/2020

TWO-TIME-SCALE

REGIME-SWITCHING STOCHASTIC

KOLMOGOROV SYSTEMS WITH

WIDEBAND NOISES∗

George Yin† Zhexin Wen‡
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Abstract

In our recent work, in lieu of using white noise, we examined Kol-
mogorov systems driven by wideband noise. Such systems naturally
arise in statistical physics, biological and ecological systems, and many
related fields. One of the motivations of our study is to treat more re-
alistic models than the usually assumed stochastic differential equation
models. The rationale is that a Brownian motion is an idealization used
in a wide range of models, whereas wideband noise processes are much
easier to be realized in the actual applications. This paper further
investigates the case that in addition to the wideband noise process,
there is a singularly perturbed Markov chain. The added Markov chain
is used to model discrete events. Although it is a more realistic formu-
lation, because of the non-Markovian formulation due to the wideband
noise and the singularly perturbed Markov chain, the analysis is more
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difficult. Using weak convergence methods, we obtain a limit result.
Then we provide several examples for the utility of our findings.
MSC: 34F05, 60H10, 92D25, 92D40

keywords: Wideband noise, Kolmogorov system, non-Markov model,
Markov chain.

1 Introduction

Recently, much effort has been devoted to stochastic Kolmogorov systems
because their wide range of applications in statistical physics, ecology, and
mathematical biology, among others. For example, there have been resur-
gent and emerging interests in studying Ginzburg-Landau equations [10]
(see also [37]) in statistical physics, Lotka-Volterra models in statistical me-
chanics of population [21] (see also [9] for such equations with functional
responses), the study of ecological models [7, 24], and the work on infectious
disease modeling [25] among others. For multi-dimensional Kolmogorov
systems, the paper [14] nearly completely classified the “threshold” of coex-
istence and extinction.

In contrast to the recent development, to the best of our knowledge,
most of the stochastic models considered thus far have been concentrated
on the “Markovian” formulation. The formulation has been confined to
the treatment of Brownian motion and/or jump type noise processes. That
is, the resulting systems are Markov processes. Owing to the use of the
Markovian formulation, we have good technical machineries to handle the
systems. One would naturally ask what if the systems are non-Markovian?
Unfortunately, for non-Markovian systems, we lose all the usual analytic
tools. There are generally no operators or generators associated to the
underlying processes.

In our recent work [38], we examined a class of such non-Markovian sys-
tems, from the consideration of approximation and scaling limit. Although
the mathematical idealization enables us to take advantage of the Marko-
vian structure, in reality, very often, one does not have true “white” noise,
but only has something close to “white” noise. In our paper, we used weak
convergence methods to obtain limit systems. The limit systems are driven
by a Brownian motion. In this paper, taking the result of [38] as a point
of departure, we further examine Kolmogorov systems in which in addition
to the wideband noise, the systems are hybrid with a switching component
that are subject to both strong and weak interactions. Mathematically, the
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systems of interest are singularly perturbed systems; see also related work
[29, 30] among others. Our objective is to show that such a system is close
to a limit problem. The limit is obtained by using methods of weak conver-
gence.

The rest of the paper is arranged as follows. We begin with some pre-
liminary results and formulation of the problem in the next section. Section
3 presents our recent results on the limit of Kolmogorov type systems per-
turbed by wideband with Markovian switching. Section 4 considers several
exams to illustrate what kind of systems can be treated under the frame-
work of this paper. Finally, Section 5 concludes the paper with some further
remarks and mention possible future works.

2 Preliminary Results and Formulation

2.1 Kolmogorov Systems

A d-dimensional stochastic Kolmogorov system under white noise is a time-
homogenous stochastic differential equation of the form

dxi(t) = xi(t)bi(x(t))dt+ xi(t)σ̂i(x(t))dwi(t),
xi(0) = xi,0 > 0, i = 1, . . . , d,

where bi(·) and σ̂i(·) are suitable nonlinear functions, x = (x1, . . . , xd)
′ ∈ Rd,

and w(·) = (w1(·), . . . , wd(·))′ is a standard d-dimensional Brownian motion.
In the above and hereafter, A′ denotes the transpose of A, with A being
either a vector or a matrix of appropriate dimension. This paper also focuses
on Kolmogorov type systems, but we assume the systems are subject to
wideband noise perturbations. In addition, we are dealing with a hybrid
system in that the system involve both continuous dynamics and discrete
events. The discrete event is modeled as a continuous-time Markov chain
whose transition rate matrix or the generator includes a fast varying part
and a slowly changing part.

An illustration of a wideband noise process can be found in [2, p. 439].
Suppose a stationary wideband noise is given by G(x, ξ(t)). One takes the
covariance of the noise R(x, s) = EG(x, ξ(t))G′(x, ξ(t + s)). Then one con-
siders its power spectral density (the Fourier transform of the covariance)
denoted by Γ(x, ω) =

∫
exp(ıωs)R(x, s)ds, where ı is the imaginary number

satisfying ı2 = −1. The premise of the wideband noise is that Γ(x, ω) = 0 for
sufficiently large ω, or it is band limited in that Γ(x, ω) = 0 for |ω| > ω0 > 0
and all x ∈ Rd. So all relevant frequencies are contained in [−ω0, ω0]. In the
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limit of an appropriate sense, the band width of the power spectral tends to
∞, and the spectral tends to that of the white noise. More precise descrip-
tion and the conditions of the wideband noise will be given in the subsequent
section. In [38], we showed how the idealized Brownian model can be ap-
proximated by a physically realizable model. The models that we are dealing
with is non-Markovian. To obtain the desired limit, we introduce a small
parameter ε > 0. Using the methods of weak convergence, we then showed
that as ε → 0, we obtain a limit system, which is the Kolmogorov system
driven by a Brownian motion. In this paper, we assume that in addition to
the wideband noise, there is a continuous-time Markov chain, which is used
to represent a discrete event process. Why should we include both fast and
slow motions in the Markov chain? The motivation stems from the consid-
eration of large-scale systems. In the new era, in a wide variety of systems,
to take into consideration of different scenarios, the discrete event process
has a state space that is very large (i.e., the state space of the Markov chain
is large). Naturally, not all the states vary at the same rate. Some of them
change rapidly, whereas others are evolving slowly. The chain fits well into
the formulation of the so-called nearly completely decomposable models (see
[5, 29]) with the different transition rates highlighted by using a small pa-
rameter. By aggregating the states in each recurrent class into one state,
the computation complexity can be much reduced.

