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Abstract

We consider a fractional differential inclusion involving Caputo-
Fabrizio fractional derivative and we obtain a sufficient condition for
h-local controllability along a reference trajectory. To derive this re-
sult we use convex linearizations of the fractional differential inclusion.
More precisely, we show that the fractional differential inclusion is h-
locally controlable around a solution z if a certain linearized inclusion
is λ-locally controlable around the null solution for every λ ∈ ∂h(z(T )),
where ∂h denotes Clarke’s generalized Jacobian of the locally Lipschitz
function h.
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1 Introduction

In the last years one may see a strong development of the theory of differen-
tial equations and inclusions of fractional order ([3, 10, 11, 12, 13] etc.). The
main reason is that fractional differential equations are very useful tools in
order to model many physical phenomena. In the fractional calculus there
are several fractional derivatives. From them, the fractional derivative intro-
duced by Caputo in [4] allows to use Cauchy conditions which have physical
meanings.

Recently, a new fractional order derivative with regular kernel has been
introduced by Caputo and Fabrizio [5]. The Caputo-Fabrizio operator is use-
ful for modeling several classes of problems with the dynamics having the
exponential decay law. This new definition is able to describe better het-
erogeneousness, systems with different scales with memory effects, the wave
movement on surface of shallow water, the heat transfer model, mass-spring-
damper model ([15]) etc.. Another good property of this new definition is
that using Laplace transform of the fractional derivative the fractional dif-
ferential equation turns into a classical differential equation of integer order.
Properties of this definition have been studied in [1, 5, 6, 15] etc.. Some
recent papers are devoted to qualitative results for fractional differential
equations defined by Caputo-Fabrizio fractional derivative [16, 17, 20] etc..

In this paper we study the following problem

Dσ
CFx(t) ∈ F (t, x(t)) a.e. ([0, T ]), x(0) ∈ X0, x′(0) ∈ X1, (1.1)

where F (., .) : [0, T ]×R→ P(R) is a set-valued map, Dσ
CF denotes Caputo-

Fabrizio’s fractional derivative of order σ ∈ (1, 2) and X0, X1 ⊂ R are closed
sets.

Consider SF the set of all solutions of (1.1) and let RF (T ) be the reach-
able set of (1.1) at moment T . For a solution z(.) ∈ SF and for a locally
Lipschitz function h : R→ Rm we say that the differential inclusion (1.1) is
h-locally controllable around z(.) if h(z(T )) ∈ int(h(RF (T ))). In particular,
if h is the identity mapping and m = 1 the above definitions reduces to the
usual concept of local controllability of systems around a solution.

The goal of the present paper is to obtain a sufficient condition for h-
local controllability of inclusion (1.1). This result is derived using a tech-
nique developed by Tuan for classical differential inclusions ([18]). More
exactly, we show that inclusion (1.1) is h-locally controlable around the so-
lution z(.) if a certain linearized fractional differential inclusion is λ-locally
controlable around the null solution for every λ ∈ ∂h(z(T )), where ∂h(.)
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denotes Clarke’s generalized Jacobian matrix of the locally Lipschitz func-
tion h. The main tools in our approach is a continuous version of Filippov’s
theorem for solutions of problem (1.1) obtained recently in [8] and a certain
generalization of the classical open mapping principle in [19]. We note that
such kind of results exists in the literature for other classes of differential
inclusions (e.g., [7]).

The paper is organized as follows: in Section 2 we present the notations
and the preliminary results to be used in the sequel and in Section 3 we
provide our main results.

2 Preliminaries

Let T > 0, I := [0, T ] and denote by L(I) the σ-algebra of all Lebesgue
measurable subsets of I. Denote by P(R) the family of all nonempty subsets
of R and by B(R) the family of all Borel subsets of R.

As usual, we denote by C(I,R) the Banach space of all continuous func-
tions x(.) : I → R endowed with the norm |x(.)|C = supt∈I |x(t)| and by
L1(I,R) the Banach space of all integrable functions x(.) : I → R endowed

with the norm |x(.)|1 =
∫ T

0 |x(t)|dt.
In [5] the following notions were introduced.

