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Abstract

This paper makes a further foray on the study of the filtering prob-
lem for the class of Markov jump linear systems (MJLSs) with partial
observations of the Markov parameter (the operation mode). We de-
rive a stationary filter for the best linear mean square filter (BLMSF)
devised in a recent paper by the authors. It amounts here to obtain
the convergence of the error covariance matrix of the best linear mean
square filter to a stationary value under some suitable assumptions
which includes ergodicity of the Markov chain. The advantage of this
scheme is that it is easier to implement since the filter gain computa-
tion can be performed offline, leading to a linear time-invariant filter.
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do Rio de Janeiro - FAPERJ, under the Grant 2016004686 and of the Brazilian National
Research Council – CNPq, under the Grants 304801/2015-1 and 421486/2016-3.
‡frag@lncc.br National Laboratory for Scientific Computing – LNCC/MCTIC, CEP
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1 Introduction

Efficient control systems rely heavily on the premise that the model consid-
ered was devised in such a way that relevant uncertainties were adequately
taken into account in the modelling process of the system to be controlled.
For instance, accounting for abrupt change , such as failure, in the modelling
may be crucial in the design of a reliable control system which may guarantee
an acceptable behavior and meeting some performance requirements even
in the presence of these abrupt events in the system dynamics. This may
be crucial, for instance, either due to security reasons or efficiency necessity.
With the advent of new sophisticated technologies used in the manufacture
of complex systems such as airplane, nuclear power station, mobile network,
robotics, among others technological symbols of modern society, this concern
is still more important. Therefore, it has been widely recognized that the
requirements of specific behaviors and stringent performances in complex
dynamics systems call for the inclusion of possible failure prevention in a
modern control design. In view of this, dynamical systems which are subject
to abrupt changes have been a theme of increasing investigation in recent
years and a variety of different approaches to analyze this class of systems
has emerged over the last decades. In this regard, a particularly interesting
class of models within this framework is the so-called Markov jump linear
systems (MJLS), which is the subject matter of this paper. In this case, the
abrupt changes are modeled by a Markov chain (see, e.g., [2], [3], [6], [18]
and references therein).

A cursory examination of the literature reveals that there has been a
steadily rising level of activity with systems which are vulnerable to abrupt
changes in their structures and ramping up yet more in recent years in the
case of MJLS. An initial trickle of papers using MJLS models [20], [21], soon
grew to a considerable amount of papers with a sober eye towards applica-
tions, as befits a maturing field (see, e.g., [2], [3] and references therein). The
development of a solid body of theoretical results on MJLS engendered, in
recent years, a startling growth of application of this theory in a great variety
of area, since abrupt changes can be due, for instance, to abrupt environ-
mental disturbances, component failures or repairs, changes in subsystems
interconnections, abrupt changes in the operation point for a non-linear
plant, volatility, etc. This can be found, for instance, in robotic (see, e.g.,
[19]), communication networks (packet loss, fading channels, [14] and [26]),
electromagnetic disturbances in flight systems (see, e.g., [12]), lossy sensor
data (see, e.g., [8]), image-enhancement (e.g., [7]), wireless communication
( see, e.g., [15]), among others. (see also, [2], [3], and references therein)
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To some extent, Markov jump linear systems is by now a fully fledged
theory which provides systematic tools to deal with linear systems which
are subject to abrupt changes. This is certainly true for the case of com-
plete observations of both, the state signal and the mode operation. This
can be confirmed by the coherent body of theoretical results available in the
specialized literature for this scenario (see, e.g., [2], [3], [6], [18] and refer-
ences therein). However, when it comes to the scenario of MJLS with partial
observations, the theory in this setting needs to be perfected. A salient fea-
ture here, vis-a-vis the linear case, is that the partial observations scenario
in the context of MJLS has three possible settings: (i) the Markov chain
is observed, but not the state signal; (ii) the state is observed, but not the
chain; and (iii) none of them is observed.

One of the main hindrance in the study of MJLS with partial observations
comes up in the context of the stochastic optimal control problem. This is
not a surprise, since it has been really hard to make great strides in the
tailoring of a general theory of optimal control with partial observations
which guarantee explicit analytical solution. The rare exception in this
scenario is the so-called LQG problem (see, for instance, [5]). Roughly, the
difficulty lies in the fact that, within the optimal control theory framework,
the approach hinges on transforming the partially observable problem in one
with complete information (e.g., via filtering theory) and solve the problem
via the associated Hamilton-Jacobi-Bellman equation. The main difficulty
here lies on the fact that a great deal of non-linearity is introduced in the
Bellman equation by the optimal filter which makes the problem intractable.
Notice that, in the scenario (ii), the optimal filter for the Markov chain (also
known as Wonham’s filter) is nonlinear (see, [24]).