2.2 Formulation

Consider a d-dimensional stochastic Kolmogorov system of the form

ẋεi (t) = xεi (t)fi(x
ε(t), ξε(t), αδ(t)) +

1

ε
xεi (t)σi(x

ε(t), ξε(t), αδ(t)),

xεi (0) = xi,0 > 0, αδ(0) = α0, i = 1, 2, . . . , d,
(1)

where ε > 0 and δ > 0 are small parameters, αδ(t) is a continuous-time
Markov chain with a finite state space M, fi(·, ·, ·) and σi(·, ·, ·) are appro-
priate functions so that for each ξ and each α ∈M, fi(·, ξ, α) and σi(·, ξ, α)
are smooth functions, and ξε(t) = ξ(t/ε2), where ξ(·) is a stationary φ-
mixing process satisfying certain conditions to be specified later. In this
paper, we consider the case ε = O(δ). That is, ε and δ are varying at the
same pace. To further simplify the notation, we simply assume ε = δ, which
is purely for notational simplicity.

Note that (1) is a system of random ordinary differential equations
(ODEs); see [13] for a recent study of such random dynamic systems. Note
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also that (1) is generally non-Markovian. To illustrate, consider a scalar pro-
cess y(·) (which might be called a “nonlinear” generalization of the Langevin
equation) satisfying ẏ(t) = b(y(t)) + c(y(t))ξ̃(t), where ξ̃(·) is a wideband
process with a spectral density being roughly equal to a constant v2 in a
large neighborhood of the origin. As illustrated in [18, p.34], if ξ̃(·) is not
a white Gaussian noise, y(·) is not Markovian, in Chapters 8-10, Kushner
provided a number of examples in applications. In [35], van Kampen argued
that “non-Markov is the rule, Markov is the exception.” He indicated that
physical systems are generally non-Markov.

To proceed, denote x = (x1, . . . , xd)
′ ∈ Rd,

f(·, ·, ·) = (f1(·, ·, ·), . . . , fd(·, ·, ·))′ ∈ Rd,
σ(·, ·, ·) = (σ1(·, ·, ·), . . . , σd(·, ·, ·))′ ∈ Rd.

Note that we use z′ to denote the transpose of z ∈ Rι×ι1 with ι and ι1 ≥ 1.
As usual, denote the corresponding first and second partial derivatives w.r.t.
x by fx, σx, and σxx for f and σ, respectively. Using vector notation, (1)
can be written in a more compact form as

ẋε(t) = Λ(xε(t))f(xε(t), ξε(t), αε(t)) +
1

ε
Λ(xε(t))σ(xε(t), ξε(t), αε(t)),

xε(0) = x0, α
ε(0) = α0,

Λ(x) = diag(x1, . . . , xd) ∈ Rd×d a d× d diagonal matrix.
(2)

where x0 = (x0,1, . . . , x0,d)
′ with x0,i > 0, and α0 ∈ M. Throughout the

paper, we assume that αε(·) and ξε(·) are independent. Using the notion of
p-lim [18], for any ĥ(·, ·) : Rd ×M satisfying for each α ∈ M, ĥ(·, α) ∈ C2

0

(C2 function with compact support), we can define an operator Lε by

Lεĥ(x, α) = ĥ′x(x, α)
[
Λ(x)f(x, ξ, α) +

1

ε
Λ(x)σ(x, ξ, α)

]
+Qε(t)ĥ(x, ·)(α),

(3)
where for each α ∈M,

Qε(t)ĥ(x, ·)(α) =
∑
γ∈M

qεαγ(t)ĥ(x, γ),

with Qε(t) = (qεαγ(t)) being the generator of the Markov chain αε(t). In the
next section, we provide the specific requirement for the process αε(·).

2.3 Process αε(·)

We assume that the process αε(·) has a large state space so that

M =M1 ∪M2 · · · ∪Ml,
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where for each 1 ≤ ` ≤ l,

M` = {s`1, . . . , s`m`}.

The generator of αε(·) is of the form

Qε(t) =
1

ε
Q̃(t) + Q̂(t), (4)

where Q̃(t) = diag(Q̃1(t), . . . , Q̃l(t)), and each Q̃`(t) ∈ m` × m`. Such a
model was considered in our work [39]. The rational is that M is nearly
completely decomposable in that the fast varying part is decomposed into
l generators, but the actual states are not completely separated as such
since the interactions due to Q̂(t) (not a block diagonal matrix in general)
connects the separable parts. Note also that the generator and hence the
Markov chain is time dependent. To proceed, we aggregate the states in
each M` into one state to get a new process

αε(t) = ` if αε(t) ∈M`. (5)

This aggregation process aims at reduction of computation complexity. It
views all s`j with j = 1, . . . ,m` as the same state. Thus all states inM` can
be represented by one state. Although the original state space M is large.
The state space of the aggregated process M = {1, . . . , l} is much smaller.
The cardinality of M can be much smaller than that of M. If |M| � |M|,
then significant reduction of complexity is reached. Note that αε(·) is not
Markovian. However, we can get a limit Markov process by sending ε→ 0.
This is stated in the following lemma.

Lemma 2.1 Assume that for each ` = 1, . . . , l, Q̃`(t) is weakly irreducible
(see [39]). Then αε(·) converges weakly to α(·), which is a continuous-time
Markov chain with generator

Q(t) = diag(ν1(t), . . . , νl(t))Q̂(t)diag(1lm1 , . . . , 1lml), (6)

where for each ` = 1, . . . , l, ν`(t) is the quasi-stationary distribution associ-
ated with Q̃`(t) and 1lm` is an m`-dimensional vector with all entries being
1.

Remark 2.2 For definitions of weak irreducibility and quasi-stationary dis-
tribution etc., we refer the reader to [39, Chapter 2]. The proof of the above
lemma can be found in [39, Chapter 5].
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3 Limit Results

Our objective is to show that the system with wideband noise is close to
a limit system. To prove the limit result, we use the methods of weak
convergence. The reader can find all related materials in, for example, [19,
Chapters 7 and 8].

