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Abstract

This paper provides a treatment for the mode-dependent static
output-feedback control problem of linear systems subject to random
Markovian jumps in its parameters. For this kind of systems, we con-
sider the mean-square stability and we develop a numerical method
to find static output-feedback stabilizing control. We show how one
can handle the uncertainties that can affect the transition probabil-
ity matrix. The robust static output-feedback stabilization problem
(against unkown or uncertain probability rates) is formulated in terms
of the minimization of a scalar product of definite positive matrices
under convex constraint (LMIs). Such problem can be solved via a
cone complementarity algorithm.
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1 Introduction

In this paper, we consider the following linear system with Markovian jumps

dzx
o = AC®)z+B(r(t)u (1)
y = C(r(t)z,

where x € R" is the state vector, u € R™ is the control input, y € R™ is
the measurement output and the time-varying parameter r(t) satisfies

e r:RT — {1,..., N} is a stochastic Markovian process, with transition
probabilities defined by

. N Wij(t)A—i—O(A) if © #£ 4,
Probir(t + &) =jlr(t) =i} = { 14 mi(A+o(A)  else,
Such transition probabilities are associated to the matrix of the tran-
sition probability rates IL(t) := [m;;(t)]1<i j<n which verifies

N
mii(t) > 0,Yi # j, and — () = > i (0).
J#i

e A(r(t)) = Ai, B(r(t)) = B; and C(r(t)) = C; when r(t) =1,

such that A; € R™", B; € R™™ and C; € R™*" , i =1,...N, are
constante matrices.

In reality, the transition rates matrix II(¢) can be “wuncertain”, which
is only known to belong to a bounded set. In this paper, we assume that
this set can be approximated by a polytope II(t) € Co{II', ... II*}, where
the vertices IT* = [ijhsmsm k=1,...,N are known transition matrices.
Prior to extensively reported literature, such notion of uncertainty on the
transition probabilities has been introduced by [1, 10] where, in addition,
a Linear Matrix Inequality (LMI) framework for the stabilization of jump
systems by state feedback was initiated.

System (1) can be viewed as a linear system subject to stochastic abrupt
changes in its components and such that its evolution is governed by several
“matriz modes’ (A;, B;,C;). Hence, under the influence of the Marovian
process r(t), this system “jumps” from one mode i to the other j, according
to the transitions rates m;;. This kind of systems has a wide range of real-
world applications, see for instance, [19]. Jump Ito differential systems that
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extend system (1) under the influence of multiplicative noise can be found
in [16, 7, 8, 9].

In this paper, we study the problem of stabilization by static output-
feedback controls whose gains take constant values in function of a Markov
process r(t). These control laws have the form wu(t) = K(r(t))y(t) where y
represents a measure on the state of the system.

Note that any dynamic control of order k < n of the form

dx.
) = Ar(®)re+ Belr(0)y

u(t) = Ce(r(t))ze+ De(r(t))y

where x.(t) belongs to R¥ and z.(0) = 0. This dynamic case can be
reduced to a static one by a system augmentation technique. This point
will be detailed further.

The problem of static output-feedback stabilization (SOFS) for a sta-
tionary deterministic system (A, B,C) € R™*" x R™"™ x R™*™ with the
probability transition matrix II = 0), consists in searching for a matrix
K € R™*™ and a symmetric positive definite matrix P € R™*" such that

(A+ BKC)'P+ P(A+ BKC) <0,P >0

Although at the first glance this problem seems to be simple, we empha-
size that it is not yet fully resolved and it is one of the important chalenging
problems that remains open in automatic control [23, 5]. In contrast, a
surprising result in our reported work [2] is that this problem is completely
solved for ST or SO positive systems via linear programming (LP). However,
the analysis of the complexity of the static output-feedback stabilization
(SOFS) problem for general deterministic stationary systems remains un-
finished. It is demonstrated in [3] that this problem is decidable. Also in
[4] it is shown that if a priori bounds on the gain of the control is imposed,
the stabilization problem becomes NP-hard. Of course this result does not
imply that the SOFS problem itself is NP-hard. However, inspired by our
reported work [11], a general result in [12] has traced the SOFS problem in
a general way: find two positive definite matrices X,Y satisfying two Linear
Matrix Inequality (LMI) F;(X) < 0, F5(Y) < 0 and an equality constraint
XY = 1. They demonstrated that this problem is NP-hard, that is, there
does not exist any algorithm that solves it in polynomial-time. Another
closely related problem consists of finding a control that is stabilizing for
several systems simultaneously. Such problem is demonstrated also to be
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NP-hard [33] to solve. The classic tutorial [31] and the recent survey update
[28] provide more details on this SOFS subject.

