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Abstract

In this paper, we point out important observations on time-scale
decomposition of linear singularly perturbed systems. It has been es-
tablished in the control literature that the asymptotically stable fast
modes of a singularly perturbed system decay rapidly in a boundary
layer interval when the perturbation parameter is very small hence
the slow subsystem can serve as a good approximation of the original
model. We observe that while this is the case in the steady state, it
is not true during the transient response for a strictly proper system
with highly damped and highly oscillatory modes. Instead, the fast
subsystem provides a very good approximation of the original model’s
response but with a DC gain offset. We propose a correction to rectify
the DC gain offset and illustrate the findings using an islanded micro-
grid electric power system model.
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1 Introduction

Singular perturbation theory has been widely used for time-scale separation
and order reduction for systems where different time-scales are present. The
most common case is when two time-scales, namely slow and fast character-
ize the dynamics of the given system. The latter form is the most researched
variant of singular perturbation methods; see for example [12], [5], [14], [11]
and references therein.

The premise of singular perturbation methods for order reduction lies in
the fact that asymptotically stable fast dynamics decay rapidly in a bound-
ary interval when a large separation between clusters of eigenvalues exists
due to the presence of a sufficiently small perturbation parameter. As the
fast dynamics die out, an n + m size original model degenerates to a lower
order size n which corresponds to the slow subsystem [12]. The latter serves
as a good representation of the original full-order system [12].

In this paper, we make two remarks on singular perturbation theory by
utilizing a model of a real physical system. We use the latter to illustrate
observations in the time-scale decomposition of strictly proper singularly
perturbed system with highly damped and highly oscillatory modes. First,
even though the singular perturbation parameter in the considered case
study is sufficiently small, the slow subsystem does not approximate the
original model as theory suggests. Instead, the fast subsystem provides a
very good approximation of the original model’s response but with a DC
gain offset. Second, we point out that a fast DC gain correction has to
be employed to improve the transfer function approximation of the overall
system when the classical singular perturbation technique is used. The DC
gain is defined as the value of the transfer function evaluated at s = 0.

We propose a solution based on the DC gain of the fast subsystem to
correct the offset. It should be pointed out that when the system is exactly
decoupled using the Chang transformation [1], the DC gain offset is O(ε).
That is, its steady-state response is only O(ε) apart from the corresponding
response of the original system. The rest of this manuscript is organized as
follows.

In Section 2, a review of singular perturbation theory and how it is used
for time-scale decomposition and model order reduction is presented. Sec-
tion 3 contains a motivating example of a real physical system, important
results on model order reduction using singular perturbations and some
observations. Further considerations of singular perturbation theory with
respect to the highly oscillatory and highly damped mode example are pre-
sented in Section 4. Finally, Section 5 concludes the paper.



540 K. Kodra, N. Zhong, Z. Gajic

2 Review of the Singular Perturbation Method

We start with a linear time-invariant (LTI) strictly proper singularly per-
turbed system in mathematical form represented as

ẋ1(t) = A1x1(t) +A2x2(t) +B1u(t)

εẋ2(t) = A3x1(t) +A4x2(t) +B2u(t)

y(t) = C1x1(t) + C2x2(t)

(1)

where x1(t) ∈ Rn and x2(t) ∈ Rm are the slow and fast state variables respec-
tively, u(t) ∈ Rp is the system control input, y(t) ∈ Rq are the system mea-
surements, and ε is the small singular perturbation parameter 0 < ε � 1.
All the matrices in (1) are constant and of appropriate dimensions. Two
time-scale LTI singularly perturbed systems have eigenvalues located in two
disjoint groups: for example, slow O(1) eigenvalues close to the imaginary
axis and fast O(1ε ) eigenvalues far from it. The following standard assump-
tion is imposed [12].
Assumption 1: Matrix A4 is nonsingular.