In view of the difficulty in solving the problem in the context of the
optimal control theory, there has been an alternative attempt , which has
come to the fore recently, in the context of the control problem for MJLS
with partial observations of the Markov chain and has been dubbed in the
specialized literature as the detector based approach (see, e.g., [10], [4]).
However, in this approach the detector mechanism, θ̂(t), do not make use
of the information coming from the output y(t). The detector do not come
up as a result of an optimization problem.

Motivated by the discussions above, and in an attempt to circumvent the
problems mentioned above in the context of the control problem for MJLS
with partial observations of the Markov parameter, an optimal linear filter
for the the Markov parameter was recently derived in [22]. The motivation
there was at least twofold: (i) by using this linear filter, to revisit in the
future the optimal control problem for the scenario of partial observations,
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in the context of Bellman’s equation. The favorable aspect in this case is
the fact that the filter is linear; (ii) to make a direct use of the available
output signal.

In this paper, as a natural step forward, we derive a stationary linear
filter associated to the best linear linear filter derived in [22] for the Markov
parameter in the scenario (ii) of partial observations described above. In the
spirit of what has been done in [11], the approach here amounts in obtaining
the convergence of the error covariance matrix of the best linear mean square
filter (BLMSF) to a stationary value under the assumption of ergodicity
of the associated Markov chain. Besides the interest in its own right, in
conjunction with the fact that stationary filter alleviate the computation
burden of having to calculate the solution of the error covariance error matrix
at each time, it may bear an important role on the analyse of the infinite
horizon setting, in the spirit of the circle of ideas discussed above.

A brief outline of the content of this paper is as follows. In Section 2 we
fix the notations and recall a few notions. The relevant setting and problem
statement are described in section 3. The main result, the stationary linear
filter, is given in section 4. Finally, a numerical simulation for the stationary
linear filter deduced in this article is presented in Section 5.

2 Notation and Preliminaries

We will denote by Rn the n-dimensional Euclidean space and by B (Rn,Rm)
the normed bounded linear space of all n × m matrices with B (Rn) : =
B (Rn,Rn). For L ∈ B(Rn), L

′
will indicate the transpose of L. As usual,

L ≤ 0 (L > 0) will mean that the symmetric matrix L ∈ B(Rn) is
positive semi-definite (positive definite), respectively. In addition, we set
B(Rn)+ : = {L ∈ B(Rn);L = L

′ ≥ 0}. We use R+ to denote the interval
[0,∞) and define by L ⊗K ∈ B (Rsn,Rrm), the Kronecker product for any
L ∈ B (Rs,Rr) and K ∈ B (Rn,Rm). In that sense L ⊗ z ∈ B (Rs,Rrn), for
any L ∈ B (Rs,Rr) and z ∈ Rn. For Di ∈ B(Cn), i = 1, . . . , N , diag(Di)
stands for an Nn × Nn matrix where the matrices Di are put together
corner-to-corner diagonally, with all other entries being zero. For V ∈ Cn,
diag(V ) stands for an n × n matrix where the components vi of the vector
V are put together corner-to-corner diagonally, with all other entries being
zero. Also, V m stands for an nm × n matrix where V is concatenated m
times, that is V m = [V1 . . . Vm].

As usual, we define H := L2 (Ω,F ,P), the Hilbert space of all square in-
tegrable random variables (r.v.) in the probability space (Ω,F ,P), equipped



Stationary Linear Filter for the Operation Mode 505

with the inner product 〈x, y〉 = E
(
x
′
y
)

. Convergence here will be in

the quadratic mean (q.m.) sense, i.e., a sequence {x(n)} converges to x
if ‖x(n)− x‖2 −→ 0. We define also H0 = {x ∈ H|Ex = 0}, the closed sub-
space of all centred r.v.’s of H are said to be orthogonal (from now on x ⊥ y)
if 〈x, y〉 = 0. Furthermore, for y ∈ H0 we consider the subspace Hyt ⊂ H0

defined by Hyt = L{y(s), 0 ≤ s ≤ t} which consists of all linear combinations∑
i α
′
iy(ti), where ti < t, and q.m. limits of these combinations (a closed

subspace) such that Hyt ⊂ H
y

t′
⊂ Hy := Hy∞ for t < t

′
. We recall that if

{y(t)} is q.m. continuous then Hy is a separable Hilbert space and, as a
fundamental property of a Hilbert space, any z ∈ H0 has a unique decom-
position z = ẑ + z̃ where ẑ = Pyt z ∈ H

y
t and z̃ ⊥ Hyt . Here Pyt denotes the

projection operator which projects each element of H0 onto Hyt . Moreover,
we can have the following properties:

• ‖z − Pyt z‖ = minυ∈Hy
t
‖z − υ‖ and, therefore, ẑ = Pyt z is the linear

least-square estimator of z given Hyt , i.e., the best linear estimator is
the projection of z onto Hyt ;

• z̃ = z − ẑ ⊥ Pyt .

A vector process
{
x(t) =

(
x1(t), . . . , xn(t)

)
; t ∈ R+

}
∈ Rn has orthogo-

nal increments (o.i.) if for each i, j and any non-overlapping intervals (u, r)
and (s, t),

(
xi(t)− xi(s)

)
⊥
(
xi(r)− xi(u)

)
, that is

(
xi(t)− xi(s)

)
⊥ Hxs .

For a second order vector process {x(t)}, Cov(x(t)) will refer to its co-
variance function, and δ{.} stands for the Dirac measure.

3 Problem Description and Auxiliary Results

Let (Ω,F ,P) be a complete probability space with its natural filtration
{Ft, t ∈ R+}, as usual augmented by all null sets in the P-completion of
F , carrying the following mutually independent objects:

O.1) An standard Wiener process W = {(ω(t),Ft) , t ∈ R+} in Rp.

O.2) An homogeneous Markov process with right continuous trajectories
θ = {(θt,Ft) , t ∈ R+} taking values on the finite set S := {1, 2, . . . , N}.
In addition:

P (θt = j|θ0 = i) =

{
λijt+ o(t), i 6= j

1 + λiit+ o(t), i = j
(1)
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where [(λij)] is the stationary N × N transition rate matrix of θ
with λij ≥ 0, i 6= j and λi = −λii =

∑
j:j 6=i λij < ∞. We define

pij(t) := P (θt+s = j | θs = i) , i, j = 1, . . . , N , and denote pi(t) :=
P(θt = i) > 0, for any i ∈ S. Notice that, in this setting, P (t) :=

[p1(t), . . . , pN (t)]
′
, satisfies the Kolmogorov forward differential equa-

tion dP (t)/dt = ΛP (t);P (0) = P0, t ∈ R+, where Λ :=
[
(λij)

′
]
.

O.3) A random variable y, with E
[
y2
]
<∞.

Consider now the class of hybrid dynamical systems modeled by the
following Markov jump linear systems:

dy(t) = Hθ(t)y(t)dt+ rdω(t), y(0) = y. (2)

where y(t) ∈ Rm denotes the observation vector of the Markov chain θ(t),
Hθ(t) is a random matrix such that, for θ(t) = i assumes the value Hi ∈,Rm
and r ∈ B(Rp,Rm) is the diffusion coefficient.

A central piece in the development of our approach is the following rep-
resentation result for θ(t) (see, e.g. [16]):

dδi(t) =

N∑
j=1

λjiδi(t)dt+ dmi(t), (3)

where δi(t) = δ{θt=i} and mi(t) is a square integrable Fθt -martingale with
right-continuous trajectories and bounded variation. Define now ρ(t) =

[δ0(t), . . . , δN (t)]
′
∈ RN and m̄(t) = [mi(t), . . . ,mN (t)]

′
∈ RN . Then from

(3) we have

dρ(t) = Λρ(t)dt+ dm̄(t). (4)

Setting now H̄ = [H1 . . . HN ] ∈ B(RN ,Rm) and Y (t) = IN ⊗ y(t) ∈
B(RNm,Rm), we can rewrite (2) as

dy(t) = H̄Y (t)ρ(t)dt+ rdω(t). (5)

Define also ȳ(t) = [ȳ1(t)
′
, . . . , ȳN (t)

′
]
′

where ȳi(t) = δi(t)y(t). Notice
that ȳ(t) = Y (t)ρ(t), and from Proposition 5.3 in [9]

dE[ȳ(t)] = FE[ȳ(t)]dt, E[ȳ(0)] = µ (6)

for F = diag(Hi) + Λ⊗ Im. From now on assume that:
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A.1) y and θ(t) (and therefore δi(t) ∀i ∈ S and ρ(t)) are independent from
ω(t). Consequently we have 〈m̄,W 〉 ≡ 0.

