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Abstract

In this paper we propose an input-to-state stability (ISS) criterion
for continuous–time systems based on a finite–time decrease condition
for a positive definite function of the norm of the state. This yields
a so–called ISS finite–time Lyapunov function, which allows for eas-
ier choice of candidate functions compared to standard ISS Lyapunov
functions. An alternative converse ISS theorem in terms of ISS finite–
time Lyapunov functions is also provided. Moreover, we prove that ISS
finite–time Lyapunov functions are equivalent with standard ISS Lya-
punov functions using a Massera–type construction. The developed
ISS framework can be utilized in combination with Sontag’s “univer-
sal” stabilisation formula to develop input–to–state stabilizing control
laws for continuous–time nonlinear systems that are affine in the con-
trol and disturbance inputs, respectively.
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1 Introduction

Stabilization of nonlinear dynamical systems, see for example, [1], or the ear-
lier work [2], typically relies on exact models of the system dynamics. How-
ever, the estimated model parameters are subject to errors, the developed
models are simplified and proposed control inputs based on feedback stabi-
lization can be affected by perturbations or inaccuracies in measurements.
Hence, it is of interest to study the stability and stabilization problems in
the presence of disturbance inputs. Stability under perturbations has al-
ready been studied in early works such as [3] and [4]. Later on, the property
of input–to–state stability (ISS), first introduced in [5], proved to be very
useful for studying stability in the presence of disturbances. Indeed, in [6],
equivalences between the ISS property and a range of other concepts such as
robustness and robust Lyapunov–like functions, called ISS Lyapunov func-
tions, were introduced. The ISS concept was further extended for stability
with respect to compact sets in [7] and [8].

Since it was shown that the ISS property is equivalent with existence of
an ISS LF, the problem of constructing such functions gained attention from
researchers. In [9], a Zubov approach is proposed to compute ISS LFs, fol-
lowed by [10] where an alternative Zubov type approach was derived. Both
papers rely on the idea that ISS LFs can be obtained by computing robust
LFs for suitably designed auxiliary systems. The robust LF is computed as
the numerical solution of a Zubov type of equation, thus yielding a numerical
approximation of an ISS LF.

Recently, in [11] and [12], a linear programming based algorithm for
computing continuous, piecewise affine ISS LFs for locally ISS systems was
developed. The ISS LF computed therein is a viscosity subsolution of a
Hamilton-Jacobi-Bellman partial differential equation.

In the case of discrete–time systems, for the ISS concept formulation, we
refer to [13]. As for computing ISS LFs in the discrete–time setting, in [14]
for example, an auxiliary system was also used to compute ISS LFs via a
set oriented approach.

Recently, a finite–time decrease condition for a K∞ function of the norm
of the state was introduced to characterize KL-stability and to compute Lya-
punov functions for continuous–time systems in [15]. This condition yields
so–called finite–time Lyapunov functions, which are non–monotonic and al-
low for more freedom of selecting candidate functions, compared to standard
Lyapunov functions. Therefore, it is of interest to extend finite–time Lya-
punov functions to continuous–time systems affected by disturbances, in
order to gain more freedom in selecting/constructing candidate ISS–type of
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functions.

In this paper, ISS finite–time Lyapunov functions for continuous–time
nonlinear systems are defined. We show that existence of such a function
implies ISS for systems which satisfy a mild, K–boundedness condition. Un-
der suitable assumptions, we also establish a converse finite–time ISS result,
i.e., we show that ISS systems admit any K∞–function of the norm of the
state as a ISS finite–time LF function. A Massera–type construction is then
developed to compute a standard ISS Lyapunov function from a finite–time
ISS LF. Lastly, for the problem of designing a input-to-state stabilizing state
feedback control law, we show how the constructed ISS LF can be used in
combination with Sontag’s “universal” formula for ISS stabilization.

Remark 1.1. Finite–time type of non–monotonic decrease conditions were
used previously for computing ISS LFs for discrete–time nonlinear systems
in [16]. Therein it was shown that for sufficiently regular dynamics inherent
global ISS can be established via finite–step LFs (correspondent of finite–time
LFs for discrete–time systems). In [17] the concept of dissipative finite–step
ISS LFs was introduced, where similarly as in [16], the candidate ISS LF
function is required to decrease after a finite number of time steps, rather
than at each time step. Moreover, therein an equivalent characterization of
ISS in terms or existence of a dissipative finite–step ISS Lyapunov functions
was shown for discrete–time systems.

2 Preliminaries

Consider systems of the form

ẋ(t) = f(x(t), v(t)), t ∈ R≥0, (1)

where f : Rn×Rm → Rn is a locally Lipschitz function and v (·) : [0,∞) →
Rm is a measurable locally essentially bounded map that represents the
disturbance input. We denote the solution of the system (1) with initial value
x(0) at time t = 0, under disturbance input v(t), by x(t) and we assume that
x(t) exists and it is unique for all t ∈ R≥0 (see [18, Chapter 3] for sufficient
smoothness conditions on f). The locally Lipschitz assumption on f(x, v)
implies that x(t) is a continuous function of x(0) and v(0) [19, Chapter III].
Furthermore, f(0, 0) = 0. For brevity we omit t as an argument where its
presence is obvious.

We say that a set S ⊆ Rn is proper if it contains the origin in its interior
and it is compact.
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Definition 2.1. A proper set S ⊆ Rn is called an invariant set for the
system (1) with v(t) = 0 if for any x(0) ∈ S, for the corresponding solution
it holds that x(t) ∈ S, for all t ∈ R≥0.

Definition 2.2. Given a positive, real scalar d, a proper set S ⊆ Rn is
called a d–invariant set for the system (1) with v(t) = 0 if for any t ∈ R≥0,
if x(t) ∈ S, then it holds that x(t+ d) ∈ S.

Note that the d–invariance property does not imply that x(t) ∈ S for
all t ∈ R≥0 if x(0) ∈ S. See [15] for illustrations of d–invariant sets versus
standard invariant sets for continuous-time nonlinear systems.