We have assumed the existence of unique solution of the limit stochastic
Kolmogorov system, which is equivalent to that the associated martingale
problem with operator L has a unique solution. Note that we are not working
on pathwise solutions. We refer the reader to [11, Chapter 4] for further
discussion on martingale problem formulation. Sufficient conditions ensuring
the existence of unique solution in the strong sense can be found in [14,
Assumption 1.1, p. 1897]. It should be mentioned that we only need the
uniqueness to hold in the weak or distributional sense; we do not need the
uniqueness in the strong sense. The uniqueness we impose, ensures the
convergence to the correct limit. We need the following conditions.

(H1) The wideband noise ξε(t) is an Rd-dimensional process satisfying ξε(t) =
ξ(t/ε2), where ξ(·) is a stationary and bounded φ-mixing process; ξ(t)
has right continuous sample paths and a mixing measure φ̃(t) satisfy-
ing ∫ ∞

0
φ̃1/2(t)dt <∞;

moreover, for each x and each α,

Eσ(x, ξ(t), α) = 0. (7)

(H2) For each α ∈ M, the functions f(·, ·, α), σ(·, ·, α), and σx(·, ·, α) are
continuous in both variables. For each ξ and each α, f(·, ξ, α) and
σ(·, ξ, α) are locally Lipschitz in that for any x and y, and for each
positive integer n, there is a Kn > 0 such that

|f(x, ξ, α)− f(y, ξ, α)| ∨ |σ(x, ξ, α)− σ(y, ξ, α)| ≤ Kn|x− y|, (8)

where a ∨ b = max{a, b} for any two real numbers a and b. The
fx(·, ξ, α) and σxx(·, ξ, α) are continuous in x for each ξ and each α,
and bounded on bounded x-set, where fx(·, ξ, α) and σxx(·, ξ, α) denote
the gradient and hessian of f and σ w.r.t. x, respectively.

(H3) Assume that stochastic Kolmogorov system (16) has a unique solution
in the sense in distribution on [0, T ] for each 0 < T < ∞ such that
xi(t) > 0 for i = 1, . . . , d.
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Remark 3.1 For each x, each α, each 0 < T <∞, and each t ∈ [0, T ],

Ef(x, ξ(t), α) =

∫
f(x, ξ, α)µ(dξ), (9)

where µ denotes the corresponding stationary measure.

For each x and each α ∈M, denote

η(x, α) =

∫ ∞
0

E[Λ(x)σ(x, ξ(u), α)]xΛ(x)σ(x, ξ(0), α)du

1

2
S0(x, α) =

∫ ∞
0

Eσ(x, ξ(u), α)σ′(x, ξ(0), α)du.

(10)

Each of the improper integrals above is convergent because of the φ-mixing
property. For subsequent use, denote

S(x, α) = (S0(x, α) + S′0(x, α))/2,
S(x, α) = σ(x, α)σ′(x, α).

(11)

That is, σ(x, α) is the square root of S(x, α). For each sij ∈ M, Define
f(x, sij) as

f(x, sij) =

∫ ∞
0

Ef(x, ξ(u), sij)ν
i
j(u). (12)

For each ι ∈M, define F (x, ι) as

F (x, ι) = f(x, ι) + Λ−1(x)η(x, ι), (13)

We characterize the limit process by the solution of martingale problem with
operator L defined by

Lh(x, α) = h′x(x, α)Λ(x)F (x, α) +
1

2
tr[hxx(x, α)Λ(x)S(x, α)Λ(x)]

+Q(t)h(x, ·)(α), for each α ∈M,
(14)

for any h(·, α) ∈ C2
0 (i.e., the class of functions whose partial derivatives

up to the second order are continuous with compact support), where tr(A)
denotes the trace of A, hx(x, α) and hxx(x, α) denote the gradient and hes-
sian of h(x, α) with respect to x, respectively, and σ(x, α) is defined in (11)
below.

Because Λ(x) is a diagonal matrix, Λ(x) = Λ′(x). By x(t) being a solu-
tion of a martingale problem, we meant that for any h(·, α) ∈ C2

0 (i.e., C2

functions with compact support),

h(x(t), α(t))− h(x0, `)−
∫ t

0
Lh(x(s), α(s))ds is a martingale, (15)
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where α(0) = `; see [11, p. 173], or [18, pp. 15-16], or [39, p. 378] for further
details.

We consider the pair of processes (xε(·), αε(·)). Our effort is devoted to
proving that (xε(·), αε(·)) converges weakly to (x(·), α(·)) so that the limit
is a solution of the stochastic Kolmogorov system

dx(t) = Λ(x(t))F (x(t), α(t))dt+ Λ(x(t))σ(x(t), α(t))dw(t),
x(0) = x0, α(0) = α,

(16)

where w(·) is a d-dimensional standard Brownian motion, and η(x, ι) and
f(x, ι) are given by (10) and (12), respectively.

3.1 Truncated Process

Since the solution of (2) is not a priori bounded, we use an N -truncation
device [18, p.83] or [19, p.284]. We first recall the definition of N -truncation.
Let N be a fixed but otherwise arbitrary integer and BN = {x : |x| ≤ N}
be the ball of radius N centered at the origin. Consider a truncated process
xε,N (·) defined by xε,N (0) = x0, and xε,N (t) = xε(t)1{t≤τ}, and

lim
κ→∞

lim sup
ε→0

P(sup
t≤T
|xε,N (t)| ≥ κ) = 0, (17)

where 1A is the indicator function, and τ = inf{s : |xε(s)| > N}. That is, τ
is the first exit time of xε(·) from the N -ball BN and xε,N (t) is the process
that is the same as xε(·) until it exits from the ball BN and that satisfies
(17). To obtain xε,N (·), we let a truncation function ρN be defined as

ρN (x) =


1, if x ∈ BN ,
0, if x ∈ Rd −BN+1,
smooth, otherwise.

Then we can write the corresponding truncated process as a solution of the
system

ẋε,N (t) = Λ(xε,N (t))f(xε,N (t), ξε(t), αε(t))ρN (xε,N (t))

+
1

ε
Λ(xε,N (t))σ(xε,N (t), ξε(t), αε(t))ρN (xε,N (t)).