A.2) rr
′
> 0.

A.3) θ(t) is ergodic. Therefore, P (t) converges to a stationary probability
vector Π = [π1, . . . , πN ]

′
, where πi = lim

t→∞
pi(t) (see [1] Section 6.2).

A.4) Re {λ(F )} ≤ 0 with a zero eigenvalue (no imaginary part).

Remark. Re {λ(F )} ≤ 0 prevents instability for y(t) and the zero eigenvalue
avoids [ȳ(t)] → 0 as t → ∞. Notice that if [ȳ(t)] → 0 the signal to noise
ratio (SNR) of y(t) will be too low to ”detect” θ(t) after the early stage.

Before going deeper into the problem formulation we need to introduce
some definitions and auxiliary results.

Name now ρ̂(t) as the best linear mean square estimator of ρ(t) given
Hyt , that is ρ̂(t) = Pyt ρ(t) which minimizes the square error ‖ρ̃(t)‖22, where
ρ̃(t) = ρ(t) − ρ̂(t). Bearing in mind that θ(t) =

∑N
i=1 iδ(t) and ρ(t) =

[δ1(t), . . . , δN (t)]
′
, the best linear mean square estimation for θ(t) is given

by θ̂(t) =
∑N

i=1 iδ̂(t). Define also
ȳ = lim

t→∞
E[y(t)]

D = (rr
′
)−1/2

C = −(IN ⊗ ȳ)
′
H̄
′
D
′
DH̄(IN ⊗ ȳ)

(7)

and 
P̄ (t) = E[ρ(t)ρ(t)

′
]

P̂ (t) = E[ρ̂(t)ρ̂(t)
′
]

P̃ (t) = E[ρ̃(t)ρ̃(t)
′
].

(8)

Notice that P̃ (t) is the error covariance matrix of the estimator ρ̂(t).
Finally define the innovation process υ(t) as

dυ(t) = dy(t)− H̄Y (t)ρ̂(t)dt = H̄Y (t)ρ̃(t)dt+ rdω(t). (9)

Theorem 1. Consider system (5) with assumptions A1) and A2). Then
the best linear mean square estimator ρ̂(t) is given by the following filter,

dρ̂(t) = Λρ̂(t)dt+ E[ρ(t)ρ̃(t)
′
Y (t)

′
]H̄
′
D
′
Ddυ(t). (10)
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Proof. See Theorem 1 in [22].

The Problem: The subject matter of this paper is to derive a station-
ary linear filter for the best linear mean square filter (BLMSF) derived in
Theorem 1, above. It amounts here to obtain the convergence of the error
covariance matrix of the BLMSF to a stationary value under the assumption
of ergodicity of the associated Markov chain θ(t), which is tantamount to
prove convergence of E[ρ(t)ρ̃(t)

′
Y (t)

′
] to a stationary value.

4 Main Result

In this section, we obtain our main result concerning the stationary fil-
ter for ρ(t), which consists in a convergence analysis of the behavior of
E[ρ(t)ρ̃(t)

′
Y (t)

′
], as mentioned above. The main result reads as follows.

Theorem 2. For (5) with assumptions A1)-A4) and assuming that (Λ
′
, C)

is controllable, the stationary linear filter associated to (10) is given by:

dρ̂(t) = Λρ̂(t)dt+ P̃ (IN ⊗ ȳ)
′
H̄
′
D
′
Ddυ(t) (11)

where

P̃ = lim
t→∞

E[ρ̃(t)ρ̃(t)
′
], (12)

satisfies the Riccati equation

ΛP̃ + P̃Λ
′ − P̃ (IN ⊗ ȳ)

′
H̄
′
D
′
DH̄(IN ⊗ ȳ)P̃ + Ψ(Π) = 0, (13)

with Ψ(Π) = diag(ΛΠ)− Λdiag(Π)− diag(Π)Λ
′
.

Corollary 2.1. From ρ̂(t) we obtain θ̂(t) =
∑N

i=1 iδ̂(t) reminding that δ̂i(t)
are the components of ρ̂(t).