The following result was introduced in [19, Definition 24.3] to relate
positive definite functions and K–functions. A proof was proposed in [18,
Lemma 4.3].

Lemma 2.1. Consider a function W : Rn → R≥0 with W (0) = 0.

1. If W (x) is continuous and positive definite in some neighborhood around
the origin, N (0), then there exist two functions α̂1, α̂2 ∈ K such that

α̂1(‖x‖) ≤W (x) ≤ α̂2(‖x‖), ∀x ∈ N (0). (2)

2. If W (x) is continuous and positive definite in Rn and additionally, W (x)→
∞, when x→∞ then (2) holds with α̂1, α̂2 ∈ K∞ and for all x ∈ Rn.

We will use the following notation for the disturbance signal v:

|v| := sup
s≥0
‖v(s)‖, |v[t1,t2]| := sup

t1≤s≤t2
‖v(s)‖, t1, t2 ∈ R≥0,

with v(s) ∈ Rm, for all s in the corresponding interval. Furthermore, ‖v‖
denotes the standard vector Hölder norm. Next, we proceed by recalling the
input–to–state stability definition as introduced in [6] and the definition of
an ISS Lyapunov function.

Definition 2.3. Given a proper set S ⊆ Rn, the system (1) is said to be
input–to–state stable (ISS) in S with respect to v if there exist functions β ∈
KL and γ ∈ K∞ such that for all x(0) ∈ S, and every v, the corresponding
solution of (1) satisfies

‖x(t)‖ ≤ β(‖x(0)‖, t) + γ(|v|), ∀t ∈ R≥0. (3)

If the set S = Rn, then we call the ISS property global ISS.
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The characterization in (3) can be equivalently stated [6] in terms of
suitably modified functions β ∈ KL and γ ∈ K∞ as:

‖x(t)‖ ≤ max{β(‖x(0)‖, t), γ(|v|)}, ∀t ∈ R≥0. (4)

Definition 2.4. A continuously differentiable function V : Rn → R≥0, for
which there exist functions α1, α2, α, χ ∈ K∞ such that for all v ∈ Rm it
holds that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ Rn (5)

V̇ (x) ≤ −α(‖x‖) + χ(|v|), ∀x ∈ S, (6)

with S ⊆ Rn a proper invariant set, is called an ISS Lyapunov function in
S for the system (1).

Observe that the condition (6) can be equivalently restated [6, Remark
2.4.] in terms of the existence of a function θ ∈ K∞ such that

V̇ (x) ≤ −θ(‖x‖), ∀x ∈ S (7)

and for any v ∈ Rm such that ‖x‖ ≥ χ̂(|v|), χ̂(·) := (2α−1 ◦ χ)(·) ∈ K∞.
Note also that in order to establish ISS in S from an ISS LF in the case that
S is a strict subset of Rn, it is additionally required that S is an invariant
set. Otherwise the ISS property will hold within the largest proper invariant
subset of S.

3 ISS finite–time Lyapunov functions

In this section we present the concept of a ISS finite–time Lyapunov function
in a continuous–time setting, in which the bound on the function’s derivative
is replaced by a non–monotonic, periodic decrease condition.

Let there be a continuous function V : Rn → R≥0, and a real scalar
d > 0 for which the proper set S ⊆ Rn is d–invariant and the conditions

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ Rn, (8)

V (x(t+ d))− V (x(t)) ≤ −α(‖x(t)‖) + χ(|v|), (9)

are satisfied for all t ∈ R≥0 and α1, α2, α, χ ∈ K∞, and for all x(t), with
x(0) ∈ S and v(s) ∈ Rm, for any s ∈ R≥0. By similar arguments as in [6,
Remark 2.4.], an equivalent form of (9) is

V (x(t+ d))− V (x(t)) ≤ −θ(‖x(t)‖), (10)
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whenever ‖x(t)‖ ≥ χ̂(|v|), with χ̂(·) := (2α−1 ◦ χ)(·) ∈ K∞, for a suitable
function θ ∈ K∞.

The function V which satisfies (8) and (9) (or (8) and (10)) is called an
ISS finite–time Lyapunov function (ISS–FTLF) for the system (1).

In order for condition (9) to be well–defined, additionally to the locally
Lipschitz property of the map f(x), it is assumed that there exists no finite
escape time in each interval [t, t+ d], for all t ∈ R≥0. However, as it will be
shown later, it is sufficient to require that there is no finite escape time in
the time interval [0, d], if the set S is d–invariant.

Remark 3.1. When S = Rn, a sufficient condition for existence of the
solution for all t ∈ R≥0 (additional to continuity of f) is that the map f(x)
is Lipschitz bounded [19, Chapter III.16]. Furthermore, note that existence
of a finite escape time for initial conditions in a given set in Rn implies that
the origin is unstable in that set [19, Chapter III.16].

The following result relates inequality (9) with another known type of
decrease condition, which will be instrumental.

Lemma 3.1. The decrease condition (9) on V is equivalent with

V (x(t+ d)) ≤ ρ(V (x(t))) + χ(|v|), ∀t ∈ R≥0, (11)

for all x(t) with x(0) ∈ S, where ρ is a positive definite, continuous function
such that (id− ρ) ∈ K∞.

Proof. The proof follows similarly as in [17, Remark 3.7]. We provide it
below for completeness.
(9)⇒(11):

0 ≤ V (x(t+ d)) ≤ V (x(t))− α(‖x(t)‖) + χ(|v|)
≤ V (x(t))− α(α−12 (V (x(t)))) + χ(|v|)
= (id− α ◦ α−12 )(V (x(t))) + χ(|v|)
= ρ(V (x(t))) + χ(|v|),

where ρ = id− α ◦ α−12 can be assumed to be positive, since one can always
take α2(s) ≥ 2α(s) > α(s), for all s > 0, thus ρ = id − α ◦ α−12 > 0.
Additionally, id− ρ = α ◦ α−12 ∈ K∞.
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(11)⇒(9):

V (x(t+ d))− V (x(t)) ≤ ρ(V (x(t)))− V (x(t)) + χ(|v|)
= −(−ρ+ id)(V (x(t))) + χ(|v|)
= −α̂(V (x(t))) + χ(|v|)
≤ −α̂(α1(‖x(t)‖)) + χ(|v|)
= −α(‖x(t)‖) + χ(|v|),

where α̂ = id− ρ ∈ K∞, by hypothesis and α = α̂ ◦ α1 ∈ K∞.

