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Abstract

The model studied in this paper describes the competitive interac-
tion between healthy and malignant cells in leukemia with the involve-
ment of the immune system. The model consists of 9 delay-differential
equations with 9 delays. Local stability is investigated for the equi-
librium points of the system. Lyapunov-Krasovskii functionals related
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to some of these points are constructed. The evolution of the disease
is studied numerically within different scenarios that show that some
particular circumstances can lead to recovery. This can be an impor-
tant support for combined therapies that trigger the leukemia and at
the same time stimulate the action of the immune system.
MSC: 34K20, 92D25, 92C50

keywords: delay differential equations, stability, chronic myelogenous
leukemia, CD8+cytotoxic T-cells

1 Introduction

Leukemia is a cancer of the blood and bone marrow distinguished by a
large number of white blood cells. Chronic myelogenous leukemia (CML),
or chronic granulocytic leukemia, is a clonal stem cells disorder. It is char-
acterized by the proliferation of granulocytes and their precursors in the
bone marrow and the accumulation of these cells in the blood stream. The
trigger of CML is a chromosomal abnormality, called the Philadelphia chro-
mosome (denoted Ph) that causes the formation of the Bcr-Abl fusion gene.
This gene is thought to be the one responsible for the abnormal myelocyte
proliferation (see [16], [31]).

Although CML is one of the most studied types of leukemia (see [13],
[3], [25], [12], [19]), only relatively recently has the immune system been
included in models (see [8], [21], [22], [23],[26], [27]). This is mainly due to
the fact that the immune system is very complex and its mechanism is not
completely understood.

A description of the activation of the immune system and the effect of the
immune system on the population of malignant cells can be found in [8]. The
model presented in this paper is an extension of the model from [8]. In order
to obtain a more accurate representation of the biological interactions that
occur during CML, we included the competition between the healthy and
the malignant cells. It is a novelty for cell competition to be considered.
It is also the first time that a feedback action of the immune system is
studied while taking into consideration the appropriate time delays. The
paper [26] studies a model of ordinary differential equations (ODE) where
only the dynamics of the mature leukemic cells related to the response of
the immune system is considered. The approach in [21],[22],[23], [27], that
partly inspired the present paper, consider another set of ODE equations for
the leukemic cells and are different also in other aspects from the present
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paper.

2 The model

The mathematical model we study was introduced in [7] (see also [5]), but
without many details. It describes the dynamics of healthy and leukemic
cells in CML in competition and the action of the immune system in response
to the disease.

The model consists of 9 delay differential equations with 9 delays. The
first four state variables are the stem-like healthy and leukemic cells (x1
and x3 respectively) and the mature healthy and leukemic cells (x2 and x4)
in the white blood cells(myeloid) lineage. The next five variables represent
the immune system, as follows: the concentration of naive APCs (x5), the
concentration of mature APCs (x6), the concentration of naive T cells of
both CD4+ and CD8+ phenotypes (x7), the concentration of active CD4+
T -helper cells (x8) and the concentration of active CD8+ cytotoxic T-cells
(CTL) (x9).

The stem-like cells are presumed to spend a relatively short period in
the resting phase and will be deemed as short-term hematopoietic stem
cells (ST-HSC). Following [5], [9],[24], [19], [30] and [32], we assume that
a fraction η1α, α = h, l (h for healthy and l for leukemia), of these cells
are susceptible for asymmetric division, meaning that one daughter cell pro-
ceeds to differentiate, while the other re-enters the stem-like cell population.
Another percentage η2α, α = h, l, is thought to be susceptible to differ-
entiate symmetrically (both daughter cells are mature) while a percentage
1−η1α−η2α, α = h, l, is susceptible to self-renewal (both daughter cells are
stem-like cells).

The healthy and leukemic blood cell populations are seen in competition
for resources and this is reflected in the fact that both feedback laws for
self-renewal and differentiation depend on the sum of healthy and leukemic
cells. For details, see [29].

Following [3] and [13], the rate of self-renewal is

βα(x1 + x3) = β0α
θmα1α

θmα1α + (x1 + x3)mα
, α = h, l

(h for healthy and l for leukemia) with β0α the maximal rate of self-renewal
and θ1α half of the maximal value.