Definition 2.1. a) Caputo-Fabrizio integral of order α ∈ (0, 1) of a function
f ∈ ACloc([0,∞),R) (which means that f ′(.) is integrable on [0, T ] for any
T > 0) is defined by

IαCF f(t) = (1− α)f(t) + α

∫ t

0
f(s)ds.

b) Caputo-Fabrizio fractional derivative of order α ∈ (0, 1) of f is defined
for t ≥ 0 by

Dα
CF f(t) =

1

1− α

∫ t

a
e−

α
1−α (t−s)f ′(s)ds.

c) Caputo-Fabrizio fractional derivative of order σ = α + n, α ∈ (0, 1)
n ∈ N of f is defined by

Dσ
CF f(t) = Dα

CF (Dn
CF f(t)).

In particular, if σ = α+ 1, α ∈ (0, 1) Dσ
CF f(t) = 1

1−α
∫ t
a e
− α

1−α (t−s)f ′′(s)ds.

Definition 2.2. A mapping x(.) ∈ AC(I,R) is called a solution of problem
(1.1) if there exists a function f(.) ∈ L1(I,R) such that f(t) ∈ F (t, x(t))
a.e. (I), Dα

CFx(t) = f(t), t ∈ I and x(0) = x0 ∈ X0, x
′(0) = x1 ∈ X1.
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In this case we say that (x(.), f(.)) is a trajectory-selection pair of (1.1).

Hypothesis 2.3. (i) F (., .) : I × R → P(R) has nonempty closed values
and is L(I)⊗ B(R) measurable.

(ii) There exists L(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F (t, .)
is L(t)-Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀x, y ∈ R,

where dH(., .) is the Hausdorff distance

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A}.

Hypothesis 2.4. i) S is a separable metric space and a(.), b(.) : S → R,
c(.) : S → (0,∞) are continuous mappings.

ii) There exists the continuous mappings y(.) : S → AC(I,R) and p(.) :
S → R such that

d(D(y(s))σCF (t), F (t, y(s)(t)) ≤ p(s)(t) a.e. (I), ∀ s ∈ S.

We use next the notations

ξ(s)(t) = MeMm(t)[tc(s) + |a(s)− y(s)(0)|+ T |b(s)− (y(s))′(0)|]
+
∫ t

0 p(s)(u)eM(m(t)−m(u))du, M = (1− α) + αT, m(t) =
∫ t

0 L(s)ds.

The main tool in characterizing regular tangent cones to reachable sets of
our fractional differential inclusion is a certain version of Filippov’s theorem
for fractional differential inclusion (1.1) in [8].

Theorem 2.5. Assume that Hypotheses 2.5 and 2.6 are satisfied.
Then there exist a continuous mapping x(.) : S → C(I,R), such that for

any s ∈ S, x(s)(.) is a solution of problem

Dσ
CF z(t) ∈ F (t, z(t)), x(0) = a(s), x′(0) = b(s)

and
|x(s)(t)− y(s)(t)| ≤ ξ(s)(t) ∀(t, s) ∈ I × S.

In what follows X ⊂ Rn and B ⊂ Rn is the closed unit ball.

Definition 2.6. ([14]) A closed convex cone C ⊂ Rn is said to be a regular
tangent cone to the set X at x ∈ X if there exists continuous mappings
qλ : C ∩B → Rn, ∀λ > 0 satisfying

lim
λ→0+

max
v∈C∩B

||qλ(v)||
λ

= 0,
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x+ λv + qλ(v) ∈ X ∀λ > 0, v ∈ C ∩B.

From the multitude of the intrinsic tangent cones in the literature (e.g.
[2]) the contingent, the quasitangent and Clarke’s tangent cones, defined,
respectively, by

KxX = {v ∈ Rn; ∃ sm → 0+, xm ∈ X : xm−x
sm
→ v},

QxX = {v ∈ Rn; ∀ sm → 0+, ∃xm ∈ X : xm−x
sm
→ v},

CxX = {v ∈ Rn; ∀ (xm, sm)→ (x, 0+), xm ∈ X,∃ ym ∈ X : ym−xm
sm

→ v}

seem to be among the most oftenly used in the study of different problems
involving nonsmooth sets and mappings. We recall that, in contrast with
KxX,QxX, the cone CxX is convex and one has CxX ⊂ QxX ⊂ KxX.