Assumption 3.1. The function f(·, ·) in (1) satisfies

‖f(x, v)‖ ≤ µ1(‖x‖) + µ2(‖v‖) (12)

for all x ∈ Rn, v ∈ Rm, and some µ1, µ2 ∈ K.

The above assumption is a natural consequence of the Lipschzitz con-
tinuity requirement for f at the origin. In fact, it implies K–boundedness
with respect to each argument of f .

In the next remark we use the above assumption to establish an instru-
mental upper bound on ‖x(t)‖ for all t ∈ R≥0.

Remark 3.2. For some fixed t > 0, the solution of the system (1) is given
by

x(t) = x(0) +

∫ t

0
f(x(s), v(s))ds.

Let the locally Lipschitz condition be

‖f(x, v)− f(y, u)‖ ≤ L(‖x− y‖+ ‖v − u‖), L > 0

for x, y ∈ N (0, r), where N (0, r) denotes a neighborhood around the origin
of radius r and v ∈ Rm and u ∈ U, U a compact subset of Rm. Then,

‖x(t)− x(0)‖ ≤
∫ t

0
(‖f(x(s), v(s))− f(x(0), v(0)) + f(x(0), v(0)))‖ds

≤ L

∫ t

0
‖x(s)− x(0)‖ds+ L

∫ t

0
‖v(s)− v(0)‖ds+

∫ t

0
‖f(x(0), v(0)‖ds

≤
(12)

L

∫ t

0
‖x(s)− x(0)‖ds+ L

∫ t

0
‖v(s)− v(0)‖ds+

∫ t

0
µ1(‖x(0)‖)ds+∫ t

0
µ2(‖v(0)‖)ds.
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By applying the Gronwall Lemma above, we obtain that

‖x(t)− x(0)‖

≤
(
L

∫ t

0
‖v(s)− v(0)‖ds+

∫ t

0
µ2(‖v(0)‖)ds+

∫ t

0
µ1(‖x(0)‖)ds

)
eLt

≤ Gt(|v[0,t]|) +

∫ t

0
µ1(‖x(0)‖)dseLt,

and further,

‖x(t)‖ ≤Gt(|v[0,t]|) + ‖x(0)‖+

∫ t

0
µ1(‖x(0)‖)dseLt

=Gt(|v[0,t]|) + Ft(‖x(0)‖).

From the inequalities above and the standing assumptions on f we know
that Ft(‖x(0)‖) and Gt(|v[0,t]|) are continuous with respect to x(0) and v(t),
respectively. Furthermore, Ft(0) = 0, Gt(0) = 0 and Ft(‖x(0)‖), Gt(|v[0,t]|)
are positive definite and continuous as µ1, µ2 ∈ K.

Remark 3.3. In [17, Theorem 4.1], it is shown that the set

Sv := {x ∈ Rn |V (x) ≤ (id− ρ)−1 ◦ ν−1 ◦ χ(|v|)}, (13)

where ν ∈ K∞ and id − ν ∈ K∞ is d–invariant for the discrete–time corre-
spondent of system (1) and for all v(s) ∈ Rm, s ≥ 0. This still holds true for
the continuous–time system (1) under the given assumptions on V . Follow-
ing from the proof (9)⇒(11) of Lemma 3.1, we have that ρ = id− α ◦ α−12 .
If one takes ν in (13) to be such that α = ν−1, we obtain that

(id− ρ)−1 ◦ ν−1 ◦ χ(|v|) = (α ◦ α−12 )−1 ◦ α ◦ χ(|v|)
= α2 ◦ α−1 ◦ α ◦ χ(|v|)
= α2 ◦ χ(|v|).

The set Sv defined in (13) can be written equivalently (with respect to con-
dition (9)) as

Sv := {x ∈ Rn |V (x) ≤ α2 ◦ χ(|v|)}, (14)

which corresponds to the construction with classical LFs in [6, Lemma 2.14],
where Sv is an invariant set when V is a classical LF.

Theorem 3.1. If there exist a function V and a proper d-invariant set S
that satisfy (8) and (9) for system (1), and Assumption 3.1 holds, then the
system (1) is ISS in S.
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Proof. Consider the set Sv defined as in (13). Let

t1 = inf{t ≥ 0 |x(j) ∈ Sv, j ∈ [t, t+ d)}.

Then, when t ≥ t1, x(t) ∈ Sv and

V (x(t)) ≤ (id− ρ)−1 ◦ ν−1 ◦ χ(|v|) =: γ̂(|v|)

implies that
‖x(t)‖ ≤ α−11 ◦ γ̂(|v|) =: γ̃(|v|).

When t < t1, it is possible that x(t) ∈ Sv which implies that ‖x(t)‖ ≤
γ̃(|v(t)|), and that x(t) /∈ Sv. For the latter case, let t = Nd + j, with
N ∈ N and 0 ≤ j < d. The d–invariance of Sv implies that for x(j) ∈ Sv,
x(d + j) ∈ Sv and x(Nd + j) ∈ Sv. Thus, x(Nd + j) /∈ Sv implies that
x(j) /∈ Sv. Hence,

V (x(j)) > (id− ρ)−1 ◦ ν−1 ◦ χ(|v|)
(id− ρ)V (x(j)) > ν−1 ◦ χ(|v|)

ν ◦ (id− ρ)V (x(j)) > χ(|v|),

and

V (x(j + d)) ≤ ρ(V (x(j))) + χ(|v|)
< ρ(V (x(j))) + ν ◦ (id− ρ) ◦ V (x(j))

= (ρ+ ν ◦ (id− ρ)) ◦ V (x(j))

=: ρ̂(V (x(j))),

where ρ̂ = ρ+ν◦(id−ρ) satisfies id−ρ̂ = id−ρ−ν◦(id−ρ) = (id−ν)◦(id−ρ),
thus we can write ρ̂ = id−(id−ν)◦(id−ρ). ρ̂ < id since (id−ν), (id−ρ) ∈ K∞,
thus id−ρ̂ ∈ K∞, which implies that id(s)−ρ̂(s) > 0 for s 6= 0. Furthermore,
ρ̂ is positive definite, continuous and ρ̂(0) = 0.