(18)

From the definition of xε,N , it is readily seen that

P(sup
t≤T
|xε,N (t)| ≥ κ) ≤

E supt≤T |xε,N (t)|
κ

→ 0 as κ→∞.
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Thus from the above discussion and the construction, xε,N (·) is an N -
truncation process. We will first prove that for a fixed N , {xε,N (·)} is tight.
Then we establish its weak convergence. Letting N →∞, we show that the
untruncated process {xε(·)} also converges. We note that in particular, we
are not working on pathwise or strong solution, but rather we are working
on convergence of probability measures.

Lemma 3.2 Under (H1)-(H3), {xε,N (·), αε(·)} is tight in D([0, T ] : Rd ×
M), where D([0, T ] : Rd ×M) is the space of functions taking values in
Rd × M satisfying that the functions are defined on [0, T ] that are right
continuous and that have left limit, endowed with the Skorohod topology.

Proof. We note that we have already established in Lemma 2.1 that αε(·)
converges to α(·) hence the tightness of {αε(·)}. Because αε(·) is tight and
has a state space M, we need only work with the component xε,N (·).

We use the perturbed test function methods (see [18, Chapter 4] and [19,
p.172]) to prove the desired result. The essence is to define a perturbation
that is small in magnitude and that results in the desired cancellation. For
any h(·) ∈ C2

0 (the class of C2 functions with compact support), using (3),
it is easy to see that

Lε,Nh(xε,N (t))

= h′x(xε,N (t))Λ(xε,N (t))f(xε,N (t), ξε(t), αε(t))ρN (xε,N (t))

+
1

ε
h′x(xε,N (t))Λ(xε,N (t))σ(xε,N (t), ξε(t), αε(t))ρN (xε,N (t)).

(19)

For simplicity, we choose h(·) to be independent of t and α. As a result, the
term involving Qε(t) in (3) disappears. Moreover, the letter N is used as
an index to reflect the dependence on the truncation level N . Comparing
to the work [38], the terms involve an αε(t) dependence, which makes the
analysis more difficult.

To proceed, we aim to average out the O(ε−1) term. Denote by Eεt
the conditional expectation on the σ-algebra up to t, i.e., Fεt , and define a
perturbation by

hε1(xε,N (t), t) =
1

ε

∫ T

t
Eεth′x(xε,N (t))Λ(xε,N (t))σ(xε,N (t), ξε(u), αε(u))

×ρN (xε,N (t))du.
(20)
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Because of the independence of ξ(·) and αε(u) and Eσ(x, ξ(u), ι) = 0 for
each ι ∈M,

Eσ(x, ξ(u), αε(u)) =
∑
ι∈M

Eσ(x, ξ(u), ι)1{αε(u)=ι}

=
∑
ι∈M

Eσ(x, ξ(u), ι)E1{αε(u)=ι} = 0.

Thus,

hε1(xε,N (t), t)

=
1

ε

∫ T

t
Eεth′x(xε,N (t))Λ(xε,N (t))σ(xε,N (t), ξε(u), αε(u))ρN (xε,N (t))du

=
1

ε

∫ T

t
h′x(xε,N (t))Λ(xε,N (t)){Eεtσ(xε,N (t), ξε(u), αε(u))

−Eσ(xε,N (t), ξε(u), αε(u))}ρN (xε,N (t))du,

and as a result, making a change of variable u→ u/ε2,

sup
t∈[0,T ]

|hε1(xε,N (t), t)| ≤ ε sup
t∈[0,T ]

∫ T/ε2

t/ε2
φ̃(u− (t/ε2))du = o(ε). (21)

Define
hε(t) = h(xε,N (t)) + hε1(xε,N (t), t).

Using the cancellation of the last term in (19),

Lε,Nhε(t)
= h′x(xε,N (t))Λ(xε,N (t))f(xε,N (t), ξε(t), αε(t))ρN (xε,N (t))

+

∫ T/ε2

t/ε2
Eεt
[
h′x(xε,N (t))Λ(xε,N (t))σ(xε,N (t), ξ(u), αε(u))ρN (xε,N (t))

]′
x
du

×Λ(xε,N (t))σ(xε,N (t), ξε(t), αε(t))ρN (xε,N (t)) + o(ε),
(22)

where o(ε) → 0 as ε → 0. Using boundedness of xε,N (·) owing to the
truncation, the continuity of f(·, ·, ι) and σ(·, ·, ι), the boundedness of {ξ(u)},
ξε(u) = ξ(u/ε2), and {ξ(t)} being stationary mixing, similar to the approach
in [38], it can be shown that

{ sup
|x|≤N

|ψ1(x, ξ(t), αε(t))|2} and

sup
∆≤1

sup
|x|≤N

{∣∣∣ ∫ T

t+∆
ψ2(x, ξ(t), αε(t))du

∣∣∣2, 0 < t ≤ T
}
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are uniformly integrable, where ψ1(x, ξ, α) can be any of the functions
f(x, ξ, α), σ(x, ξ, α), or σx(x, ξ, α), and similarly ψ2(x, ξ, α) can be either
σ(x, ξ, α) or σx(x, ξ, α). Therefore, {Lε,Nhε(t)} is uniformly integrable. It
then follows from [18, Theorem 3.4, p.48], {xε,N (·)} is tight. The desired
assertion of the lemma therefore follows. �

Because (xε,N (·), αε(·)) is tight, by Prohorov’s theorem, we can extract
a weakly convergent subsequence. Choose such a sequence and still use
the same index (for simplicity) with limit (xN (·), α(·)). By Skorohod rep-
resentation, with a slight abuse of notation, we may assume (xε,N (·), αε(·))
converges to (xN (·), α(·)) in the sense of w.p.1. We proceed to characterize
the limit process. For any h(·, ·) : Rd ×M 7→ R satisfying for each ` ∈ M,
h(·, `) ∈ C2

0 (C2 functions with compact support), form a function

h(x, α) =

l∑
`=1

h(x, `)1{α∈M`}, (x, α) ∈ Rd ×M. (23)

The definition of h(x, α) implies that

Q̃(t)h(x, ·)(α) = 0.