When ε = 0 (a common strategy for order reduction), the following
reduced-order system corresponding to the slow dynamics is obtained

˙̄x1(t) = A0x̄1(t) +B0u(t)

ȳ(t) = C0x̄1(t) +D0u(t)
(2)

where
A0 := A1 −A2A

−1
4 A3 B0 := B1 −A2A

−1
4 B2

C0 := C1 − C2A
−1
4 A3 D0 := −C2A

−1
4 B2

(3)

The approximated fast subsystem is [12]

˙̄x2(τ) = A4x̄2(τ) +B2u(τ)

ȳf (τ) = C2x̄2(τ)
(4)

where τ = t/ε. According to the theory of singular perturbations [3], [12],
the approximation obtained in (2)-(4) satisfies Equation (5).

x1(t) = x̄1(t) +O(ε), ∀t ≥ t0
x2(t) = x̄2(τ)−A−14 (A3x̄1(t) +B2u(t)) +O(ε), ∀t ≥ t0

(5)

Hence, the smaller parameter ε, the better the approximation. Another ef-
fective method to obtain exact dynamic decoupling is by utilizing the trans-
formation developed in [1]. Referred to as the Chang transformation, it
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diagonalizes the system by exposing the slow and fast dynamics. The trans-
formation is given as follows.[

z1(t)
z2(t)

]
=

[
I − εHL εH

L I

] [
x1(t)
x2(t)

]
= T

[
x1(t)
x2(t)

]
(6a)[

x1(t)
x2(t)

]
=

[
I εH
−L I − εLH

] [
z1(t)
z2(t)

]
= T−1

[
z1(t)
z2(t)

]
(6b)

After (6) is applied to (1), the decoupled system is then

ż1(t) = Asz1(t) +Bsu(t)

εż2(t) = Afz2(t) +Bfu(t)

y(t) = Csz1(t) + Cfz2(t)

(7)

where
As := A1 −A2L Bs := B1 −HB2 − εHLB1

Af := A4 + εLA2 Bf := B2 + εLB1

Cs := C1 − C2L Cf := C2 − εC2LH + εC1H

(8)

Note that all quantities in (7)-(8) are off by O(ε) from the corresponding
quantities defined in (2)-(4), that is

As = A0 +O(ε), Af = A4 +O(ε)

Bs = B0 +O(ε), Bf = B2 +O(ε)

Cs = C0 +O(ε), Cf = C2 +O(ε)

(9)

A noticeable difference between the reduced-order slow model defined in (2)-
(3) and the decoupled system (7) is that the measurement in (7) lacks an
input u(t) while ȳ(t) from (2) includes a D0u(t) term.

Matrices L and H are obtained by solving the following equations.

A4L−A3 − εL(A1 −A2L) = 0
HA4 −A2 + ε(HLA2 −A1H +A2LH) = 0

(10)

The reader can refer to [5] and [9] for methods on finding the solution of L
and H equations.
In the following sections we investigate a model belonging to an islanded
microgrid [8] and show that simulation results do not completely follow the
aforementioned singular perturbation theory.
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3 Motivating Example

To illustrate the shortcomings of singular perturbation theory for systems
containing highly damped and highly oscillatory modes (see [2] for a study
of singularly perturbed systems with such behavior), a motivating example
of an islanded microgrid model follows.

3.1 Model Description

The sixth-order model belongs to a microgrid right after it has been dis-
connected from the main electric power grid at the point of common cou-
pling [8] . Under balanced conditions the initial model is transformed
into an αβ-reference frame, which is further simplified by applying a dq
transformation leading to a six-order model. The state vector of dimen-
sion six is x(t) =

[
Vd(t) Vq(t) Itd(t) Itq(t) ILd(t) ILq(t)

]
, the input

vector is u(t) =
[
Vtd(t) Vtq(t)

]′ ∈ R2, and the output vector is y(t) =[
Vd(t) Vq(t)

]′ ∈ R2, where Vd(t) and Vq(t) represent the voltages at the
point of common coupling after the dq transformation, Itd(t) and Itq(t) rep-
resent the currents originating from the distributed generation (DG) unit,
ILd(t) and ILq(t) represent load currents, and Vtd(t) and Vtq(t) represent the
voltages at the DG unit. A, B, and C representing the state, input, and
output matrices respectively are given below.