The rate of differentiation is

kα(x2 + x4) = k0α
θnα2α

θnα2α + (x2 + x4)nα
, α = h, l.
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where k0α is the maximal rate of differentiation and θ2α is half of the maximal
value.

The terms mα, nα,α = h, l, control the sensitivity of βα and kα, α = h, l
to changes in the population size.

The decrease of the healthy stem-like cell population is determined by
a mortality rate γ1h (the natural apoptosis), the percentage η1h + η2h of
the population that leaves to differentiate and the percentage 1− η1h − η2h
that leaves in order to go through self-renewal. The population increases by
2e−γ1hτ1(1− η1h − η2h) and η1he

−γ1hτ1 . These represent the cells that went
through self-renewal and asymetric division. These cells return, after a time
period of τ1, to the stem-like cell population, diminished due to mortality
during the cell cycle.

The dynamics of the healthy mature population is governed by a mor-
tality rate γ2h (the natural apoptosis) and by the percentage 2η2h + η1h of
healthy stem-like cells that go through differentiation. The latter become
mature cells after a period of time τ2. The term Ah is an multiplication
(amplification) factor.

The evolution of the leukemic cell populations mirrors those of the healthy
cell populations, with the exception of the terms b6x3x9l1(x4) in the third
equation and b4x4x9l1(x4) in the equation of x4. These terms correspond to
the mortality of the leukemic cells due to the interaction with the cytotoxic
T-cells. They replace the exponential term considered in the models studied
in [21], [28]

The following feedback functions regulate the evolution of the immune
system and its interaction with leukemic cells:

ζ1(x) =
1

1 + xp
, ζ2(x) =

x2 + e5
x2 + e6

,

l1(x) =
1

b1 + x2
, l2(x) =

x

b2 + x2
, l3(x) =

x

b3 + x2

The fifth equation describes the changes in the naive APCs population in
the presence of leukemic cells. It is assumed that there is a constant supply
(c1) of naive APCs even in the absence of any disease and they die with an
apoptosis rate c2. When leukemic cells are detected, a fraction c3l2(x4) ma-
ture into cells specialized to fight leukemia. We assume that, as the number
of leukemic cells grows, the action of the immune system is supressed. This
is expressed through the denominator of the feedback function l2(x4). The
mature APCs (x6) have a mortality rate d1.

The evolution of the naive T cells population, which contains both the
naive CD4+ T cells and the naive CD8+ T cells, is depicted in the seventh
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equation. It is assumed that there is a constant supply of naive T cells d3
and a mortality rate d2. By the law of mass action, when coming in contact
with specialized mature APCs, a fraction d41 of the naive T cells mature
into T-helpers (x8). Another fraction d42 of the naive T cells mature into
cytotoxic T-cells (x9).

After finishing the minimal developmental program of m1 cell divisions
which lasts τ7 days, the naive CD4+ T cells enter the active state with a
term given by 2m1d41x6τ7x7τ7 (the last term in the eighth equation). The
first term of the eighth equation represents the natural mortality of the cells.
The second term illustrates the self-stimulation of T helpers for further
division (the autocrine loop, represented by the function ζ1). The time
delay τ5 represents the duration of one CD4+ T cell division after which the
cells reenter the effector CD4+ population.The fourth term (−e3ζ2(x8)x8)
is the number of active CD4+ cells that are suppressed by the regulatory
mechanisms.

The naive CD8+ T cells also go through a minimal developmental pro-
gram of m2 cell divisions. This lasts τ8 days. After this, the cells enter
the mature CD8+ T cell population as 2m2d42x6τ8x7τ8 ( the last term in the
ninth equation). The mortality rate of the T-cytotoxic cells is e4.The second
term (−e7ζ1(x8)x8x9) is the rate at which CTLs are stimulated by positive
growth signal (Il-2) secreted by CD4+T helper cells, for further division.