The results in the next section will be expressed, in the case when the
mapping g(.) : X ⊂ Rn → Rm is locally Lipschitz at x, in terms of the
Clarke generalized Jacobian matrix, defined in [9] by

∂g(x) = co{ lim
i→∞

g′(xi); xi → x, xi ∈ X\Ωg},

where co{M} denotes the convex hull of a set M and Ωg is the set of points
at which g is not differentiable.

Corresponding to each type of tangent cone, say τxX one may introduce
(e.g., [2]) a set-valued directional derivative of a multifunction G(.) : X ⊂
Rn → P(Rn) (in particular of a single-valued mapping) at a point (x, y) ∈
Graph(G) as follows

τyG(x; v) = {w ∈ Rn; (v, w) ∈ τ(x,y)Graph(G)},

v ∈ τxX.

We recall that a set-valued map, A(.) : Rn → P(Rn) is said to be a
convex (respectively, closed convex) process if Graph(A(.)) ⊂ Rn ×Rn is a
convex (respectively, closed convex) cone. For the basic properties of convex
processes we refer to [2], but we shall use here only the above definition.

Hypothesis 2.7. i) Hypothesis 2.3 is satisfied and X0, X1 ⊂ R are closed
sets.

ii) (z(.), f(.)) ∈ C(I,R)×L1(I,R) is a trajectory-selection pair of (1.1)
and a family A(t, .) : R → P(R), t ∈ I of convex processes satisfying the
condition

A(t, u) ⊂ Qf(t)F (t, .)(z(t);u) ∀u ∈ dom(A(t, .)), a.e. t ∈ I (2.1)
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is assumed to be given and defines the variational inclusion

Dσ
CFw(t) ∈ A(t, w(t)). (2.2)

Remark 2.8. We mention that for any set-valued map F (., .), one may find
an infinite number of families of convex process A(t, .), t ∈ I, satisfying con-
dition (2.1); in fact any family of closed convex subcones of the quasitangent
cones, A(t) ⊂ Q(z(t),f(t))graph(F (t, .)), defines the family of closed convex
process

A(t, u) = {v ∈ R; (u, v) ∈ A(t)}, u, v ∈ R, t ∈ I

that satisfy condition (2.1). For example, we may take an ”intrinsic” family
of such closed convex process; namely, Clarke’s convex-valued directional
derivatives Cf(t)F (t, .)(z(t); .).

When F (t, .) is assumed to be Lipschitz a.e. on I an alternative charac-
terization of the quasitangent directional derivative is (e.g., [2])

Qf(t)F (t, .)((z(t);u)) = {w ∈ R; lim
θ→0+

1

θ
d(f(t) + θw, F (t, z(t) + θu)) = 0}.

(2.3)

In what follows BRn denotes the closed unit ball in Rn and 0n denotes
the null element in Rn.

Consider h : R→ Rm an arbitrary given function.

Definition 2.9. Inclusion (1.1) is said to be h-locally controllable around
z(.) if h(z(T )) ∈ int(h(RF (T ))).

Inclusion (1.1) is said to be locally controllable around the solution z(.)
if z(T ) ∈ int(RF (T )).

Finally, a key tool in the proof of our results is the following generaliza-
tion of the classical open mapping principle due to Warga ([19]).

For k ∈ N we define

Σk := {γ = (γ1, ..., γk) ∈ Rk;
k∑
i=1

γi ≤ 1, γi ≥ 0, i = 1, k}.

Lemma 2.10. ([19]) Let δ ≤ 1, let g(.) : Rk → Rm be a mapping that is
C1 in a neighborhood of 0k containing δBRk . Assume that there exists β > 0
such that for every θ ∈ δΣk, βBRm ⊂ g′(θ)Σk. Then, for any continuous
mapping ψ : δΣk → Rm that satisfies supθ∈δΣk ||g(θ)− ψ(θ)|| ≤ δβ

32 we have

ψ(0k) + δβ
16BRm ⊂ ψ(δΣk).