Then similar to (19), we have

Lε,Nh(xε,N (t), αε(t))

= h
′
x(xε,N (t), αε(t))Λ(xε,N (t))f(xε,N (t), ξε(t), αε(t))ρN (xε,N (t))

+
1

ε
h
′
x(xε,N (t), αε(t))Λ(xε,N (t))σ(xε,N (t), ξε(t), αε(t))ρN (xε,N (t))

+Q̂(t)h(xε,N (t), ·)(αε(t)).
(24)

As (20), we define a perturbation hε1(xε,N (t), t). Then (21) still holds,
which indicates that the perturbation is small. Define

h
ε
(t) = h(x, α) + hε1(x, t). (25)

Canceling the O(ε−1) term, detailed calculation reveals that

Lε,Nhε(t)
= h

′
x(xε,N (t), αε(t))Λ(xε,N (t))f(xε,N (t), ξε(t), αε(t))ρN (xε,N (t))

+

∫ T/ε2

t/ε2
Eεt
[
h
′
x(xε,N (t), αε(t))Λ(xε,N (t))σ(xε,N (t), ξ(u), αε(u))

×ρN (xε,N (t))
]′
x
duΛ(xε,N (t))σ(xε,N (t), ξε(t), αε(t))ρN (xε,N (t))

+Q̂(t)h(xε,N (t), ·)(αε(t)) + o(ε),
(26)
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where o(ε)→ 0 as ε→ 0.
We proceed to carry out the averaging procedure. For any ∆ > 0,

t, s > 0, and s ≤ ∆, using (26), we obtain

h
ε
(t+ s)− hε(t)

=

∫ t+s

t
h
′
x(xε,N (u), αε(u))Λ(xε,N (u))f(xε,N (u), ξε(u), αε(u))

×ρN (xε,N (u))du

+

∫ t+s

t

∫ T/ε2

u/ε2
Eεu
[
h
′
x(xε,N (u), αε(u))Λ(xε,N (u))σ(xε,N (u), ξ(v), αε(v))

×ρN (xε,N (u))
]′
x
dvΛ(xε,N (u))σ(xε,N (u), ξε(u), αε(u))ρN (xε,N (u))du

+

∫ t+s

t
Q̂(u)h(xε,N (u), ·)(αε(u))du+ o(ε),

(27)
where o(ε)→ 0 as ε→ 0.

Define
c̃εij(t) = 1{αε(t)=sij} − ν

i
j(t)1{αε(t)=i}, (28)

where 1{B} denotes the indicator of the event B. Then∫ t+s

t
h
′
x(xε,N (u), αε(u))Λ(xε,N (u))f(xε,N (u), ξε(u), αε(u))ρN (xε,N (u))du

=
l∑

i=1

mi∑
j=1

∫ t+s

t
h
′
x(xε,N (u), sij)Λ(xε,N (u))f(xε,N (u), ξε(u), sij)

×ρN (xε,N (u))νij(u)1{αε(u)=i}du

+
l∑

i=1

mi∑
j=1

∫ t+s

t
h
′
x(xε,N (u), sij)Λ(xε,N (u))f(xε,N (u), ξε(u), sij)

×ρN (xε,N (u))c̃εij(u)du.
(29)

To proceed, we state a lemma.

Lemma 3.3 Suppose that αε(·) satisfies the condition in Lemma 2.1, for
each i, j ∈M, θij(·) is a bounded and continuous process that is independent
of αε(·). Then for any 0 < t < T <∞, we have

E
∣∣∣∣∫ T

t
θij(u)c̃εij(u)du

∣∣∣∣2 = O(ε). (30)

Proof. The proof is similar to [39, Theorem 5.25]. The only modifications
needed is to insert a conditional expectation Et together with using the
independence of θij(·) with αε(·). We omit the details here. �
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Using Lemma 3.3, the truncation, the continuity of the functions and
hence the boundedness, and the Cauchy-Shwartz inequality, we have

E
∣∣∣ l∑
i=1

mi∑
j=1

∫ t+s

t
h
′
x(xε,N (u), sij)Λ(xε,N (u))f(xε,N (u), ξε(u), sij)

×ρN (xε,N (u))c̃εij(u)du
∣∣∣

≤ K max
1≤i≤l,1≤j≤mi

E
∣∣∣ ∫ t+s

t
h
′
x(xε,N (u), sij)Λ(xε,N (u))f(xε,N (u), ξε(u), sij)

×ρN (xε,N (u))c̃εij(u)du
∣∣∣

≤ K max
1≤i≤l,1≤j≤mi

E1/2
∣∣∣ ∫ t+s

t
θij(u)c̃εij(u)du

∣∣∣2 = O(
√
ε),

(31)
where K is a generic positive constant whose value may change for different
appearances, and θij(u) is chosen as the integrand without the term c̃εij(u)
in the third line of (31). Denoting

f(xε,N (u), ξε(u), sij)ν
i
j(u) = f̃(xε,N (u), ξε(u), sij),

it is easily seen that

l∑
i=1

mi∑
j=1

∫ t+s

t
h
′
x(xε,N (u), sij)Λ(xε,N (u))f(xε,N (u), ξε(u), sij)ρ

N (xε,N (u))

×νij(u)1{αε(u)=i}du

=
l∑

i=1

mi∑
j=1

∫ t+s

t
h′x(xε,N (u), sij)Λ(xε,N (u))f̃(xε,N (u), sij)ρ

N (xε,N (u))

×1{αε(u)=i}du

=

∫ t+s

t
h′x(xε,N (u), αε(u))Λ(xε,N (u))f̃(xε,N (u), αε(u))ρN (xε,N (u))du.

Moreover, the calculation in (31) leads to

E
∣∣∣ ∫ t+s

t
h
′
x(xε,N (u), αε(u))Λ(xε,N (u))f(xε,N (u), ξε(u), αε(u))ρN (xε,N (u))du

−
∫ t+s

t
h′x(xε,N (u), αε(u))Λ(xε,N (u))f̃(xε,N (u), αε(u))ρN (xε,N (u))du

∣∣∣
→ 0 as ε→ 0.