A =



−209.32 376.99 15908 0 −15908 0

−376.99 −209.32 0 15908 0 −15908

−3333.3 0 −5 376.99 0 0

0 −3333.3 −376.99 −5 0 0

8.9366 0 0 0 −3.1416 376.99

0 8.9366 0 0 −376.99 −3.1416



B =



0 0

0 0

3333.3 0

0 3333.3

0 0

0 0


, C =

[
0 1 0 0 0 0
1 0 0 0 0 0

]

Matrix A is Hurwitz and its eigenvalues are shown in (11).

λIM = {−3.15± 377.0j,− 107.16± 7668.06j,−107.16± 6914.07j} (11)
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It is important to note that the original model is not in the standard singu-
larly perturbed form. To achieve an explicit form, the following permutation
matrix is introduced.

P =



0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0


The new state-space matrices are now Ā = PAP , B̄ = PB, and C̄ = CP .
Using the standard theory of singular perturbations covered in the previ-
ous section and the system’s eigenvalues presented in Equation (11), it is
evident that the eigenvalues are clustered in two disjoint groups: complex
conjugate pairs located close to the imaginary axis that are considered slow
and eigenvalues located far from the imaginary axis which are responsible
for the system’s fast dynamics. The small singular perturbation parameter
is evaluated as follows.

ε =
Re{λslowmax}
Re{λfastmin}

≈ 0.03 (12)

As discussed earlier, by eliminating the fast modes we can obtain an ap-
proximation of the system dynamics by using the slow modes only. We will
show next using simulations that such an approximation will produce poor
results.

3.2 Order-reduction via Singular Perturbations

A step input is considered for simulation purposes. The results for the
original model due to the first input and first output are shown in Figure 1.

0 0.01 0.02 0.03 0.04 0.05

Time [s]

0

1

2

A
m

p
li

tu
d

e

Figure 1: Step response of original system (1)
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Matrices of the slow subsystem (2) are given as follows.

A0 =

[
−3.1566 −378

378 −3.1566

]
, B0 =

[
−0.01369 8.9604

8.9604 0.01369

]

C0 =

[
0.1134 −0.0017

−0.0017 −0.1134

]
, D0 =

[
1.0027 0.0015
−0.0015 1.0027

]
The corresponding step response of the slow approximate system (2)-(3)

is shown in Figure 2. The response settles at one after some initial low
magnitude jitter and it is evident that this response is not a satisfactory
approximation of the original system. Namely, the responses in Figure 1
and Figure 2 are far apart. Note that a longer time has been selected for
this simulation to show the steady-state.
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Figure 2: Step response of the approximate slow (2)-(3)

Next, system decoupling using the Chang transformation [1] is consid-
ered. Figure 3 shows the simulation result for the slow subsystem defined
in (7). Again, this response does not approximate the original system. The
output is similar to the approximate slow subsystem output presented in
Figure 2 but with a different gain.
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Figure 3: Step response of the exact slow subsystem obtained via the Chang
transformation
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It is interesting to note that the output of the fast subsystem obtained via
the Chang transformation provides a very good approximation of the original
system. Likewise, the fast subsystem (4) produces similar results but with
a small steady-state error. The corresponding responses of the fast subsys-
tem via the Chang transformation and the fast subsystem via the classical
singular perturbation method are shown in Figure 4 and Figure 5 respec-
tively. Clearly, these observations do not agree with the classical singular
perturbation system theory.
Table 1 summarizes the errors of the reduced-order models with the orig-
inal response. On the other hand, the fast modes obtained via the classi-
cal singular perturbation method (FastSP) and the Chang transformation
(FastChang) provide an accurate approximation of the full-order system’s
response. FastSP is less accurate than FastChang due to the extra DC gain
offset present in the response of the fast subsystem obtained via the classical
singular perturbation method (4).