In [30] the SOFS problem (for stationary deterministic systems II = 0)
is reduced to solve a standard bilinear matrix equation. Other classic al-
ternative can be found in [15, 26, 35] where the SOFS problem is treated
by poles placement techniques. Our approach in this paper for Markovian
jump systems is promising and extend our previous works on stationary de-
terministic systems [11]. This approach consists of formulating and treating
the SOFS problem in terms of optimizing a scalar product of positive def-
inite matrices under LMI constraints. This can viewed as a generalization
of the classic complementarity problem in the Euclidean space [34, 17] to
the cone of symmetric positive matrices. The algorithm that we have de-
veloped has a great succes for many examples known from the literature as
well as others that are generated randomly in many thousands of numerical
tests (see [11]). Moreover, this complementarity based approach has proven
to be highly efficient and successful with comparison to the D-K iteration
algorithm [6, 25, 27]. Also, it outperformes other well-known LMI-based
methods such as the alternating projections method [13], the projection
method of[25], the min-max algorithm [32] and the XY-centering algorithm
[14].

For jump systems, to our knowledge, [18] has provided the first attempt
to numerically resolve the static output-feedback stabilization problem based
on an average quadratic criterion. Specifically, such approach is based on
the solution of coupled equations that depend on the gains of the output-
feedback stabilizing controls. The developed algorithm has been done in a
similar way as for the DK-iteration. Other related method can be found in
[20, 21].

In this paper, for the case of known constante transition rates, the SOFS
problem is formulated in terms of optimizing a sum of scalar products of
positive definite matrices under coupled LMI constraints. It is shown that
there is a mean-square stabilizing static output-feedback control,if and only
if, the global minimum is achieved and equals n x N. For the delicate case
of uncertain time-varying transition rates, a quasi similar but only sufficient
condition is provided. The properties of the underlying cone complementar-
ity algorithm are studied and illustrated by an example.
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2 Problem Formulation and Preliminaries

Here, we are interested in stabilizing in the mean-square sense system (1)
by a static output-feedback control of the form

u(t) = K(r(t))y(t), where K(r(t)) = K; where r(t) =¢,i=1,...,N. (2)
If IT is constant, such control law exists, if and only if, the following inequal-
ities hold in the matrix variables K;, P; (see for instance [1, 10]

N
(A; + B;K;C;)T P, + Py(A; + B;K;C;) + Z mij Py <0,

=1

P >0,.,Py>0,i=1,...,N.

(3)

We note that (3) represents non convex Bilinear Matrix Inequalities (BMIs)
that involves the variables K;, P;. There is no change of variables which
can bring this BMI into convex conditions like it has been done for the case
C; =TI in [1, 10].

In the sequel, the basic idea that we will develop consists in eliminating
the gain matrices K; and obtaining equivalent conditions to (3) under a cone
complementarity condition which will then be reformulated as an optimiza-
tion problem. In order to show this, we will apply the following well-known
elimination lemma (also known as projection lemma in the literature).

Lemma 1 Let (G,V,U) € R™" x R"*P x R™*" then there ezists a matriz
X € RP*? such that

G+UXV+VIXTUT <0
if and only if
UTGU, <0, and V.GV] <0
where Uy (resp. V| ) represents an orthogonal matriz Z (resp. W) of maz-
imal rank such that ZTU =0 (resp. WVT =0).
Now, coming back to the case of an output dynamic-feedback control

dx.
() = () + Bolr(0)y

ut) = Cer(t))ze + De(r(t))y

(4)

where 0] [ 4 5

c
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when r(t) =1,...,N.

This case can be formulated equivalently as a static output-feedback
control law of the form (2) for an augmented system. Indeed, if we set
T = (xTxg)T, the augmented closed-loop system can be expressed as

%(t) = (A(r(t)s Br(t)) K (r(£))C(r(t))

for which the associated matrices are given by

and the mode dependent matrix gain is given by

3 _ [ Aclr(t)) Be(r(t)) | _ [ AL B: _
K(r(t)) := [ C.r(t) Do(r(t) } = [ ci Dé} when r(t) =1,...,N.