A Fractional Differential Inclusion 57

3 The main result

In what follows C0 is a regular tangent cone to X0 at z(0), C1 is a regular
tangent cone to X1 at z′(0). Denote by SA the set of all solutions of the
differential inclusion

Dσ
CF v(t) ∈ A(t, v(t)), v(0) ∈ C0, v′(0) ∈ C1

and by RA(T ) = {x(T ); x(.) ∈ SA} its reachable set at time T .

Theorem 3.1. Assume that Hypothesis 2.7 is satisfied and let h : R→ Rm

be a Lipschitz function with Lipschitz constant l > 0.

Then inclusion (1.1) is h-local controllable around the solution z(.) if

0m ∈ int(λRA(T )) ∀λ ∈ ∂h(z(T )). (3.1)

Proof. By (3.1), since λRA(T ) is a convex cone, it follows that λRA(T ) =
Rm ∀λ ∈ ∂h(z(T )). Therefore using the compactness of ∂h(z(T )) (e.g., [9]),
we have that for every β > 0 there exist k ∈ N and uj ∈ RA(T ) j = 1, 2, ..., k
such that

βBRm ⊂ λ(u(Σk)) ∀λ ∈ ∂h(z(T )), (3.2)

where

u(Σk) = {u(γ) :=
k∑
j=1

γjuj , γ = (γ1, ..., γk) ∈ Σk}.

Using an usual separation theorem we deduce the existence of β1, ρ1 > 0
such that for all λ ∈ L(R,Rm) with d(λ, ∂h(z(T ))) ≤ ρ1 we have

β1BRm ⊂ λ(u(Σk)). (3.3)

Since uj ∈ RA(T ), j = 1, ..., k, there exist (wj(.), gj(.)), j = 1, ..., k
trajectory-selection pairs of (2.2) such that uj = wj(T ), j = 1, ..., k. We
note that β > 0 can be take small enough such that |wj(0)| ≤ 1, j = 1, ..., k.

For s = (s1, ..., sk) ∈ Rk we define

w(t, s) =
k∑
j=1

sjwj(t), g(t, s) =
k∑
j=1

sjgj(t).

Obviously, w(., s) ∈ SA, ∀s ∈ Σk.
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Taking into account the definition of C0 and C1, for every ε > 0 there
exists a continuous mapping oε : Σk → Rn such that

z(0) + εw(0, s) + oε(s) ∈ X0, z
′(0) + ε

∂w

∂t
(0, s) + oε(s) ∈ X1 (3.4)

lim
ε→0+

max
s∈Σk

|oε(s)|
ε

= 0. (3.5)

Recall that (z(.), f(.)) ∈ C(I,R)× L1(I,R) is a trajectory-selection pair of
(1.1) and define

pε(s)(t) :=
1

ε
d(g(t, s), F (t, z(t) + εw(t, s))− f(t)),

q(t) :=

k∑
j=1

[|gj(t)|+ L(t)|wj(t)|], t ∈ I.

Then, for every s ∈ Σk one has

pε(s)(t) ≤ |g(t, s)|+ 1
εdH(0n, F (t, z(t) + εw(t, s))− f(t)) ≤ |g(t, s)|+

1
εdH(F (t, z(t)), F (t, z(t) + εw(t, s))) ≤ |g(t, s)|+ L(t)|w(t, s)| ≤ q(t).

Next, if s1, s2 ∈ Σk one has

|pε(s1)(t)− pε(s2)(t)| ≤ |g(t, s1)− g(t, s2)|+ 1
εdH(F (t, z(t) + εw(t, s1)),

F (t, z(t) + εw(t, s2))) ≤ ||s1 − s2||.maxj=1,k[|gj(t)|+ L(t)|wj(t)|],

thus pε(.)(t) is Lipschitz with a Lipschitz constant not depending on ε.
On the other hand, from (2.3) it follows that

lim
ε→0

pε(s)(t) = 0 a.e. (I), ∀s ∈ Σk

and hence
lim
ε→0+

max
s∈Σk

pε(s)(t) = 0 a.e. (I). (3.7)

Therefore, from (3.6), (3.7) and Lebesgue dominated convergence theo-
rem we obtain

lim
ε→0+

∫ T

0
max
s∈Σk

pε(s)(t)dt = 0. (3.8)