Let N∗ := sup{N ∈ N |V (x(Nd + j)) /∈ Sv}. Then for all N ≤ N∗ we
have:

V (x(t)) = V (x(Nd+ j))

= V (x(((N − 1)d+ j) + d))

≤ ρ̂(V (x((N − 1)d+ j)))

= ρ̂(V (x(((N − 2)d+ j) + d)))

≤ ρ̂2(V (x((N − 2)d+ j)))

. . .

≤ ρ̂N (V (x(j)))

≤ ρ̂N (α2(‖x(j)‖)),

(15)
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where ρ̂N denotes theN–times composition of ρ̂. Following from Remark 3.2,
by applying Lemma 2.1 we obtain that there exist functions ω1, ω2 ∈ K∞,
such that Fj(‖x(0)‖) ≤ ω1(‖x(0)‖) and Gj(|v[0,j]|) ≤ ω̂2(|v[0,j]|) and conse-
quently,

‖x(j)‖ ≤ ω1(‖x(0)‖) + ω2(|v[0,j]|),

for all 0 ≤ j < d. Thus

V (x(t)) ≤ ρ̂N (α2(ω1(‖x(0)‖) + ω2(|v[0,j]|)))
≤ ρ̂N (α2(2ω1(‖x(0)‖)) + α2(2ω2(|v[0,j]|)))
= ρ̂N (σ1(‖x(0)‖) + σ2(|v[0,j]|))
≤ ρ̂N (2σ1(‖x(0)‖)) + ρ̂N (2σ2(|v[0,j]|))
≤ ρ̂N (2σ1(‖x(0)‖)) + ρ̂N (2σ2(|v[0,j]|)), ∀t ≥ j
= ρ̂N (σ̂1(‖x(0)‖)) + ρ̂N (σ̂2(|v[0,j]|))

= ρ̂
t−j
d (σ̂1(‖x(0)‖)) + γ̃1(|v[0,j]|)

≤ ρ̂b
t
d
c−1 ◦ σ̂1(‖x(0)‖) + γ̃1(|v[0,j]|)

= ρ̂b
t
d
c ◦ ρ̂−1 ◦ σ̂1(‖x(0)‖) + γ̃1(|v[0,j]|)

≤ ρ̂b
t
d
c ◦ ρ̃ ◦ σ̂1(‖x(0)‖) + γ̃1(|v[0,j]|), ρ̃ ∈ K∞

=: β̂(‖x(0)‖, t) + γ̃1(|v[0,j]|)

≤ β̂(‖x(0)‖, t) + γ̃1(|v|).

Without loss of generality we can assume that ρ̂ is a one–to–one (injec-
tive) and onto (surjective) function, thus invertible. Furthermore, since ρ̂
is continuous, then by [20, Theorem 3.16], ρ̂−1 is continuous. Additionally,
ρ̂−1(0) = ρ̂−1(ρ(0)) = 0. Thus, there exists a function ρ̃ ∈ K∞, such that
ρ̂−1 ≤ ρ̃, as follows from Lemma 2.1. We can conclude that β̂ ∈ KL since
ρ̃ ◦ σ̂1(s) ∈ K∞ and ρ̂b

t
d
c ∈ L. Next, γ̃1 = ρ̂N ◦ 2α2 ◦ 2ω2, thus γ̃1 > 0 is

continuous and γ̃1(0) = 0. Therefore, there exists a function γ̂1 ∈ K∞ such
that γ̃1 < γ̂1. We obtain

‖x(t)‖ ≤ α−11 (2β̂(‖x(0)‖, t)) + α−11 (2γ̂1(|v|))
:= β(‖x(0‖, t) + γ̃2(|v|),

with β ∈ KL and γ̃2 ∈ K∞.
For N > N∗ it holds that V (x(Nd+j)) ∈ Sv, thus ‖x(Nd+j)‖ ≤ γ̃(|v|).
For all N ∈ N∗ it follows that

‖x(t)‖ ≤ β(‖x(0‖, t) + (γ̃2 + γ̃)(|v|),
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thus, also for all t ≥ t1

‖x(t)‖ ≤ β(‖x(0‖, t) + (γ̃2 + 2γ̃)(|v|).

Hence, for all t ≥ 0 it holds that

‖x(t)‖ ≤ β(‖x(0‖, t) + (γ̃2 + 2γ̃)(|v|),

which implies ISS for system (1) in S.

4 A continuous–time ISS converse theorem

In this section we provide a converse result that enables construction of a
standard ISS Lyapunov function from an ISS finite–time Lyapunov function
in the continuous–time setting. To this end, the following assumption, also
used in [15], is instrumental.

Assumption 4.1. There exists a pair (β(·, ·), d) ∈ KL × R>0 with β satis-
fying (3) for the system (1) such that

β(s, d) < s (16)

for all s > 0.

The above assumption ensures a certain uniformity of the convergence
prescribed by the KL–function β, e.g., with exponential convergence a par-
ticular case. Next, we present a converse ISS theorem in terms of existence
of ISS finite–time Lyapunov functions.

Theorem 4.1. If the system (1) is ISS in some d–invariant set S with d > 0
as in (16) and Assumption 4.1 is satisfied, then for any function η ∈ K∞
and for any norm ‖ · ‖, the function V : Rn → R≥0, with

V (x) := η(‖x‖), ∀x ∈ Rn (17)

satisfies (8) and (9) with the same d > 0 as in (16).