3 Synthesis for known transition rates matrix II

In this section, we assume that the transition rate matrix II is fully known
and constant. We provide different conditions that are necessary and suffi-
cient for the existence of a stabilizing static output-feeedback control in the
mean-square sense.

Theorem 1 There exists a control law of the form (2) which is mean-square
stabilizing for system (1), if and only if, there exist symmetric matrices
P1,Q1,...,Pn,QnN satisfying P; = Q;l >0 fori=1,...,N and such that

N
ClL (ATP, + PA; + Zﬁijpj)cﬂ <0,
N (5)
Bii (AiQi + QAT + maQi + ) m;QiQ; ' Qi) B <.
J#i

Proof. a necessary and sufficient condition for the closed-loop system
to be stable in the mean square is given by the BMI condition (3), then by



570 M. Ait Rami

using the elimination Lemma 1, we equivalently obtain

N
Cﬂ(A?R + PzAz + Z Wijpj)CU_ < 0,
7j=1

N
Bi (AP + PTAT + P+ Y m PP P B <.
i

by making the change of variables Q); = Pi_1 we obtain the conditions
(5) w

Remark 1 If the conditions (5) are not satisfied then the SOFS problem
has no solution. Note that in the case of LTI stastionary systems (I = 0),
these conditions are exactly the conditions of stabilizability and detectability
in the deterministic sense.

The inequalities (5) can be expressed in terms of LMIs in the variables
F;, Q;. For this purpose one can use the well-known Schur lemma.

Lemma 2 Given matrices X = X©, Y and Z = ZT with appropriate di-
mensions. Then, if Z > 0, we have

X VY
Yy z

] > 0(resp. > 0), is equivalent to X — Y Z71YT > 0(resp. > 0)
(6)

Note that by simple manipulation via this Schur’s lemma the second
inequalitis in the conditions (5) can be equivalently expressed in terms of
LMIs. However, the equality constraint P; = Q; ! is still not possible to be
represented by an LMI. In fact, this is the hard non-convex constraint that
makes very hard the numerical solvability of the stabilization problem by
static output-feedback. In another point of view, this constraint represents
the case of the maximal singularity of the following matrix M (P;, Q;) which
has a minimal rank equals n.

M(P,Qy) = [ Bl

I Q;
-1

Indeed, by using Schur complement one can show that P; = Q; " is

equivalent to rank(M(P;,Q;)) = n. Such fact will not be used in our
treatment, but instead we make use of the following equivalence

] e R™™. (7)

M(P;,Q;)) > 0, Trace(P;Q;) = n if and only if P, = Q;* (8)
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Next, we are going to show that the static ouput-feedback problem is equiv-
alent to optimizing a scalar product under LMI constraints.

Theorem 2 There exists a control law of the form (2) that is mean square
stabilizing for system (1), if and only if

N
minE’I‘race(PiQi) =nxN
i=1 (9)
. P T .
subject to (5) and >0,i=1,...,N.
I Qi

Proof. Suppose there is a stabilizing control of the form (2). According
to Theorem 1, there then exists P;,Q1,> 0...,,Py,Qn > 0 satisfying
P = Q;l Then, we have trivially

N N
Z’I‘race(PiQi) = Z’I‘race([) =nx N.
i=1 i=1

Conversely, suppose that the global minimum is equal to n x N and
achieved by P1,Q1,>0...,, Py,Qn > 0.
For the rest of the proof we use the following identity

N N
Z’I‘race(P,-Q,-) = Z Trace(Qil/QPiQ;/z) =n X N. (10)
i=1 i=1

Note that by using Schur Lemma the LMIs
P I
I Q;

after simple manipulation, are equivalent to

]zo, i=1,...,N.

QI*PQI*>1,i=1,...,N.
which implies that
Trace(Q*P,QV/*) >n, i=1,...,N.
From the identity (10) one can deduce that for each i we have
Tr((QPQ;"%) = n.

Thus, by appealing to the property (8) this is equivent to the equalities
P=Q;' m
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4 Synthesis for uncertain transition rate matrix II

In this section, we assume that the transition rates matrix is possibly time-
varying and uncertain. It is only known that II(¢) takes values in a polytope
domain D = Co(II,...,IT*), where each II* represents a known constant
transition rates matrix.