By the weak convergence of (xε,N (·), αε(·)) to (xN (·), α(·)) and the Sko-
rohod representation, with a slight abusing of notation, we may assume that
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(xε,N (·), αε(·)) → (xN (·), α(·)) w.p.1 as ε → 0. Partition the interval [0, s]
into t0 < t1 < · · · < tL < tL+1 = s so that the subintervals have equal length
ε1−∆ for some 0 < ∆ < 1 (i.e., tk = kε1−∆). Then we have∫ t+s

t
h′x(xε,N (u), αε(u))Λ(xε,N (u))f̃(xε,N (u), ξε(u), αε(u))ρN (xε,N (u))du

=
L∑
k=0

∫ tk+1

tk

h′x(xε,N (u), αε(u))Λ(xε,N (u))f̃(xε,N (u), ξε(u), αε(u))

×ρN (xε,N (u))du

=
L∑
k=0

∫ tk+1

tk

h′x(xε,N (tk), α
ε(t−k ))Λ(xε,N (tk))f̃(xε,N (tk), ξ

ε(u), αε(t−k ))

ρN (xε,N (tk))du+ o(1),
(32)

where o(1)→ 0 in probability uniformly in t. We further have

L∑
k=0

∫ tk+1

tk

h′x(xε,N (tk), α
ε(t−k ))Λ(xε,N (tk))f̃(xε,N (tk), ξ

ε(u), αε(t−k ))

×ρN (xε,N (tk))du

=
L∑
k=0

ε1−∆ ε2

tk+1 − tk

∫ tk+1

ε2

tk
ε2

h′x(xε,N (tk), α
ε(t−k ))Λ(xε,N (tk))

×f̃(xε,N (tk), ξ(v), αε(t−k ))ρN (xε,N (tk))dv.
(33)

In the last line above, we used the change of variable v = u/ε2. Next using
a finite-valued approximation of xε,N (tk); see [19, Chapter 6.1, p.169]. That
is, for any η > 0, let {Bη

κ : κ ≤ κη} be a finite collection of disjoint sets of
diameter small than η, then we can write

h′x(xε,N (tk), α
ε(t−k ))Λ(xε,N (tk))f̃(xε,N (tk), ξ(v), αε(t−k ))ρN (xε,N (tk))

=

l∑
i=1

κη∑
κ=1

1{xε,N (tk)∈Bηκ}1{αε(t−k )=i}h
′
x(xηκ, i)Λ(xηκ)f̃(xηκ, ξ(v), i)ρN (xηκ).

Furthermore, the law of large numbers of mixing process implies that for
each κ,

ε2

tk+1 − tk

∫ tk+1

ε2

tk
ε2

h′x(xηκ, i)Λ(xηκ)f̃(xηκ, ξ(v), i)ρN (xηκ)dv

→ h′x(xηκ, i)Λ(xηκ)f(xηκ, i)ρ
N (xηκ),

(34)



Kolmogorov Systems with Wideband Noises 77

where f is an average of f̃ w.r.t. the stationary measure of ξ. Finally,
combining (31)-(34), we arrive at (with the use of Skorohod representation),
as ε→ 0,∫ t+s

t
h
′
x(xε,N (u), αε(u))Λ(xε,N (u))f(xε,N (u), ξε(u), αε(u))ρN (xε,N (u))du

→ h′x(xN (u), α(u))Λ(xN (u))f(xN (u), α(u))ρN (xN (u))du w.p.1.
(35)

Next, we have∫ t+s

t
Q̂(u)h(xε,N (u), ·)(αε(u))du

=
l∑

i=1

mi∑
j=1

∫ t+s

t
Q̂(u)h(xε,N (u), ·)(sij)1{αε(u)=sij}du

=
l∑

i=1

mi∑
j=1

∫ t+s

t
Q̂(u)h(xε,N (u), ·)(sij)νij(u)1{αε(u)=i}du

+
l∑

i=1

mi∑
j=1

∫ t+s

t
Q̂(u)h(xε,N (u), ·)(sij)c̃εij(u)du.

(36)

Similar to the previous estimates, it can be shown that

E
∣∣∣ l∑
i=1

mi∑
j=1

∫ t+s

t
Q̂(u)h(xε,N (u), ·)(sij)c̃εij(u)du

∣∣∣→ 0 as ε→ 0. (37)

Note also that

l∑
i=1

mi∑
j=1

∫ t+s

t
Q̂(u)h(xε,N (u), ·)(sij)νij(u)1{αε(u)=i}du

=

∫ t+s

t
diag(ν1(u), . . . , νl(u))Q̂(u)diag(1lm1 . . . , 1lml)

×h(xε,N (u), ·)(αε(u))du

=

∫ t+s

t
Q(u)h(xε,N (u), ·)(αε(u))du.

(38)

Moreover,

E
∣∣∣ ∫ t+s

t
Q̂(u)h(xε,N (u), ·)(αε(u))du

−
∫ t+s

t
Q(u)h(xε,N (u), ·)(αε(u))du

∣∣∣→ 0.

(39)
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Thus, the weak convergence of (xε,N (·), αε(·)) to (xN (·), α(·)), and the Sko-
rohod representation (with a slight abuse of notation) imply that∫ t+s

t
Q̂(u)h(xε,N (u), ·)(αε(u))du

→
∫ t+s

t
Q(u)h(xN (u), ·)(α(u))du w.p.1.

(40)

Likewise, we can examine the term on the third and the fourth lines of
(27). Detailed analysis reveals that

E
∣∣∣ ∫ t+s

t

∫ T/ε2

u/ε2
Eεu
[
h
′
x(xε,N (u), αε(u))Λ(xε,N (u))σ(xε,N (u), ξ(v), αε(v))

×ρN (xε,N (u))
]′
x
dvΛ(xε,N (u))σ(xε,N (u), ξε(u), αε(u))ρN (xε,N (u))du

−
∫ t+s

t

∫ T/ε2

u/ε2
Eεu
[
h′x(xε,N (u), αε(u))Λ(xε,N (u))σ(xε,N (u), ξ(v), αε(v))

×ρN (xε,N (u))
]′
x
dvΛ(xε,N (u))σ(xε,N (u), ξε(u), αε(u))ρN (xε,N (u))du

∣∣∣
→ 0 as ε→ 0.