The third term (2e−e4τ6e7ζ1(x8τ6)x8τ6x9τ6) is the number of cells that
reenter the effector cytotoxic population after having divided once. The
time delay τ6 is the duration of one cycle of CD8+ T cells division.

The fourth term (−e3ζ2(x8)x9) gives the number of CTLs that are sup-
pressed by the regulatory mechanisms, due especially to the action of Tregs.
The fifth and sixth terms illustrate the interaction with the mature leukemic
cells. Leukemia cells suppress anti-leukemia immune response. The precise
mechanism is unknown. It is assumed that the level of down-regulation
depends on the current leukemia population and this suppresive action is
expressed by the presence of the mature population of leukemic cells ( x4) in
the denominator of the function l3 in the the fifth term (−b5x9l3(x4)).The
sixth term in the ninth equation reflects the stimulation effect on the CD8+
T-cytotoxic cells due to the encounter with leukemia cells. n1 is the number
of divisions that take place in the time period τ9 = n1τ6.

The model, taking into consideration the response of the immune system,
is:

ẋ1 = −γ1hx1 − (η1h + η2h)kh(x2 + x4)x1 − (1− η1h − η2h)βh(x1 + x3)x1+
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+2e−γ1hτ1(1− η1h − η2h)βh(x1τ1 + x3τ1)x1τ1 + η1he
−γ1hτ1kh(x2τ1 + x4τ1)x1τ1

ẋ2 = −γ2hx2 +Ah(2η2h + η1h)kh(x2τ2 + x4τ2)x1τ2

ẋ3 = −γ1lx3 − (η1l + η2l)kl(x2 + x4)x3 − (1− η1l − η2l)βl(x1 + x3)x3+

+2e−γ1lτ3(1− η1l − η2l)βl(x1τ3 + x3τ3)x3τ3 + η1le
−γ1lτ3kl(x2τ3 + x4τ3)x3τ3−

−b6x3x9l1(x4)

ẋ4 = −γ2lx4 +Al(2η2l + η1l)kl(x2τ4 + x4τ4)x3τ4 − b4x4x9l1(x4)

ẋ5 = −c2x5 + c1 − c3x5l2(x4)

ẋ6 = −d1x6 + c3x5l2(x4)

ẋ7 = −d2x7 + d3 − d4x6x7
ẋ8 = −e1x8 − e2ζ1(x8)x8 + 2e−e1τ5e2ζ1(x8τ5)x8τ5 − e3ζ2(x8)x8+

+2m1d41x6τ7x7τ7

ẋ9 = −e4x9 − e7ζ1(x8)x8x9 + 2e−e4τ6e7ζ1(x8τ6)x8τ6x9τ6 − e3ζ2(x8)x9−

−b5x9l3(x4) + 2n1e8x9τ9 l3(x4τ9) + 2m2d42x6τ8x7τ8

The following notation was used for the delayed variables: xτ = x(t−τ).
Remark that, due to the presence of delayed terms, if the initial condition

is positive, the solution will be positive on all the interval on which exists.
Several feedback functions are considered when modeling the action of

the immune system. This is a major difference to the nonautonomous models
in [22], [23].

3 Equilibrium points

We introduce the following notation for the previous system:

ẋi = fi(x, xτj ), i = 1, 9, j = 1, 9, x = (x1, ....., x9)

The equilibrium points are obtained solving the equations fi(x, x) = 0,
i = 1, 9.

Solving the system, we get four possible types of equilibrium points:
E1 = (0, 0, 0, 0, x∗5, 0, x

∗
7, 0, 0) which corresponds to the ”death of the pa-

tient”,
E2 = (x∗1, x

∗
2, 0, 0, x

∗
5, 0, x

∗
7, 0, 0) which can be viewed as a healthy state,

E3 = (0, 0, x̂3, x̂4, x̂5, x̂6, x̂7, x̂8, x̂9) which reflects the situation where the
leukemic cells have almost completely replaced the healthy cells and
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E4 = (x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7, x̃8, x̃9) which corresponds to a chronic phase
of the disease.