In this case, we only have sufficient conditions for the existence of a
mean-square stabilzing control of the form (2). These sufficient conditions
can be established based on the robust stability result in [1, 10] , see also
the Appendix of [10] for general robust stability result. Then, for II €
Co(II', ..., II%) such robust stability conditions are given by the inequalities

N
(Ai + BiE;C))T P + Py(Ai + BK,Ci) + Y _mhi Py <0, an

j=1
P >0,..Py>0,i=1,....,N, k=1,...,L.

We notice that each gain K; appears in L different inequalities. Thereby,
we cannot apply the elimination lemma, which is generally true only for a
single inequality. Instead of the conditions (11), we introduce othe conditions
with aditional matrix variables that allow us to eliminate the gains K;. Thus,
this consists in introducing positive definite matrices S;,7 = 1,... N , such
that

(Ai + BszCz)TPz + H(AZ + BZKzCZ) + 5, <0
N
>_ TP < S, (12)
j=1

P,>0,..,Px>0,i=1,....,N, k=1,...,L.

Then, we apply the elimination Lemma to (A4; + B;K;C;)TP; + Pi(A; +
B;K;C;) + S; < 0 and finally obtain the following conditions

Cﬂ(A?Pz + PA; 4+ Si)Cip <0
B (4;Q; + QAT + Q;5,Q:)B}, <0,
N

k
> P < S,
j=1

P >0,..Py>0,i=1,....,N, k=1,...,L.

In order to reformulate the second inequality in (13) as an LMI, we
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introduce T; := S, 1'> 0 and obtain via the Shur Lemma

CZTJ_(A;[PZ + PA; + S;)Ci1 <0
[ Bl (4;Q; +?iAzT)BZ‘Tl B;1 Qi
Qi%L _Ti
> TP <8,
=1

P >0,..Py>0,i=1,....N, k=1,...,L.

<0

Now, owing to the previous development for the case when II is known,
we can establish the following result in similar way with the same line of
argument.

Theorem 3 There exists a control law of the form (2) that is mean-square
stabilizing of system (1) with uncertain 11 € Co(I1%, ..., TIY) | if

N
minZTrace(PiQi +ST;)=2xnxN
i=1

, P S I
subject to (14) and [ I O } >0, [ I T

5 Cone complementarity algorithm

In the sequel, we first focus on the case when II is known and constant.
N

The function Z Trace(P;Q;) is not convex. This lack of convexity can
i=1
make the search for a global minimum difficult. At a point (P?,QY),i =

N
1,..., N, the derivative of this function is given by Z Trace(P,QY + PQ;).

=1
The algorithm that we are going to propose is based on the minimization
of this derivative at different feasible points. More precisely, these points
are generated by a family of LMIs problems. This algorithm generates a
N

decreasing sequence t;, = Z:’I‘race(PfJ“lQi-g + PFQMY)y > 2xnx N. If
i=1
there exists k such that {x = 2 xn x N then the global minimum is reached.

The scheme of our algorithm is as follows
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Algorithm 1 Fiz a tolerence accuracy, for instance ¢ = 1075 (or smaller
if mecessary).

1. Initialize P? =1,Q°=1,i=1,...,N
2. Find P;,Q;, i=1,...,N solution to the SDP problem

N
min Z ’I‘race(]—’ifo1 + Piklez‘)
i—1 (16)

subject to (5) and [];Z é ] >0,i=1,...,N.

N N
3. if Z |P;—Q; Y| < € (or as another criteria Z Trace(P;Q;) —nN <
i=1 =1
€), stop, and compute the gains K; by solving the LMIs

N
(A; + BiK;C;))T P, 4 Pi(A; + BiK;Cy) + Z mi; Py <0,
=1

else if, set P; — Pf“, Q; — Qf“ and return to step 2.

Remark 2 To initialize the algorithm, we can also start from any feasible

point. If we choose the initialization P? = Q° = I, i =1,..., N, then step
N

2 of the algorithm consists in minimizing Z'I‘race(Pi + Qi) which is the
i=1

sum of the eigenvalues of all the matrices P;, Q);.

In order to study the convergence properties of our algorithm, we need
the following result, see for instance [24, 29].

Lemma 3 For all positive definite matrices X > 0,Y > 0, we have

min _ Trace(VX + WY) = 2Trace(X /2y X1/?)!/2 (17)
vV I
>0
I W |~
The minimum is reached by

V. :AX'fl/2()(1/2}/')(1/2)1/2)(71/27
W, = ‘/*—1 — Y_1/2(Y1/2XY1/2)1/2Y_1/2.
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Now, we are in a place to state the following result

Theorem 4 Algorithm 1 generates a decreasing sequence

N
tii= Y Trace(PFQf + PFQIT),
i=1
Moreover, for all k > 0, we have that t, > 2 x n x N. If there exists k*
such that tp» = 2 xn x N, then Pf*Qf* =1,i=1,...,N. In this case, the
problem of static output-feedback stabilization is solved.