(41)
Furthermore, as ε→ 0,∫ t+s

t

∫ T/ε2

u/ε2
Eεu
[
h′xx(xε,N (u), αε(u))Λ(xε,N (u))σ(xε,N (u), ξ(v), αε(v))

×ρN (xε,N (u))Λ(xε,N (u))σ(xε,N (u), ξε(u), αε(u))ρN (xε,N (u))du

→ 1

2

∫ t+s

t
tr[hxx(xN (u), α(u))Λ(xN (u))σ(xN (u), α(u))σ′(xN (u), α(u))

×Λ(xN (u))ρN (xN (u))]du.
(42)

Noting (10)-(13), we can show that∫ t+s

t

∫ T/ε2

u/ε2
Eεu
[
h′x(xε,N (u), αε(u))[Λ(xε,N (u))σ(xε,N (u), ξ(v), αε(v))

×ρN (xε,N (u))]x

]′
dvΛ(xε,N (u))σ(xε,N (u), ξε(u), αε(u))ρN (xε,N (u))du

→
∫ t+s

t
h′x(xN (u), α(u))η(xN (u), α(u))du.

(43)
By putting the estimates obtained thus far, the desired result thus follows.

Combining the results obtained thus, we have shown that (xN (·), α(·)) is
a solution of the martingale problem with operator LN , where LN is defined
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as in (14) with Λ(x)F (x, α), and Λ(x)S(x, α)Λ(x) replaced by [Λ(x)F (x, α)]N ,
and [Λ(x)S(x, α)Λ(x)]N , respectively, where [Φ(x)]N = Φ(x)ρN (x) is the
N -truncation of Φ(x) with Φ(x) being Λ(x)F (x, α), and Λ(x)S(x, α)Λ(x),
respectively.

Finally, we show that with the untruncated process xε(·) used, we still
have that (xε(·), αε(·)) converges weakly to the desired limit. The last part
of the proof is similar to [18, last paragraph on p. 46]. We thus omit the
details. We summarize it in the next assertion.

Theorem 3.4 Assume that conditions (H1)-(H3) hold. Then (xε(·), αε(·))
converges weakly to (x(·), α(·)) such that x(·) is the solution of (16).

4 Examples

We have obtained the weak convergence of the Kolmogorov systems driven
by a wideband noise to the Kolmogorov systems driven by Brownian motions
under appropriate conditions. This section provides several examples that
illustrate the systems can be treated under our framework.

4.1 SIR Models

Consider the following example

Ṡε(t) =
(
π(αε(t))− β(αε(t))Sε(t)Iε(t)− µ(αε(t))Sε(t))dt

+σ1(αε(t))Sε(t)ξε(t),

İε(t) = [β(αε(t))Sε(t)Iε(t)− [µ(αε(t)) + ρ(αε(t)) + γ(αε(t))]Iε(t)]dt

+σ2(αε(t))Iε(t)ξε(t),

Ṙε(t) = (γ(αε(t))Iε(t)− µ(αε(t))Rε(t))dt+ σ3(αε(t))Rε(t)ξε(t),

Sε(0) = s0, I
ε(0) = i0, R

ε(0) = r0,

(44)
which is a variation of the diffusion model that was studied carefully in [6].
This model is one of the well studied classical epidemic models known as
the SIR (Susceptible-Infected-Removed) model with noise added. In the SIR
model, a homogeneous host population is subdivided into three epidemio-
logically distinct types of individuals: (S): The susceptible class, the class of
those individuals who are capable of contracting the disease and becoming
infective, (I): the infective class, the class of those individuals who are capa-
ble of transmitting the disease to others, (R): the removed class, the class of
infected individuals who are dead, or have recovered, and are permanently
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immune, or are isolated. In (44), S(t), I(t), and R(t) are the numbers of
individuals at time t in classes (S), (I), and (R), respectively; W (·) is a stan-
dard real-valued Brownian motion, σ1, σ2, and σ3 are the intensities of the
white noise; π is the per capita birth rate of the population, µ is the per
capita disease-free death rate and ρ is the excess per capita death rate of
infective class, β is the effective per capita contact rate, and γ is per capita
recovery rate of the infective individuals. As it was argued in [6], because
the dynamics of the recovered class has no effect on the disease transmission
dynamics, we only consider the following system:



Ṡε(t) = [π(αε(t))− β(αε(t))Sε(t)Iε(t)− µ(αε(t))Sε(t)]dt

+
1

ε
σ1(αε(t))Sε(t)ξε(t),

İε(t) =[β(αε(t))Sε(t)Iε(t)− [µ(αε(t)) + ρ(αε(t)) + γ(αε(t))]Iε(t)]dt

+
1

ε
σ2(αε(t))Iε(t)ξε(t),

Sε(0) = s0, I
ε(0) = i0.

(45)
Using Theorem 3.4, we can show that (Sε(·), Iε(·), αε(·)) converges weakly
to (S(·), I(·), α(·)), where the limit is the solution of


dS(t) = [π(α(t))− β(α(t))S(t)I(t)− µ(α(t))S(t)]dt+ σ1(α(t))S(t)dW (t),

dI(t) = [β(α(t))S(t)I(t)− [µ(α(t)) + ρ(α(t)) + γ(α(t))]I(t)]dt

+σ2(α(t))I(t)dW (t),

S(0) = s0, I(0) = i0.

(46)

4.2 Replicator Dynamics

The study of the replicator dynamic systems was initially proposed by Taylor
and Jonker in [31]. Since then significant progress has been made in biology
(see [15, 26]), economics (see [36]), as well as in optimization and control for
a variety of systems (see [3, 27, 34]).

Consider replicator dynamics for a game with d strategies, involving
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wideband noise. The system is given by

ẋεi (t) = xεi (t)
(
fi(x

ε(t), αε(t))− 1

X

d∑
j=1

xεj(t)fj(x
ε(t), αε(t))

)
+

1

ε
xεi (t)

(
σi(α

ε(t)ξεi (t)−
1

X

d∑
j=1

σj(α
ε(t))xεj(t)ξ

ε
j (t)

)
; i = 1, . . . , d,

(47)
where X is the size of the populations; xi(t) is the portion of population that
has selected the ith strategy and the distribution of the whole population
among the strategy; x(t) = (x1(t), . . . , xd(t))

′; ξε(t) is a wideband noise
satisfying condition (H1); the fitness functions fi(·, ·) : Rd+ ×M → R, i =
1, . . . , d are the payoffs obtained by the individuals playing the ith strategy;
x(0) = x0 is the initial value.