By (3.4), (3.5), (3.8) and the upper semicontinuity of the Clarke gener-
alized Jacobian we can find ε0, e0 > 0 such that

(1 + T )MeMm(T ) max
s∈Σk

|oε0(s)|
ε0

+MTeMm(T )

∫ T

0
max
s∈Σk

pε0(s)(t)dt ≤ β1

28l2
,

(3.9)



A Fractional Differential Inclusion 59

ε0w(T, s) ≤ e0

2
∀s ∈ Σk. (3.10)

If we define

y(s)(t) := z(t) + ε0w(t, s),

g(s)(t) := f(t) + ε0g(t, s),

a(s) := z(0) + ε0w(0, s) + oε0(s),

b(s) := z′(0) + ε0
∂w

∂t
(0, s) + oε0(s), s ∈ Rk,

then we apply Theorem 2.5 and we find that there exists the continuous
function x(.) : Σk → C(I,R) such that for any s ∈ Σk the function x(s)(.)
is solution of the differential inclusion

Dα,ρ
c x(t) ∈ F (t, x(t)), x(s)(0) = a0(s), (x(s))′(0) = b(s)

and one has

|x(s)(T )− y(s)(T )| ≤ ε0β1

26l
∀s ∈ Σk. (3.11)

We define

h0(x) :=

∫
R
h(x− by)χ(y)dy, x ∈ R,

φ(s) := h0(z(T ) + ε0w(T, s)),

where χ(.) : R → [0, 1] is a C∞ function with the support contained in B
that satisfies

∫
R χ(y)dy = 1 and b = min{ e02 ,

ε0β1
26l
}.

Therefore h0(.) is of class C∞ and verifies

|h(x)− h0(x)| ≤ lb, (3.12)

h′0(x) =

∫
R
h′(x− by)χ(y)dy. (3.13)

In particular,

h′0(x) ∈ co{h′(u); |u− x| ≤ b, h′(u) exists},

φ′(s)µ = h′0(z(T ) + ε0w(T, µ)) ∀µ ∈ Σk.

Using again the upper semicontinuity of Clarke’s generalized Jacobian
we obtain

d(h′0(z(T ) + ε0w(T, s)), ∂h(z(T ))) ≤ sup{d(h′0(u), ∂h(z(T ))); |u− z(T )|
≤ |u− (z(T ) + ε0w(T, s))|+ |ε0w(t, s)| ≤ e0, h′(u) exists} < ρ1.
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The last inequality with (3.3) gives

ε0β1BRm ⊂ φ′(s)Σk ∀s ∈ Σk.

Finally, for s ∈ Σk, we put ψ(s) = h(x(s)(T )).

Obviously, ψ(.) is continuous and from (3.11), (3.12), (3.13) one has

||ψ(s)− φ(s)|| = ||h(x(s)(T ))− h0(y(s)(T ))|| ≤ ||h(x(s)(T ))− h(y(s)(T ))||
+||h(y(s)(T ))− h0(y(s)(T ))|| ≤ l|x(s)(T )− y(s)(T )|+ lb ≤ ε0β1

64 + ε0β1
64 =

ε0β1
32 .

We apply Lemma 2.10 and we find that

h(x(0k)(T )) +
ε0β1

16
BRm ⊂ ψ(Σk) ⊂ h(RF (T )).

On the other hand, ||h(z(T ))− h(x(0k)(T ))|| ≤ ε0β1
64 , so we have h(z(T )) ∈

int(RF (T )) and the proof is complete.
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[17] Ş. Toprakseven. The existence and uniqueness of initial-boundary value
problems of the Caputo-Fabrizio differential equations. Univ. J. Math.
Appl. 2:100-106, 2019.

[18] H. D. Tuan. On controllability and extremality in nonconvex differential
inclusions. J. Optim. Theory Appl. 85:437-474, 1995.

[19] J. Warga. Controllability, extremality and abnormality in nonsmooth
optimal control. J. Optim. Theory Appl. 41:239-260, 1983.

[20] S. Zhang, L. Hu, S. Sun. The uniqueness of solution for initial value
problems for fractional differential equations involving the Caputo-
Fabrizio derivative. J. Nonlin. Sci. Appl. 11:428-436, 2018.