As we are modelling cell populations, these equilibrium points need to
be positive. By solving the equations fi(x, x) = 0, i = 1, 9, we notice that
in order for E3 and E4 to make sense biologically, the following condition
must be met:

e4 + e3ζ2(x8) + b3l3(x4) > e7ζ1(x8)x8 + 2e−e4τ6e7ζ1(x8)x8 + 2n1e8l3(x4)

4 Linear stability analysis

In this section we will give parameter conditions for stability and then
present numerical simulations. The numerical results and simulations are
obtained in MATLAB. A full list of parameters’ value is given in section 7.
The time units for all the simulations are considered as days and the units
for the populations of cells are 103 cells per microlitre of blood.

Let A = (aij)i,j=1,9 be the matrix of the derivatives of the system with re-
spect to x1, x2, x3, x4, x5, x6, x7, x8 and x9 calculated in an equilibrium point.
For the same equilibrium point, we also consider the following matrices:

◦ Bτ1 = (bij)i,j=1,9 containing the derivatives with respect to x1τ1 , x2τ1 ,
x3τ1 , x4τ1 , x5τ1 , x6τ1 , x7τ1 , x8τ1 and x9τ1

◦ Cτ2 = (cij)i,j=1,9 containing the derivatives with respect to x1τ2 , x2τ2 ,
x3τ2 , x4τ2 , x5τ2 , x6τ2 , x7τ2 , x8τ2 and x9τ2

◦ Dτ3 = (dij)i,j=1,9 containing the derivatives with respect to x1τ3 , x2τ3 ,
x3τ3 , x4τ3 , x5τ3 , x6τ3 , x7τ3 , x8τ3 and x9τ3

◦ Eτ5 = (eij)i,j=1,9 containing the derivatives with respect to x1τ4 , x2τ4 ,
x3τ4 , x4τ4 , x5τ4 , x6τ4 , x7τ4 , x8τ4 and x9τ4

◦ Fτ5 = (fij)i,j=1,9 containing the derivatives with respect to x1τ5 , x2τ5 ,
x3τ5 , x4τ5 , x5τ5 , x6τ5 , x7τ5 , x8τ5 and x9τ5

◦ Gτ6 = (gij)i,j=1,9 containing the derivatives with respect to x1τ6 , x2τ6 ,
x3τ6 , x4τ6 , x5τ6 , x6τ6 , x7τ6 , x8τ6 and x9τ6

◦ Hτ7 = (hij)i,j=1,9 containing the derivatives with respect to x1τ7 , x2τ7 ,
x3τ7 , x4τ7 , x5τ7 , x6τ7 , x7τ7 , x8τ7 and x9τ7

◦ Kτ8 = (kij)i,j=1,9 containing the derivatives with respect to x1τ8 , x2τ8 ,
x3τ8 , x4τ8 , x5τ8 , x6τ8 , x7τ8 , x8τ8 and x9τ8
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◦ Lτ9 = (lij)i,j=1,9 containing the derivatives with respect to x1τ9 , x2τ9 ,
x3τ9 , x4τ9 , x5τ9 , x6τ9 , x7τ9 , x8τ9 and x9τ9

The caracteristic equation is:

det(λI9−A−Bτ1e−λτ1−Cτ2e−λτ2−Dτ3e
−λτ3−Eτ4e−λτ4−Fτ5e−λτ5−Gτ6e−λτ6−

−Hτ7e
−λτ7 −Kτ8e

−λτ8 − Lτ9e−λτ9) = 0

4.1 Stability study of the equilibrium point E1

In what follows, for the convenience of the reader, we briefly recall the main
results from [5] where the stability of equilibrium point E1 has been studied.