Proof. Let the pair (β, d) be such that Assumption 4.1 holds. Then, from
the ISS hypothesis we obtain that for all initial conditions x(0) ∈ S, it holds
that

‖x(t+ d)‖ ≤ max(β(‖x(t)‖, d), γ(|v|))
= β(‖x(t)‖, d),
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whenever αd(‖x(t)‖) := β(‖x(t)‖, d) ≥ γ(|v|), where αd ∈ K∞, or equiva-
lently, whenever ‖x(t)‖ ≥ (α−1d ◦ γ)(|v|) = γ̂(|v|). Consequently,

η(‖x(t+ d)‖) ≤ η(β(‖x(t)‖, d))

≤ η(β(η−1(V (x(t))), d))

:= ρ(V (x(t))),

where ρ = η(β(η−1(·), d)). Then, via Assumption 4.1, it follows that ρ <
η(η−1(·)) = id and id− ρ ∈ K∞. Thus, we get

V (x(t+ d))− ρ(V (x(t))) ≤ 0, ∀x(0) ∈ S, ‖x(t)‖ ≥ γ̂(|v(t)|).

Next, this implies

V (x(t+ d))− V (x(t)) ≤ ρ(V (x(t)))− V (x(t))

= −(V (x(t)) + ρ(V (x(t)))

= −((id− ρ)(V (x(t))))

≤ −((id− ρ)(α1(‖x(t)‖))
= −α(‖x(t)‖), ‖x(t)‖ ≥ γ̂(|v|),

with α = (id−ρ)◦α1. Since id−ρ ∈ K∞, then α ∈ K∞ and we have obtained
(10) which further yields (9), as shown in Remark 2.4 in [6]. Furthermore,
since V is defined by a K∞ function, then there exist α1, α2 ∈ K∞ such that
(8) holds.

Consider next the function defined as

W (x(t)) :=

∫ t+d

t
V (x(τ))dτ, (18)

for any V that satisfies (8) and (9).

Lemma 4.1. There exists a V satisfying (8) and (9) for some d > 0 for
(1) if and only if the function W as defined in (18) with the same d > 0 is
an ISS Lyapunov function for the system (1).

Proof. Let there be a function V satisfying (8) and (9). V (x(t)) is contin-
uous, thus it is integrable over any closed, bounded interval [t, t+ d], t ≥ 0.
By Theorem 5.30 in [20], this implies that W (x(t)) is continuous on each
interval [t, t + d], for any t. Since V is also positive definite, by integrating
over the bounded interval [t, t + d] the resulting function W (x(t)) will also
be positive definite. Since W (x(t)) is continuous, W (0) = 0 and it positive
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definite the result in Lemma 2.1 can be applied. Therefore, there exist two
functions α̂1, α̂2 ∈ K∞ such that

α̂1(‖x‖) ≤W (x) ≤ α̂2(‖x‖), ∀x ∈ Rn, (19)

holds. Next, by making use of the general Leibniz integral rule, we get that

d

dt
W (x(t)) =

∫ t+d

t

d

dt
V (x(τ))︸ ︷︷ ︸
=0

dτ + V (x(t+ d)) ˙(t+ d)− V (x(t))ṫ

=V (x(t+ d))− V (x(t))

≤ − α(‖x(t)‖) + χ(|v|).

In d
dtV (x(τ)) note that x(τ) = x(τ, v(τ)), which implies that

d

dt
V (x(τ, v(τ))) =

∂V

∂x

dx

dt

=
∂V

∂x

(
∂x

∂τ

dτ

dt
+
∂x

∂v

dv

dt

)
=
∂V

∂x

(
∂x

∂τ
· 0 +

∂x

∂v
· 0
)

= 0.

Thus, W is an ISS Lyapunov function for (1).
Now assume that W is an ISS Lyapunov function for (1), i.e. (5) holds

and for some α̂, χ̂ ∈ K∞ it holds that

Ẇ (x(t)) ≤ −α̂(‖x(t)‖) + χ̂(|v|), ∀x(t) ∈ S,∀v ∈ Rm.

By the same Leibniz rule, we know that Ẇ (x(t)) = V (x(t + d)) − V (x(t)),
thus for the difference V (x(t + d)) − V (x(t)) inequality (9) holds. Now we
have to show that (8) holds.

Assume that there exists an x ∈ Rn such that V (x) < 0. Then we obtain

that W (x) =
∫ t+d
t V (x(τ))dτ < 0. But this is a contradiction since we

assumed that W satisfies (19) on Rn, thus V (x) must be positive definite on
Rn. By the definition of W , we have that V must be a continuous function,
because it needs to be integrable for W to exist. By assumption, W is upper
and lower bounded by K∞ functions, thus for x→∞, W (x)→∞. This can
only happen when V (x) → ∞. Thus, using a similar reasoning as above,
based on Lemma 2.1, this implies that V is upper and lower bounded by
K∞ functions, hence (8) holds.
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Note that the above equivalence result between candidate ISS finite–time
LFs and candidate ISS LFs holds for any proper set S ⊆ Rn. However, if
ISS in S is to be established and S is a strict subset of Rn, it is required
that S is an invariant set, according to Definition 2.4.

The next result summarizes the proposed alternative converse theorem
for ISS of (1) in S, enabled by the finite–time conditions (8) and (9), which
assumes invariance of S for the reasons stated above.

Corollary 4.1. If the the system (1) is ISS in some invariant set S and
Assumption 4.1 holds for (β, d) ∈ KL × R>0, then by Theorem 4.1 and
Lemma 4.1 for any function η ∈ K∞ and any norm ‖ · ‖, the function
W (·) as defined in (18) with V (x) = η(‖x‖) for the same d > 0 as in
Assumption 4.1, is an ISS Lyapunov function for the system (1).