Before going into the proof of our main result, let us tarry for a while and
consider results which play a central role in the arguments of the proof. First
we need to work out a differential equation for E[ρ(t)ρ̃(t)

′
Y (t)

′
] concerning

(10). Observe that,
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E[ρ(t)ρ̃(t)
′
Y (t)

′
] = E[ρ̂(t)ρ̃(t)

′
Y (t)

′
] + E[ρ̃(t)ρ̃(t)

′
Y (t)

′
]

= E[E[ρ̂(t)ρ̃(t)
′
Y (t)

′ | Hyt ]] + E[ρ̃(t)ρ̃(t)
′
Y (t)

′
]

= E[E[ρ̂(t)ρ̃(t)
′
Y (t)

′ | Hyt ]] + E[ρ̃(t)ρ̃(t)
′
Y (t)

′
]

= E[ρ̂(t)E[ρ̃(t)
′ | Hyt ]Y (t)

′
] + E[ρ̃(t)ρ̃(t)

′
Y (t)

′
]

= E[ρ̂(t)E[ρ̃(t)
′
]Y (t)

′
] + E[ρ̃(t)ρ̃(t)

′
Y (t)

′
]

= E[ρ̃(t)ρ̃(t)
′
Y (t)

′
].

(14)

Also notice that,

E[Y (t)ρ̃(t)] = E[Y (t)ρ(t)]− E[Y (t)ρ̂(t)]

= E[E[Y (t)ρ(t) | Hyt ]]− E[Y (t)ρ̂(t)]

= E[Y (t)E[ρ(t) | Hyt ]]− E[Y (t)ρ̂(t)]

= E[Y (t)ρ̂(t)]− E[Y (t)ρ̂(t)] = 0,

(15)

therefore Y (t) and ρ̃(t) are orthonormals. Furthermore, as E[ρ̃(t)] = 0

Cov(Y (t), ρ̃(t)) = E[Y (t)ρ̃(t)]− E[Y (t)]E[ρ̃(t)] = 0, (16)

and they are also uncorrelated. Hence, using L’Hopital

E[Y (t) | ρ̃(t)] =
E[Y (t)ρ̃(t)]

E[ρ̃(t)]
= E[Y (t)], (17)

and

E[ρ̃(t)ρ̃(t)
′
Y (t)

′
] = E[E[ρ̃(t)ρ̃(t)

′
Y (t)

′ | ρ̃(t)]] = E[ρ̃(t)ρ̃(t)
′
E[Y (t)

′ | ρ̃(t)]]

= E[ρ̃(t)ρ̃(t)
′
E[Y (t)

′
]] = E[ρ̃(t)ρ̃(t)

′
]E[Y (t)

′
]

= E[ρ̃(t)ρ̃(t)
′
] (IN ⊗ E[y(t)])

′
.

(18)

Lemma 1. lim
t→∞

E[y(t)] = ȳ = INm
u
′
µ

u′v
v where u and v are he left and right

eigenvectors corresponding to the zero eigenvalue of F, respectively.

Proof. First notice that E[y(t)] =
∑N

j=1 E[ȳj(t)] = INmE[ȳ(t)]. From (6),
and assumption A.4), E[ȳ(t)] converges to a constant value and therefore
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Ė[ȳ(t)] = FE[ȳ(t)] converges to zero. Let v be the normalized right eigen-
vector corresponding to the zero eigenvalue of F , then for any v̄ ∈ V =
{βv : β ∈ R}, F v̄ = 0. We need now to find the specific v̄ ∈ V to which
E[ȳ(t)] converges. For that, set now u as the normalized left eigenvector
corresponding to the zero eigenvalue of F . Observe that d(u

′
E[ȳ(t)])/dt =

u
′
dE[ȳ(t)]/dt = u

′
FE[ȳ(t)] = 0, consequently u

′
E[ȳ(t)] has a constant value

∀t ∈ R+. Let w = αv ∈ V, α ∈ R be the specific point to where E[ȳ(t)]
converges. Then, it follows that u

′
µ = u

′
w = u

′
αv = αu

′
v and therefore we

have that α =
u
′
µ

u′v
and finally

w =
u
′
µ

u′v
v. (19)

Considering that E[ȳ(t)] converges to
u
′
µ

u′v
v and as E[y(t)] = INmE[ȳ(t)],

lim
t→∞

E[y(t)] = INm
u
′
µ

u′v
v, (20)

and this completes the proof.