Proof. Since for k£ > 1 Pik, Qf’, 1 =1,...,N are feasible solution and
Pik“, Qf‘H, 1 =1,..., N are optimal solution to
N
min ) ~ Trace(PQ} + PFQ;)
i=1

P 1

subject to LM s and
! [ I Q

] >0,i=1,...,N.
We can deduce that

N
tre1 < ) Trace(Pf'Qf + PFQI™) =ty
i=1
The rest of the proof follows from Lemma 3 and from the fact that if
X > Y ! then Trace(XY) > n and that the egality is satisfied if and only
it Xy =1
]
Next, for the case of uncertain II, we provide another cone complemen-
tarity algorithm that is based on Theorem 3. Its properties are similar to
the previous Algorithm 1 and can be shown in the same line of aegument.

Algorithm 2 Fiz a tolerence accuracy, for instance e = 1075 (or smaller
if necessary).

1. Initialize PP = QY =S =T =1,i=1,...,N
2. Find P;,Q;,S;, T;i=1,...,N solution to the SDP problem

N
min Z ’I‘race(PiQf_1 + Pik_lQi + SiTik_1 + Sf_lTi)
i=1

. J S, I (18)
subject to (14) and [ I O } >0, [ I T } >0,
i=1,....N.
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N N
3. ifz | 2—Q; M| +11Si—T; Y| < € (or as another criteria Z Trace(P,Q;+
i=1 =1

SiT;) —2nN < €), stop, and compute the gains K; by solving the LMIs

(Ai + BiK;Cy)" P, + Pi(A; + BiK;C;) + S; < 0,

else if, set P; — Pl-k'H, Q; — Qf“, S; — Sf“, T, — Tf“ and return
to step 2.

6 Numerical illustration

We illustrate the proposed Algorithm 2 by solving an example that repre-
sents a jump system with uncertain transition rates. We seek a control law
of the form (2) for system (1) whose modes and matrix of transition rates
I1 € Co(II!, I1?) are characterized as follows.

0,4002 0,5193 0,4281 0,3291 0,5306 0,9304
A; =] 0,5373 0,7715 0,9773 |, Ay = | 0,4597 0,7149 0,9692 |,
0,4461 0,6543 0,4778 0,7432 0,3725 0,2553
0,7036 0,1614 0,8162 0,3272 0,8719
As=| 0,2387 0,517 0,3862 |, B = | 0,7135 0,7582 |,
0,5233 0,1522 0,4395 0,5768 0,8366
0,6998 0,6056 0,4551 0,8310
B, = 0,3801 0,3621 |, Bs= | 0,4017 0,4216 |,
0,9352 0,5395 0,2404 0,4724

0,2898 0,2164 0,5274 0,8636 0,7116 0,3828
Cr = , Oy =

~ | 0,1050 0,8020 0,6688 0,2438 0,2637 0,0810 |’
O — 0,4598 0,7954 0,0032
70,2329 0,4913 0,2661 |-

The transition rate matrix II is uncertain and supposed to varies between
I1; and II, that is, IT € Co(II;,I1), where

~1,9095 0,9635  0,9460
I = | 0,4252 —0,5963 0,1712 |,
0,1868  0,7959 —0, 9827
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~1,2361 0,5097  0,7264
L= | 0,3475 —0,6769 0,3294
0,2925  0,8343 —1,1268

We have applied Algorithm 2 to this example and found a global mini-

mum in 2 iterations. The computed corresponding stabilizing control for all
IT € Co(I1y,II5) is given by the following gains

7

We
of j

K — 105 | 0.0791  0,0450 —0,2418

1= —0,1092 —0,0622 0,5887 |’

Ko — 105 | 11697 0,4513  —1,0587

2= —92,8486 —0,2753  0,6459
Conclusion

have shown that the problem of robust static output-feedback control
ump systems can be formulated as an optimization problem. This for-

mulation represents an extension of the problem of complementarity for the
Euclidian case to the case of the cone of positive symmetric matrices. The
search for a global minimum is based on a linearization algorithm.
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