The characteristic equation corresponding to the linearization of the sys-
tem relative to the E1 is:

(λ− a22)(λ− a44)(λ− a55)(λ− a66)(λ− a77)(λ− a99)(λ− a11 − b11e−λτ1)·

·(λ− a33 − d33e−λτ3)(λ− a88 − f88e−λτ5) = 0

It is well known (see [10], [17], [20]) that, in order for an equilibrium point to
be stable, the roots of the characteristic equation must all have negative real
parts. We notice that a22 = −γ2h < 0, a44 = −γ2l < 0, a55 = −c2 < 0, a66 =

−d1 < 0, a77 = −d2 < 0 and a99 = −e4 − e3
e5
e6

< 0. Thus, we only need to

study the remaining four equations. The study of these equations with the
method presented in [14] yields the following necessary and sufficient delay
independent stability conditions for E1:

I. λ− a11 − b11e−λτ1 = 0 (1)

Proposition 1. Assume that the following condition is met:

(1− η1h − η2h)β0h < γ1h + η2hk0h. (2)

Then equation (1) is stable for τ1 = 0 and it remains stable for all τ1 > 0.

II. λ− a33 − d33e−λτ3 = 0 (3)

Proposition 2. Assume that the following condition is met:

(1− η1l − η2l)β0l < γ1l + η2lk0l. (4)

Then equation (3) is stable for τ3 = 0 and it remains stable for all τ3 > 0.
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III. λ− a88 − f88e−λτ5 = 0 (5)

Proposition 3. Assume that the following condition is met:

e2 < e1 +
e3e5
e6

. (6)

Then equation (5) is stable for τ5 = 0 and it remains stable for all τ5 > 0.

Remark 1. The equilibrium point E1 is stable if equations (1), (3) and (5)
are stable.

4.1.1 Numerical simulations for equilibrium point E1

The equilibrium point E1 = (0, 0, 0, 0, 0.9999, 0, 0.6666, 0, 0) is unstable, as
neither of the conditions 2, 4 or 6 are met. We can also see this is figure 1,
where we notice that the unstable equlibrium point is attracted by a healthy
state. This is sometimes the case after chemotherapy. The pacient is left
with only a small amount of neutrophiles in the system and still has a chance
to recover.

Figure 1: Evolution of healthy and leukemic cell populations starting near
E1

4.2 Stability study of the equilibrium point E2

The characteristic equation corresponding to the linearization of the system
with respect to the equilibrium E2 is:

(λ−a44)(λ−a55)(λ−a66)(λ−a77)(λ−a99)(λ−a33−d33e−λτ3)(λ−a88−f88e−λτ5)·

·[(λ− a11 − b11e−λτ1)(λ− a22 − c22e−λτ2)− c21e−λτ2(a12 + b12e
−λτ1)] = 0

This characteristic equation decouples into 8 equations that can be studied
separately, as follows.
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We notice that a44 = −γ2l < 0, a55 = −c2 < 0, a66 = −d1 < 0, a77 =

−d2 < 0 and a99 = −e4 − e3
e5
e6
< 0.

As for E1, the 6th and 7th equations can be studied through the theorems
presented in [14], [17].

I. λ− a33 − d33e−λτ3 = 0 (7)

Proposition 4. Assume that the following condition is met:

(1− η1l − η2l)βl(x∗1) < γ1l + η2lkl(x
∗
2). (8)

Then equation (7) is stable for τ3 = 0 and it remains stable for all τ3 > 0.

Proof. For the equilibrium point E2 we have:

a33 = −γ1l − (η1l + η2l)kl(x
∗
2)− (1− η1l − η2l)βl(x∗1)

d33 = e−γ1lτ3 [2(1− η1l − η2l)βl(x∗1) + η1lkl(x
∗
2)].

For τ3 = 0 the equation (7) becomes:

λ− (1− η1l − η2l)βl(x∗1) + γ1l + η2lkl(x
∗
2)

Equation (7) is stable for τ3 > 0 if

(1− η1l − η2l)βl(x∗1) < γ1l + η2lkl(x
∗
2).

When τ3 > 0, since d33 > 0,the following conditions must hold for sta-
bility:

1. a33 <
1

τ3

2. a33 + d33 < 0

The first condition is fulfilled since a33 < 0 <
1

τ3
. For the second condition

to hold we must have:

e−γ1lτ3 <
γ1l + (η1l + η2l)kl(x

∗
2) + (1− η1l − η2l)βl(x∗1)

2(1− η1l − η2l)βl(x∗1) + η1lkl(x
∗
2)

. (9)

We notice that condition (9) holds if (8) holds.