We also need to find a differential equation for P̃ (t) = E[ρ̃(t)ρ̃(t)
′
]. Ob-

serve that

P̃ (t) = E
[
(ρ(t)− ρ̂(t)) (ρ(t)− ρ̂(t))

′
]

= E
[
ρ(t)ρ(t)

′
]

+ E
[
ρ(t)ρ̂(t)

′
]

+ E
[
ρ̂(t)ρ(t)

′
]

+ E
[
ρ̂(t)ρ̂(t)

′
]

= E
[
ρ(t)ρ(t)

′
]
− E

[
E
[
ρ(t)ρ̂(t)

′ | Hyt
]]

− E
[
E
[
ρ̂(t)ρ(t)

′ | Hyt
]]

+ E
[
ρ̂(t)ρ̂(t)

′
]

= E
[
ρ(t)ρ(t)

′
]

− E
[
E [ρ(t) | Hyt ] ρ̂(t)

′
]
− E

[
ρ̂(t)E

[
ρ(t)

′ | Hyt
]]

+ E
[
ρ̂(t)ρ̂(t)

′
]

= E
[
ρ(t)ρ(t)

′
]
− E

[
ρ̂(t)ρ̂(t)

′
]

= P̄ (t)− P̂ (t).

(21)

Now, bearing in mind that δi(t),

δi(t)δj(t) =

{
δi(t), i = j

0, i 6= j,

we obtain that P̄ (t) = E
[
ρ(t)ρ(t)

′
]

= E [diag(ρ(t))]. But E[δi(t)] = pi(t),

so P̄ (t) = diag(P (t)). Consequently,
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dP̄ (t) = diag(ΛP (t))dt. (22)

In addition, from (18), Theorem 1 and bearing in mind that υ(t) is an
o.i. process, we have that

dP̂ (t) = dE
[
ρ̂(t)ρ̂(t)

′
]

= E
[
dρ̂(t)ρ̂(t)

′
]

+ E
[
ρ̂(t)dρ̂(t)

′
]

+ E
[
dρ̂(t)dρ̂(t)

′
]

= ΛP̂ (t)dt+ P̂ (t)Λ
′
dt+ P̃ (t)E[Y (t)

′
]H̄
′
D
′
DH̄E[Y (t)]P̃ (t)dt.

(23)

So, from (21), (22) and (23), it follows that

dP̃ (t) = diag(ΛP (t))dt− ΛP̂ (t)dt− P̂ (t)Λ
′
dt

− P̃ (t)E[Y (t)
′
]H̄
′
D
′
DH̄E[Y (t)]P̃ (t)dt = ΛP̃ (t)dt+ P̃ (t)Λ

′
dt

− P̃ (t)E[Y (t)
′
]H̄
′
D
′
DH̄E[Y (t)]P̃ (t)dt+ Ψ(P (t))dt,

(24)

where Ψ(P (t)) = diag(ΛP (t))− Λdiag(P (t))− diag(P (t))Λ
′
.

Lemma 2. Ψ(P (t)) is a positive semi-definite matrix.

Proof. Lets develop Ψ(P (t)) term by term,



diag(ΛP (t)) = [(αij)] for αij =

{ ∑N
k=1 λkipk(t) i = j

0 i 6= j

Λdiag(P (t)) = [(βij)] for βij = λjipj(t)

diag(P (t))Λ
′

= [(γij)] for γij = λijpi(t).

(25)

Now,

Ψ(P (t)) = diag(ΛP (t))− Λdiag(P (t))− diag(P (t))Λ
′

= [(aij)]

for aij =

{ ∑N
k=1 λkipk(t)− 2λijpj(t) i = j

−λijpi(t)− λjipj(t) i 6= j.

(26)

Because λij are the components of a Markov transition rate matrix and
pi(t) > 0∀i ∈ N, ∀t ∈ R+, Ψ(P (t)) has the following properties,
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P1) aij > 0 for i = j and aij < 0 for i 6= j

P2)
∑N

j=1 aij = 0 ∀i ∈ N and
∑N

i=1 aij = 0 ∀j ∈ N .

Notice that [−Ψ(P (t))] has exactly the same properties of a symmet-
ric Markov transition rate matrix, and therefore its eigenvalues are non-
positive. Immediately then, Ψ(P (t)) is symmetric and has its eigenvalues
non-negative and therefore it is positive semi-definite.

In the sequel we do need the following definition:

M =

[
Λ
′

C
−Ψ(Π) −Λ

]
. (27)

Lemma 3. Assume that (Λ
′
, C) is controllable. For (24) with assumptions

A3)-A4) and P̃ (0) ≥ 0 we have that P̃ (t) → P̃ with P̃ the unique positive
semidefinite solution of the algebraic Riccati equation (ARE):

ΛP̃ + P̃Λ
′ − P̃ (IN ⊗ ȳ)

′
H̄
′
D
′
DH̄(IN ⊗ ȳ)P̃ + Ψ(Π) = 0. (28)

Proof. The idea of the proof runs as follows. First we have to prove the
existence and uniqueness of a positive semidefinite solution, P̃ , for the alge-
braic Riccati equation (28). Now, proving that P̃ (t)→ P̃ is tantamount to
proving that there exist lower and upper bound functions P̃l(t) and P̃u(t)
for P̃ (t), i.e., P̃l(t) ≤ P̃ (t) ≤ P̃u(t), and these functions squeeze P̃ (t) to P̃ .
According to [23], to prove existence and uniqueness of (28) it suffices that
the following conditions are satisfied:

R1) The matrices P̃ , Λ, C and Ψ(Π) must be N ×N and real.