4.1 Construction of the ISS Lyapunov function W

We have established that if a system is ISS, then a ISS LF can be constructed
via (18) with V (x) defined by any function η ∈ K∞ and any norm, and for
a suitable d > 0. This constructive method starts with a given candidate
d–invariant set S and a candidate function V (x) = η(‖x‖). Due to the d–
invariance property of S verifying condition (9) for the chosen V is reduced
to verifying

V (x(d))− V (x(0)) ≤ −α(‖x(0)‖) + χ(|v|), (20)

for all x(0) ∈ S. The difficulty in verifying (20) is given by the need to
compute x(d), for all x(0) ∈ S. However if x(d) is known analytically and
the disturbance input v is a known or estimated signal in some analytic
form, then it suffices to verify (20) for all initial conditions in a chosen set
S. Since V is a continuous function of time and the integral in (18) is defined
over a closed time interval, the expression of W becomes

W (x(0)) =

∫ d

0
V (x(τ))dτ. (21)

Since v is however not known in general, we propose to compute a value for
d when v = 0 and rely on inherent ISS. As such, we will make use of the
next result, which enables the verification of the finite–time condition (20)
for the system (1) with v = 0.

Lemma 4.2. Let V (x) = ‖x‖. If V (x) satisfies (9) for ẋ = f(x, 0) and
v(t) = 0 for all t ∈ R≥0, then V (x) satisfies the condition (9) for ẋ = f(x, v).
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Proof. We shall write the proof for t in the interval [0, d]. Let x̄(d) denote
the solution of ẋ = f(x, 0) for x(0) ∈ S. It follows from (9) that

‖x̄(d)‖ − ‖x(0)‖ ≤ −α(‖x(0)‖),

for all x(0) ∈ S, where S a d–invariant set. Then,

‖x(d)‖ − ‖x(0)‖ ≤ ‖x(d)‖ − ‖x̄(d)‖ − α(‖x(0)‖)
≤ ‖x(d)− x̄(d)‖ − α(‖x(0)‖), ∀x(0) ∈ S.

x(d)− x̄(d) =

∫ d

0
f(x(s), v(s))ds−

∫ d

0
f(x(s), 0)ds.

This implies, by using the local Lipschtiz condition on f with respect to its
both arguments, that

‖x(d)− x̄(d)‖ ≤
∫ d

0
‖f(x(s), v(s))− f(x(s), 0)‖ds

≤
∫ d

0
L‖v(s)− 0‖ds

where L > 0 is the Lipschitz constant. Since
∫ d
0 L‖v(s) − 0‖ds is positive

definite, zero at zero and continuous then via Lemma 2.1, there exists χ ∈
K∞ such that

‖x(d)− x̄(d)‖ ≤
∫ d

0
L‖v(s)‖ds ≤ χ(‖v(d)‖) ≤ χ(|v|).

As such, we have that

‖x(d)‖ − ‖x(0)‖ ≤ χ(|v|)− α(‖x(0)‖), ∀x(0) ∈ S,

which recovers (20), and further (9) for V (x) = ‖x‖.

The result of Lemma 4.2 allows us to obtain a d for which a candidate
function V (x) = ‖x‖, with any norm, is an ISS FTLF in a much simpler
way than verifying (20) directly.

Remark 4.1. In [21] a scheme for constructing LFs starting from a given
LF, which at every iterate provides a less conservative estimate of the DOA
of a nonlinear system of the type (1) was proposed and it was based on
iterative constructions of the type W1(x) = W (x + α1f(x)). In [15], the
expansion idea in [21] was used to generate a sequence of FTLFs, with the
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purpose to generate a relevant d–invariant set for constructing Massera–type
of LFs. Thus the sequence of functions

V1(x) = V (x+ α1f(x, 0))

V2(x) = V1(x+ α2f(x, 0))

... (22)

Vn(x) = Vn−1(x+ αnf(x, 0)),

with αi ∈ R≥0, i = 1, 2 . . . , n yields FTLFs, when V is FTLF. From
Lemma 4.2, we know that V1(x) = V (x + α1f(x, v)) for example is an in-
herent ISS FTLF. This fact will be relevant in the computation of an ISS
LF W , as in (21), which requires the solution of (1) up to time d.

For the particular case of V (x) = ‖x‖ we propose next a tractable com-
putational procedure to construct W (x). First, we consider the nominal
system dynamics, i.e., ẋ = f(x, 0). When the analytical solution is not
known, or obtaining a numerical approximation is computationally tedious,
as it can be the case for higher order nonlinear systems, then we propose to
use the approach in [15] starting from the linearized dynamics of (1) with
v = 0:

‖ed
[
∂f(x,0)

∂x

]
x=0x(0)‖ − ‖x(0)‖ < 0, (23)

for all x(0) in some compact, proper set S. Then, for the computed d, the
approach in [15] relies on constructing W as

W (x) =

∫ d

0
V (x+ τf(x, 0))dτ, ∀x ∈ S. (24)

An ISS Lyapunov function is then obtained as follows. Let W̄ (x) =
∫ d
0 V (x+

τ(f(x, 0))dτ and S(c) = {x ∈ Rn | W̄ (x) ≤ c} with c > 0 such that S(c) ⊆
{x ∈ Rn | ˙̄W (x) < 0}. Now consider ˙̄W (x) ≤ −α(‖x‖), for any x ∈ S(c). By
the Leibniz integral rule, this implies that

V (x+ df(x, 0))− V (x) ≤ α(‖x‖) ∀x ∈ S(c).

For V (x) = ‖x‖, by a similar reasoning as in the proof of Lemma 4.2 it can
be seen that

V (x+ df(x, v))− V (x) ≤ α(‖x‖) + dL|v| ∀x ∈ S(c),

which implies that

W (x) =

∫ d

0
V (x+ τf(x, v))dτ, ∀x ∈ S(c) (25)

is an ISS Lyapunov function.
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5 Input–to–state stabilizing control laws

In this section we consider nonlinear systems that are affine in the control
and disturbance inputs, respectively. The construction of LF candidates via
finite–time LF candidates will be exploited in combination with Sontag’s
formula to derive ISS stabilizing controllers.