Table 1: Errors of the reduced-order models for the step responses

Reduced model ‖Original −Reduced‖2
SlowSP 5.6034× 101

SlowChang 3.5184× 102

FastSP 9.7452× 10−2

FastChang 3.0078× 10−4
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Figure 4: Step response of the exact fast subsystem obtained via the Chang
transformation

3.3 Analytical Time-scale Decomposition Analysis

Earlier we showed via simulations that the slow subsystem is not a good
candidate to approximate the original system even though ε was very small.
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Figure 5: Step response of the fast subsystem (4)

Instead, simulation results showed that the fast subsystem approximates
well the system dynamics. What follows, is an analytical attempt into un-
derstanding the anomaly that arose in the simulations.
We start by considering the eigenvalues of the islanded microgrid model.
Using ε ≈ 0.03, the model’s eigenvalues (11) can be rewritten as

λIM = {−3.15± 11.31

ε
j,

3.2148

ε
± 6.9013

ε2
j,

3.2148

ε
± 6.2227

ε2
j} (13)

To facilitate the problem, we propose to investigate the system trans-
formed into the modal canonical form. A similarity transformation T can be
found such that the system matrix is transformed into the modal form [7].
The same conclusion can be drawn by transforming the system matrix A
into the Schur form via the QR algorithm. The QR algorithm is considered
the most efficient method for finding the system eigenvalues [6].
Note that the modal form is known to be numerically ill-conditioned when
the eigenvalues are close to each other. Hence, in our case it is only used
for theoretical considerations. The Schur form on the other hand is numer-
ically well-conditioned even when the eigenvalues are repeated or close to
each-other.
The modal form of the system considered in this paper is given by

Ã(ε) =



α1
β1
ε

0 0 0 0

−β1
ε

α1 0 0 0 0

0 0
α2

ε

β2
ε2

0 0

0 0 −β2
ε2

α2

ε
0 0

0 0 0 0
α3

ε

β3
ε2

0 0 0 0 −β3
ε2

α3

ε


(14)
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In state-space form, the system is represented as in (15). Note that for the
sake of the argument we are not considering an input here.

dz(t)

dt
≡ ż(t) = Ã(ε)z(t) (15)

Since the term 1
ε is present in all the elements of matrix Ã, (15) is multiplied

by ε on both sides to obtain

ε
dz(t)

dt
= εÃ(ε)z(t) (16)

It is clear from (14) and (16) that all six state variables are fast due to
the presence of ε. In addition, the last four state variables are much faster
than the first two since the last four contain elements that are multiplied by
1
ε . To obtain a standard singularly perturbed form, we employ a change of

variables, namely dt
ε = dτ . The state-space form (16) can be now be written

as

dz(τ)

dτ
=



εα1 β1 0 0 0 0
−β1 εα1 0 0 0 0

0 0 α2
β2
ε

0 0

0 0 −β2
ε

α2 0 0

0 0 0 0 α3
β3
ε

0 0 0 0 −β3
ε

α3


(17)

The standard singularly perturbed form is then given as follows.

ż1(τ) =

[
εα1 β1
−β1 εα1

]
z1(τ)

εż2(τ) =

[
εα2 β2
−β2 εα2

]
z2(τ)

εż3(τ) =

[
εα3 β3
−β3 εα3

]
z3(τ)

(18)

We observe that in the original system there are no slow dynamics. The fast
dynamics are represented by state variable z1(τ) and the very fast dynam-
ics are represented by z2(τ) and z3(τ). Analysis of this real physical system
model shows that its response cannot be approximated by the slower dy-
namics as it is typical in singularly perturbed systems since here only fast
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and very fast modes are present. It is interesting to point out that using
only the fast modes (belonging to z1(τ)) does not produce a good approx-
imation. However, the fourth-order approximation based on the very fast
modes represented by z2(τ) and z3(τ) produces an excellent approximation
in the original coordinates meaning that the system’s dynamics are con-
tained within the very fast modes.

4 Discussions on the Singular Perturbation Ap-
proach for Order Reduction

As we saw in the earlier sections, we were unable to obtain a reduced-order
slow subsystem based approximation of the original model using the classical
singular perturbation technique (2) or the exact time-scale decomposition
(6). While there is no error in the steady state, there is a large error dur-
ing the transient when the classical approach is used for order reduction.
This error is evident during the first 0.04 seconds which corresponds to the
transient response.