R2) Ψ(Π) and −C must be symmetric positive semidefinite.

R3) M can not have eigenvalues on the imaginary axis.

The condition R1) is obviously satisfied. By definition of C and from
Lemma 2, R2) is also satisfied. Finally, we need to proof that M has no
eigenvalues on the imaginary axis. We will proof that by contradiction, as
follows:

Suppose iα, α real, is an eigenvalue of M with eigenvecor

[
v
u

]
6= 0, that

is
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M

[
v
u

]
= iα

[
v
u

]
. (29)

Multiplying now the left hand side of (29) by [u∗v∗], we obtain

u∗Λ
′
v − v∗Λu+ u∗Cu− v∗Ψ(Π)v = iα(u∗v + v∗u) (30)

Separating now real and imaginary part we get that u∗Cu−v∗Ψ(Π)v = 0 and
as C and −Ψ(Π) are symmetric negative semidefinite matrix Cu = 0 and
Ψ(Π)v = 0. Consequently from (29) yields Λ

′
v = iαv and Λu = −iαu. But

this implies that iα is an eigenvalue of Λ
′
which is a contradiction because Λ

′

is the transition rate matrix of an ergodic Markov chain. Therefore M has
no eigenvalues on the imaginary axis and R3) is also satisfied. As R1)-R3)
are all satisfied, (28) has a unique solution P̃ .

Because (Λ
′
, C) is controllable and P̃ is the unique solution of (28), then

by ([25] Theorem 4.1) Λ + P̃C is stable. Finally, the proof of

P̃l(t) ≤ P̃ (t) ≤ P̃u(t) (31)

and

lim
t→∞

P̃l(t) = lim
t→∞

P̃u(t) = P̃ (32)

follows, mutatis mutandis, from ([11] Lemmas 6.1 and 6.4 in the appendix).
And consequently lim

t→∞
P̃ (t) = P̃ which completes the proof.

We are now ready to prove the main result, as a straightforward conse-
quence of the previous auxiliary results.

Proof of Theorem 2. From (18), in conjunction with Lemma 1 and Lemma
3 , we have that E[ρ̃(t)ρ̃(t)

′
Y (t)

′
] converge to a stationary value, as follows:

lim
t→∞

E[ρ̃(t)ρ̃(t)
′
Y (t)

′
] = lim

t→∞
E[ρ̃(t)ρ̃(t)

′
] (IN ⊗ E[y(t)])

′
= P̃ (IN ⊗ ȳ)

′
, (33)

and this completes the proof.
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5 Simulation

To illustrate the effectiveness of the result obtained in Theorem 2 exhaustive
simulations has been carried out. For this purpose, we have used the algo-
rithm developed in [17] that generates random Markov chain path’s from
its discretized transition rate matrix. The numerical method chosen for the
simulation of the stochastic equations is the Euler-Murayama (see, [13]),
mainly because of Yuan and Mao in [17] prove its convergence for the MJLS
setting. The programming language used for algorithm development is the
latest version of Python 3. The simulation examples presented in this sec-
tion will have a simulation time of t = 50s and a time step of ∆t = 0.001s
unless a different value is specified.

Consider as an example of system (5), θ = {1, 2, 3, 4} with Markov tran-
sition rate matrix,

Λ
′

=


−1.5 0.5 0.5 0.5
0.5 −1.5 0.5 0.5
0.5 0.5 −1.5 0.5
0.2 0.2 0.2 −0.6

 , (34)

and initial probabilities

p(0) = [0.4 0.3 0.2 0.1]
′
. (35)

Figure 1 shows a Markov chain example generated from (34) and (35)
where the y axis represents the Markov chain states.