Remark 2. If condition (8) does not hold, then there might be a stability
switch if condition (9) holds for some τ3 > 0.
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II. λ− a88 − f88e−λτ5 = 0 (10)

Proposition 5. Assume that the following condition is met:

e2 < e1 +
e3e5
e6

. (11)

Then equation (10) is stable for τ5 = 0 and it remains stable for all τ5 > 0 .

Proof. Similarly to the proof of Proposition 4, we recall that for the equi-
librium point E2 we have:

a88 = −e1 − e2 −
e3e5
e6

f88 = 2e−e1τ5e2

Equation (10) is stable for τ5 = 0 if

e2 < e1 +
e3e5
e6

.

For τ5 > 0, since f88 > 0 and a88 < 0, the following stability condition
must be met:

2e−e1τ5e2 < e1 + e2 +
e3e5
e6

. (12)

We notice that, if condition (11) holds, then (12) holds.

Next, we study the following equation:

(λ−a11− b11e−λτ1)(λ−a22− c22e−λτ2)− c21e−λτ2(a12 + b12e
−λτ1) = 0 (13)

Proposition 6. Assume that the following conditions hold:

a11 + b11 + a22 + c22 < 0

(a11 + b11)(a22 + c22)− c21(a12 + b12) > 0
(14)

Then equation (13) is stable for τ1 = τ2 = 0.

Proof. For τ1 = τ2 = 0 equation (13) becomes:

λ2−λ(a11 +b11 +a22 +c22)+(a11 +b11)(a22 +c22)−c21(a12 +b12) = 0 (15)

In order for both roots of equation (15) to be in the left half-plane, the
following conditions must hold:

a11 + b11 + a22 + c22 < 0

(a11 + b11)(a22 + c22)− c21(a12 + b12) > 0
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To simplify the calculations, we introduce the following notations:

α1 = a11 + b11 + a22

β1 = a22(a11 + b11)

α2 = −c22
β2 = c22(a11 + b11)− c21(a12 + b12)

Proposition 7. If either condition

(α2
1 − 2β1 − β22)2 − 4(β21 − α2

2) > 0 (16)

or condition
α2
1 − 2β1 − β22 < 0 (17)

does not hold, then, if equation (13) is stable for τ1 = τ2 = 0, it will remain
stable for τ1 = 0 and τ2 > 0.

Proof. Consider τ1 = 0 and τ2 > 0. Equation (13) becomes:

λ2 − α1λ+ β1 + e−λτ2(β2 + α2λ) = 0 (18)

In order to study this equation we use Theorem 1 from [15]. We define

P (z) = z2 − α1z + β1

Q(z) = α2z + β2

Note that conditions (ii) and (iii) from the theorem are satisifed and
conditions (i), (iv) and (v) are most likely to hold.

The stability of equation (18) depends on the roots of the equation:

|P (iy)|2 = |Q(iy)|2 (19)

If equation (19) has no y > 0 as a root then, if (18) is stable with τ2 = 0, it
will be stable for all τ2 > 0. If equation (19) has at least one positive root
and all the positive roots are simple, as τ2 increases there might be stability
switches. Thus, if (18) is stable at τ2 = 0, it may become unstable when
τ2 = τ∗2 .

Let P (iy) = PR(y) + iPI(y) and Q(iy) = QR(y) + iQI(y), with PR, PI ,
QR, QI real valued.

Equation (19) becomes:

P 2
R(y) + P 2

I (y) = Q2
R(y) +Q2

I(y)
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We have the following 4th degree equation:

y4 + y2(α2
1 − 2β1 − β22) + β21 − α2

2 = 0 (20)

For x = y2 we get

x2 + x(α2
1 − 2β1 − β22) + β21 − α2

2 = 0 (21)

In order for equation (20) to have at least one positive simple real root,
the following conditions must hold:

∆ = (α2
1 − 2β1 − β22)2 − 4(β21 − α2

2) > 0

α2
1 − 2β1 − β22 < 0

For the equation to be stable, at least one of the above conditions must
not be met.