It is worth noting that the original system lacks a feedthrough matrix,
that is D = 0. On the other hand, the classical singular perturbation ap-
proach has an input (D0 6= 0) present at the output as is evident in (2).
This fact provides no guarantee that the original output y(t) can be ap-
proximated by ȳ(t) and yf (τ). As a matter of fact, in [3], it was incorrectly
stated that y(t) = ȳ(t) + yf (τ) +O(ε). Depending what the input signal is,
the extra term introduced in the reduced-order system could influence the
approximation of the overall system’s response.

It is easier to see the ramifications if we consider the problem in the
frequency domain. For a strictly proper system, the transfer function is as
follows.

H(s) = C(sI −A)−1B (19)

The reduced-order transfer function and the fast counterpart become

H0(s) = C0(sI −A0)
−1B0 +D0 (20a)

H0
f (s) = C2(sI −A4)

−1B2 (20b)

The sum of the slow and fast transfer functions gives us the original system’s
transfer function. Namely, H(s) = H0(s) + H0

f (s). The schematic for this
configuration is presented in Figure 6 [3]. An issue that arises at this point
is the DC gain of the overall response.
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Figure 6: Current slow-fast decomposition architecture

As it was shown in [13], the DC gain of the overall system is given as
the sum of the reduced-order systems’ DC gain and that of the fast, that is

CA−1B = C0A
−1
0 B0 + C2A

−1
4 B2 (21)

It is easily seen from the block diagram in Figure 6 that the DC gain (s =
0) of the final transfer function H(s) will have twice the gain of the fast
subsystem. This can be observed in Figure 7 where simulation results on
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Figure 7: Step response of overall system using (2) and (4) approximations

the example considered earlier show that there is an offset in amplitude
compared to the original response depicted in Figure 1. Namely, the response
settles at two instead of one. To rectify this issue, we introduce a correction
that offsets the gain coming from H0

f (s). An additional term is added to the
transfer function of the fast subsystem as seen in the new scheme depicted
in Figure 8. It was shown in [4] that such a corrected DC gain approach
works well for reduced-order models obtained via balancing [4], [13]. The
corrected response of the example considered earlier is shown in Figure 9. If
the latter is compared to Figure 1, we notice that it is very accurate. Note
that this would not be the case if the Chang transformation [1] is used. That
is, we will have the following transfer functions for each of the decoupled
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Figure 8: Corrected slow-fast decomposition architecture
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Figure 9: Step response of overall system with fast DC gain correction

subsystems.

Hs(s) = H0(s) +O(ε) (22a)

Hf (s) = H0
f (s) +O(ε) (22b)

Equation (22) implies that the slow and fast transfer functions obtain via
the exact decoupling differ from their counterparts obtained via the classical
singular perturbation technique by O(ε). In contrast to H0(s) obtained in
(20a), H0(s) in (22) lacks the fast DC gain that comes from the D0 term.
To clearly observe this fact, we rewrite (22) as follows.

Hs(s) = C0(sI −A0)
−1B0 +O(ε) (23a)

Hf (s) = C2(sI −A4)
−1B2 +O(ε) (23b)

The block diagram of this setup is presented in Figure 10. We notice that a
correction for the fast DC gain is not needed in this case. The only drawback
is that the gain will be offset by O(ε).
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Figure 10: Exact slow-fast decomposition architecture

5 Conclusion

In this paper we presented a case when the classical singular perturbation
techniques fail to successfully perform order reduction. While it is cus-
tomary to decouple the system into slow and fast subsystems and use the
slow subsystem as an approximation of the original system, we showed that
for an islanded microgrid model with highly damped and highly oscillatory
eigenvalues that was not the case. Instead, the system contains fast and
very fast modes. The system’s dominant dynamics are retained within the
very fast modes and that is the reason why the corresponding subsystem
provides a very good approximation of the original system. In addition, we
discussed some implications of the classical singular perturbation approach
for approximating the system’s response with respect to the DC gain and
proposed a method that rectifies the issue.
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