To this end, consider systems subject to control inputs, of the type

ẋ = f(x) + g(x)u (26)

where u ∈ U ⊆ Rm denotes the control input and f : Rn → Rn and
g : Rn → Rm with f(0) = 0 and g(0) = 0, recall the concept of a control
Lyapunov function (CLF), as defined in [1].

Definition 5.1. Let V : Rn → R≥0 be a continuously differentiable func-
tion with V (0) = 0 and the following properties:

a) V (x) is positive definite and radially unbounded1, i.e. V (x) → ∞ as
‖x‖ → ∞, for all x ∈ Rn;

b) There exists a state–feedback control law u ∈ U ⊆ Rm such that the
derivative of V (x) along the trajectories of (26), V̇ (x) = ∇V f̂(x, u), is
negative definite, i.e.

∇V (x)f(x) +∇V (x)g(x)u < 0, ∀x ∈ Rn, x 6= 0. (27)

Then V is a CLF for the system (26).

When a CLF W is known, an explicit formula for a state feedback control
that makes the system asymptotically stable or KL–stable was provided
in [1]. In this paper we will use a slightly modified version for the expression
of k(a, b) defined in [22]. Let u = k(a(x), b(x)), where a(x) := ∇W (x)f(x),
b(x) = ∇W (x)g(x), and k is a function k : R× Rm → Rm defined by

k(a, b) :=

−a+
√

a2+‖b‖4
‖b‖2 b, if b 6= 0

0, if b = 0.
(28)

In the remainder of this paper we consider the case when u is a scalar.
Let there be disturbance inputs acting on (26), as described by

ẋ = f(x, v) + g(x)u, (29)

1This condition corresponds to condition (5).
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where v, u and g : Rn → Rn×m are defined as in (1) and (26), respectively
with v ∈ Rp and f : Rn × Rp → Rn.

For the problem of disturbance attenuation by choice of feedback in
terms of ISS, it is necessary to define the notion of an ISS CLF. We recall
the definition from [22].

Definition 5.2. Let W : Rn → R, be a continuously differentiable function
for which there exist α1, α2, α, χ ∈ K∞, such that

α1(‖x‖) ≤W (x) ≤ α2(‖x‖), ∀x ∈ Rn (30)

∇W (x)(f(x, v) + g(x)u) ≤ −α(‖x‖) + χ(|v|), (31)

for all x 6= 0, and v ∈ Rp. Then W is an ISS CLF for the system (29).

Note that the second condition above is equivalent with the statement
that

∇W (x)g(x) = 0⇒ ∇W (x)f(x, v) < 0, ∀x ∈ Rn.

Consider as candidate ISS CLF, the function W (x) defined in (24) com-
puted for (29) when the control input is u = 0. In [22], a similar “universal”
construction as in (28) was proposed for computing feedback stabilizers for
(29). We propose to use W (x) to compute a feedback stabilizer as con-
structed in [22] for (29) with f(x, v) = f̂(x) + ĝ(x)v. Thus, let us consider
systems described by

ẋ = f̂(x) + ĝ(x)v + g(x)u. (32)

Let a(x) be redefined as

a(x, v) := ∇W (x)f̂(x) +∇W (x)ĝ(x)v = â(x) + b̂(x)v.

Then W is an ISS CLF for (32) if

â(x) + b̂(x)v + b(x)u ≤ −α(‖x‖) + χ(|v|). (33)

In [22], the condition (33) was equivalently written so as not to involve v as

â(x) + ‖b̂(x)‖%−1(‖x‖) + b(x)u ≤ −α̃(‖x‖), (34)

where %, α̃ ∈ K∞ are such that it holds that ‖x‖ ≥ %(|v|) implies that

â(x) + b̂(x)v + b(x)u ≤ α̃(‖x‖).

Then a feedback stabilizer can be computed by using the same formula (28)
with

a(x) = â(x) + ‖b̂(x)‖%−1(‖x‖). (35)



ISS Finite-time Lyapunov Functions for Continuous-time Systems 599

5.1 Computation of an ISS feedback stabilizer

In this subsection we summarize the steps required for computing an ISS
feedback stabilizer. First, we should compute a CLF candidate function W
for the uncontrolled dynamics ẋ = f̂(x). To this end, one needs to find a
suitable value of d > 0 and compute W similarly as in (23) and (24), i.e.

V (e
d
[
∂f̂(x)
∂x

]
x=0x)− V (x) ≤ −α(‖x‖) (36)

and

W (x) =

∫ d

0
V (x+ τ f̂(x))dτ, ∀x ∈ S. (37)

For more details the interested reader is referred to [15], which focuses on
construction of candidate LFs for uncontrolled systems.

Once W is computed, a feedback control law k(x) can be obtained via
(28) with W and a(x) from (35) as follows. Compute α̃ and % such that (34)
holds. From (33) it follows that

%(|v|) = α−1 ◦ χ(|v|)

and via the inherent ISS FT LF lemma, Lemma 4.2 we have that χ(·) can

be any K∞–function such that χ(|v|) ≥
∫ d
0 L‖v(s)‖ds.

6 Illustrative example: Whirling pendulum

We consider the system below, which was studied in [23] with the purpose
to compute the domain of attraction (DOA) of the zero equilibrium when
the system is autonomous (u = v = 0),

ẋ1 = x2 (38)

ẋ2 =
−kf
mb

x2 + ω2 sin(x1) cos(x1)−
g

lp
sin(x1) + c(u+ v).

Therein a polynomial LF was computed, whose level set rendering a DOA
estimate is shown in Figure 1(a) with the black contour. Additionally, in
this paper we are interested in constructing regionally (input–to–state) sta-
bilizing control laws u with respect to the zero equilibrium.