The Hθ(t) of the MJLS (2) are given by

H1 =


−4.5 0.5 0.5 0.5
1.5 −1.5 0.5 0.5
1.5 0.5 −1.5 0.5
1.5 0.5 0.5 −1.5

 H2 =


−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3



H3 =


−3 1 5 1
1 −3 5 1
1 1 −15 1
1 1 5 −3

 H4 =


−3 1 2.5 2
1 −3 2.5 2
1 1 −7.5 2
1 1 2.5 −6

 ,
(36)

with initial condition

y(0) = [3 4 3 5]
′
, (37)
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Figure 1: Markov chain from the transition rate matrix in (34).

and diffusion coefficient r = gI4 for g = 0.1. Figure 2 shows the results cor-
responding to the stationary linear filter ρ̂(t) deduced in Theorem 2, where
each subplot represents a component of ρ̂(t), that is δ̂i(t). Two important
characteristics are also noticible in Figure 2, the curl on the stabilized states,
and the state transition track. The first indicates the amplification of the
noise ω(t) to the filter and the second the probability of missing some state
jumps. Both depend in opposite ways on the gain of the innovation process
and the diffusion coefficient, so, the noisier the signal system y(t) is, the
slower the filter will track the state jumps.

Figure 3 compares the operation mode θ(t) with its corresponding sta-
tionary linear filter θ̂(t) from Corollary 2.1. The top subplot shows θ̂(t) sig-
nal and the mid subplot θ(t). The bottom subplot depicts a superposition
of both signals offering a clearer impression. The tracking is outstandingly
good and, despite the noise curl being noticeable, it does not disturb or
mistake any of the states.

As expected, the stationary linear filter looses precision in the early
stage in comparison with the BLMSF. Figure 4 compares the stationary
linear filter in red, to the BLMSF in doted blue, for the first two seconds.
There exist some difference only in the first jump but is not significant and
do not affect the tracking.

We have also carried out some numerical experiments in order to verify
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Figure 2: Stationary linear filter ρ̂(t).
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Figure 3: Operation mode θ(t) and stationary linear filter θ̂(t) comparison.
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Figure 4: Stationary linear filter and BLMSF comparison on the early stage.

the stationary filter sensitivity regarding the noise intensity. The same sys-
tem (36) affected by the Markov chain of Figure 1 has been simulated for
a noisy scenario and a small noise scenario. The idea is to have a glimpse
on how the signal to noise ratio (SNR) is important on the filter perfor-
mance. Thus, it is expected that the variation of the noise factor g affects
directly on the jump misses and the curl amplitude. Let g = 0.5, that is,
an SNR five times smaller. Now the stationary linear filter for ρ(t) has a
bigger curl on the stabilized states and a slower tracking in the jumps. That
implies that the stationary linear filter for θ(t) has more jump misses and a
more disturbed stabilized states that can cause some state misinterpretation
(observe Figure 5 in the time interval 30 < t < 40).

On the other hand, for the small noise scenario, that is, for instance, g =
0.01, the innovation process gain can be bigger helping the jump tracks, and
because the noise amplification to the filter remains low, avoid perceptible
curl in the stabilized states. Figure 6 shows that the filter’s signal for the
small noise scenario is clean and smooth with almost zero miss tracks and
an inconspicuous curl in the stabilized states.

Finally, although we have not included here, several other numerical
simulations were carried out in different setting for the parameters and the
results were comparable to the ones depicted in this section.
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Figure 5: Stationary linear filter θ̂(t) for a noisy signal system y(t).
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Figure 6: Stationary linear filter θ̂(t) for the small noise scenario.
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6 Conclusions

In this work we have dealt with the problem of derive a stationary linear filter
for MJLS in the scenario of partial observations of the jump parameter θ(t).
It amounted here to derive a stationary filter associated to the best linear
mean square filter (BLMSF) derived in [22] via a convergence analysis of the
error covariance matrix. A major hindrance in solving the problem comes
up from the fact that the error covariance matrix is not standard, in the
context of the optimal filtering theory. Besides the interest in its own right,
the stationary filter has the advantage to alleviate the computational burden
vis-a-vis the BLMSF. The simulation results have shown that the stationary
linear filter performance is outstandingly good. We have also shown that the
difference between the BLMSF and the stationary linear filter appears only
in the early stages, but has not any significant consequences in the long run.
We have also carried out a noise analysis. Despite the evident influence of
the SNR, the stationary linear filter does not lose its efficiency for different
diffusion coefficient values. As far as the authors are aware this is the first
stationary linear filter for the operation mode θ(t) of a MJLS in the scenario
of partial observations of this parameter.

Future directions of work is certainly to use the results derive here (and
the one in [22]) to analysis the control problem of MJLS with partial obser-
vations of the Markov parameter.
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