Under the conditions of Theorem 3.4, (xε(·), αε(·)) converges weakly to
(x(·), α(·)) such that x(·) = (x1(·), . . . , xd(·)) is the solution of

dxi(t) = xi(t)
(
f i(x(t), α(t))− 1

X

d∑
j=1

xj(t)f j(x(t), α(t))
)
dt

+xi(t)
(
σi(α(t))dwi(t)−

1

X

d∑
j=1

σj(α(t))xj(t)dwj(t)
)

; i = 1, . . . , d,

(48)
and w(·) = (w1(·), . . . , wd(·))′ is an `-dimensional standard Brownian mo-
tion. In recent years, much attention has been devoted to stochastic replica-
tor dynamic systems. One of the most recent one is [23], which considered
a system with time delays and rather general dynamics. Our work in wide-
band noise driven systems enabled the handling of systems that are not
necessarily Markovian and the perturbing noise is not necessarily white.

4.3 Lotka-Volterra Model

Consider a stochastic Lotka-Volterra ecosystem in random environments de-
scribed by the following random differential equation with regime switching
in the form

dxi(t) = xi(t)


[
ri(α

ε(t))−
d∑
j=1

aij(α
ε(t))xj(t)

]
dt+ σi(α

ε(t))ξεi (t)

 ,

i = 1, 2, . . . , d,
(49)
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where αε(·) is a continuous-time finite sate Markov chain with state spaceM
satisfying conditions in Section 2.3. The ξε(·) is a wideband noise satisfies
condition (H1). The processes ξε(·) and αε(·) are independent. Denote

bi(α) = ri(α)− 1

2
σ2
i (α)

for each i = 1, 2, . . . , d.

For each α ∈ M, b(α) = (b1(α), . . . , bd(α))′, A(α) = (aij(α)), Σ(α)
= diag(σ1(α), . . . , σd(α)) represent different growth rates, community ma-
trices, and noise intensities in different external environments, respectively;
see [40]. We assume bi(α) > 0 for each α ∈ M and each i = 1, . . . , d. De-
note xε(t) = (xε1(t), . . . , xεd(t))

′ and x(t) = (x1(t), . . . , xd(t))
′. Then using

the conditions in Theorem 3.4, we can show that (xε(·), αε(·)) converges
weakly to (x(·), α(·)) such that x(·) is the solution of the stochastic differ-
ential equation

dxi(t) = xi(t)


[
ri(α(t))−

d∑
j=1

aij(α(t))xj(t)

]
dt+ σi(α(t))dwi(t)

 ,

i = 1, 2, . . . , d,
(50)

where w(·) = (w1(·), . . . , wd(·))′ is a d-dimensional standard Brownian mo-
tion that is independent of the Markov chain α(·).

5 Further Remarks

This paper examines stochastic Kolmogorov systems, in which in lieu of
Brownian motions, a wideband noise process is serving as the driving noise.
In addition, there is a singularly perturbed continuous-time Markov chain
that is subject to both strong and weak interactions. In addition to the
analysis, several examples are provided.

One of the fundamental issues for systems arising in ecology and popula-
tion biology is: What are the minimal conditions needed for the population
to be permanent (existing for a long time)? Likewise, what are the con-
ditions for the population to reach the extinction. As alluded to in the
introduction, usually, this study is based on the Markovian formulation of
the underlying systems.

An important question is: Suppose that the Markovian formulation is
no longer available and the perturbing noise is not white noise but only
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approximation of white noise, can we still study the permanence and ex-
tinction questions. It is difficult to study Kolmogorov systems in general,
but it is possible to study an example where the functions involved and the
coefficients are explicitly given. We first recall the following definitions.

We say that the process X(·) is strongly stochastically persistent if for
any η > 0, there exists an R > 0 such that for any x ∈ Rd+,

lim inf
t→∞

Px
(
R−1 ≤ |X(t)| ≤ R

)
≥ 1− η,

where Px denotes the probability with initial data X(0) = x.
For each x ∈ Rd+, we say the population goes extinct with probability px

if
Px
(

lim
t→∞

X(t) = 0
)

= px,

where px denotes the dependence on the initial data x. We say that the
population X(t) goes extinct if for all x ∈ Rd+,

Px
(

lim
t→∞

X(t) = 0
)

= 1.

Consider an SIR model with no switching but with wideband noise per-
turbations. The results in our work [6] with no switching (i.e., the param-
eters π, β, ρ, γ, σ1, σ2, and σ3 are all constants) shows that for the limit
system driven by a white noise, the Lyapunov exponent associated with the
system of interest is given by

λ =
πβ

µ
−
(
µ+ ρ+ γ +

σ2
2

2

)
.

If λ < 0, then for any initial value (S(0), I(0)) = (u, v) ∈ R2,◦
+ (the interior

of the first quadrant), we have

lim sup
t→∞

ln Iu,v(t)

t
≤ λ a.s., (51)

where Iu,v(t) denotes the solution of (46) with initial data (S(0), I(0)) =
(u, v). In addition Su,v(t) has an invariant measure. Now, suppose that we

are using the setting as in this paper, but with the Qε(t) = Q̃(t)/ε + Q̂(t),
where Q̃(t) is weakly irreducible. That is, we only have one irreducible class.
In this case, we can then use the methods of perturbed Lyapunov functions
[18, 39] to study the asymptotic behavior (Sε(t), Iε(t)).

For more general switching process as given in this paper, an interesting
and important problem is to handle the study on permanence and extinction
for such systems. Much more thoughts and careful analysis are needed.
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Remark

Professor Vasile Dragan has made significant contributions to the fields
of differential equations, dynamic systems, and control and optimization.
Many of his works, for example [8], have made major impact to the fields.
On the occasion of the celebration of his 70th birthday, we send him our
best wishes.
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