It is worth to mention that stability analysis or stabilization with respect
to one equilibrium point out of a set of equilibria has been referred to as
local stabilization, see, for example, [24]. We use the term regional to denote
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the fact that the synthesized ISS control law yields a bounded subset of Rn

as the corresponding (closed–loop) domain of attraction.
Following the construction in (36)–(37) (for more details we refer to

[15]), a LF W was computed from a quadratic FTLF, V (x) = x>Px, with
P = ( 3.6831 2.3169

2.3169 14.7694 ) and d = 1.1 and α(‖x‖) = ‖x‖. The level set C = 3.55
of W (x) defines an estimate of the true DOA of the origin of (38) and it
is shown with blue in Figure 1(a) together with a vector field plot of the
system.

Then, we consider the W corresponding to (37) for the above param-
eter values as a CLF candidate for computing an ISS feedback stabilizer
u = k(x). Let α̃(‖x‖) = ‖x‖. Next we have to compute %. Since the pro-
posed computational procedure relies on an inherent ISS FTLF, the result in
Lemma 4.2 will be used to compute χ(|v|) which is needed in the expression
of %, and consequently in the feedback stabilizer.

Let the disturbance signal be a generated as an uniformly distributed
sequence in the interval (−0.5, 0.5). Thus |v| = sups∈[0,t] ‖v(s)‖ ≤ 0.5 for
some t ∈ R≥0. As such we have that

L

∫ d

0
‖v(s)‖ds ≤ L

∫ d

0
|v[0,d]|ds ≤ Ld|v[0,d]| = Ldv̄, (39)

where L is the Lipschitz constant and v̄ = 0.5 for the considered system
and disturbance signal. L can be approximated as suggested in [18], from
the fact that ‖∂f∂v ‖ ≤ L implies that ‖f(x, v)− f(x, u)‖ ≤ L‖v − u‖. In this
case L = c = 0.2. However, to compute k(x) we need %−1(‖x‖). We know
that %(|v|) = α−1 ◦ χ(|v|), thus %−1(s) = χ−1(s) ◦ α = χ−1(s) ◦ id = χ−1(s).
Following from (39) we shall take %−1(s) = 1

Lds, thus %−1(‖x‖) = 1
Ld‖x‖ in

(34).
Furthermore, since the computed W (x) is based on a FTLF which is

an inherent ISS FTLF, it follows from the equivalence in Lemma 4.1 that
W (x) is an (inherent) ISS Lyapunov function. From [6, Lemma 2.14] it
follows that the set

Sv = {x ∈ Rn |W (x) ≤ α2 ◦ χ(|v|)}

is an invariant set for (38). If we consider χ(|v|) = Ldv̄ and we know that
W (x) can be upper bounded by εV (x) = x>εPx such that the level set
V (x) = 1

ε is included in the level set W (x) = C, then α2(‖x‖) = λ1(εP )‖x‖,
where λ1 is the largest eigenvalue of P . Then we obtain α2 ◦ χ(|v|) =
λ1(εP )Ldv̄. For this example ε = 0.4762 and a plot of the resulting level set
is shown in Figure 1(b) together with several trajectories of the system.
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Figure 1: (a)–level set of W for C = 3.55 computed for (38) with v = u = 0,
d = 1.1, plotted in blue, its corresponding derivative–red and the level set
computed in Chesi with smrsoft; (b)–level set of W for C = 3.55 computed
for (38) with v 6= 0 plotted in blue and simulations from the same x(0)
different cases.
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Figure 2: Level set of W for C = 3.55 computed for (38) with v 6= 0 plotted
in blue and simulations from the same x(0) different cases.

The same level set defined by C = 3.55 of W is shown in Figures 1(a),
1(b) and 2. Next, we compute k(x) from (28) with a(x) from (35) on basis of
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Figure 3: The corresponding states for k computed without considering
v–grey and k computed with v 6= 0 via the function % ((a)-(b)). In (c):
v, k(x) and k0(x) as functions of the solution of (38) initiated at x0 =
(−0.8680 0.1810)>; (d): plot of x2 corresponding to u = k(x) when the
disturbance is set equal to zero after t = 16s.

the computed W (x). We provide a plot of u = k(x) for the initial condition
x0 = (−0.8680 0.1810 )> in Figure 3(c). For comparison, in the same figure we
also plot u = k0(x), where k0(x) is computed without considering v in the
dynamics, i.e., in the computation of a(x) in (28).

A trajectory of the closed–loop system is shown in Figure 2 for a partic-
ular initial condition, together with trajectories initiated at the same initial
condition for different cases: the closed loop system with u = k(x)–black,
the closed loop system with u = k0(x) and v 6= 0–grey, the closed loop sys-
tem with u = k0(x) and v = 0–blue, the open loop system with v 6= 0–brown
and the open loop system with v = 0–green.

For the same initial condition, we show each of the states of the closed–
loop system for u = k(x)–black and for u = k0(x)–grey in Figure 3(a) and
Figure 3(b). The corresponding time histories of the control laws k(x) and
k0(x), and of the disturbance v are provided in Figure 3(c). We also illustrate
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the case when the disturbance becomes zero after some time in Figure 3(d)
for the x2 state. It can be observed that the trajectory corresponding to
u = k(x)–black after the disturbance becomes zero at t = 16s converges to
the origin, as guaranteed by the closed–loop ISS property.

7 Conclusions

In this paper, we have provided an equivalent characterization of the ISS
property in terms of existence of an ISS–FTLF for continuous–time systems.
For what concerns the converse result, when the ISS property is known, un-
der a certain assumption on the solution estimate of the system subject to
disturbance inputs, we showed that any K∞–function of the norm of the
state is an ISS–FTLF. Furthermore, inspired by classical converse results,
we showed how an ISS–LF can be computed from an ISS–FTLF via a con-
struction of the Massera–type.

When the considered finite–time function candidate is the norm of the
state, i.e. let V (x) = ‖x‖, for verification purposes, we show that V is an
inherent finite–time ISS LF if it is a FTLF for the system with zero distur-
bance inputs. Finally, we proposed a procedure to construct an ISS feedback
stabilizer by using Sontag’s “universal” formula for ISS stabilization and a
Massera–type of function constructed for the system without disturbances.
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