We next consider τ1 = τ∗1 fixed and τ2 > 0. Equation (13) becomes:

(λ−a11− b11e−λτ
∗
1 )(λ−a22− c22e−λτ2)− c21e−λτ2(a12 + b12e

−λτ∗1 ) = 0 (22)

The above equation can be rewritten as:

P (λ) +Q(λ)e−λτ2 = 0

where

P (λ) = λ2 − (a11 + a22)λ+ a11a22 − (b11λ+ a22b11)e
−λτ∗1

Q(λ) = −c22λ+ a11c22 − a12c21 + (b11c22 − b12c21)e−λτ
∗
1 .

Remark 3. Assume that equation |P (iy)|2 − |Q(iy)|2 = 0 has no positive
real roots. Then, if equation (22) is stable for τ1 = 0 and τ2 = 0, it will
remain stable for τ1 = τ∗1 and all τ2 > 0.

As P (z) and Q(z) are analytic functions, we can apply the results of
Theorem 1 from [15]. Like before, for z = iy, we are interested in the roots
of the following equation:

F (y) = |P (iy)|2 − |Q(iy)|2.

We have:

F (y) = y4 + 2b11y
3 sin(τ∗1 y) + k1y

2 + 2a11b11y
2 cos(τ∗1 y)+
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+k2y sin(τ∗1 y) + k3 cos(τ∗1 y) + k4, (23)

where

k1 = a211 + a222 + b211 − c222
k2 = 2a222b11 − 2b11c

2
22 + 2b12c21c22

k3 = 2a11b12c21c22 + 2a11a
2
22b11− 2a11b11c

2
22− 2a12b12c

2
21 + 2a12b11c21c22

k4 = a211a
2
22 + a222b

2
11− a211c222− a212c221− b211c222− b212c221 + 2a11a12c21c22+

+2b11b12c21c22

If equation (23) has no y > 0 as a root then, if (13) is stable with τ1 = 0
and τ2 = 0, it will be stable for all τ2 > 0 and τ1 = τ∗1 .

Remark 4. The equilibrium point E2 is stable if equations (7), (10), (18)
and (22) are all stable.

4.2.1 Numerical simulations for equilibrium point E2

The equilibrium point E2 = (0.7168, 22.9413, 0, 0, 0.9999, 0, 0.6666, 0, 0) is
asymptotically stable. Figure 2 shows the evolution of cell populations when
there is a very small burden of leukemic cells.

Figure 2: Evolution of healthy and leukemic cell populations starting near
E2

4.3 Stability study for the equilibrium points E3 and E4 - a
Lyapunov-Krasovskii approach

The Lyapunov-Krasovskii functional presented in [6] for the reduced model
can be generalized for the physiological model. We obtain sufficient condi-
tions for local stability.

We perform a translation to zero: yi = xi − x̂i, i = 1, 9.
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For ẏi = hi(y, yτj ), we consider the following candidate Lyapunov-Kras-
ovskii functional defined on the state space C ([−τ, 0],Rn), where τ = max{τj},
j = 1, 9:

V (φ) =

9∑
i=1

αiφ
2
i (0) +

9∑
j=1

βj t∫
t−τj

φ2j (s)ds+
∑
i 6=j

δij

t∫
t−τj

φ2i (s)ds

 ,

with αi ≥ 0, βj ≥ 0, ∀i = 1, 9, j = 1, 9 and δij ≥ 0 for i 6= j.

For V ∗(t) = V (yt), as yt(0) = y(t), we have:

V =

9∑
i=1

αiy
2
i +

9∑
j=1

βj t∫
t−τj

y2j (s)ds+
∑
i 6=j

δij

t∫
t−τj

y2i (s)ds

 ,

with αi ≥ 0, βj ≥ 0, ∀i = 1, 9, j = 1, 9 and δij ≥ 0 for i 6= j.

As we are working in the framework of stability in the first approxima-
tion, consider one of the former equilibrium points (x̄1, x̄2, x̄3, x̄4, x̄5, x̄6, x̄7,
x̄8, x̄9) and denote the system in deviations as

ẏi = gi(y, yτj ),

where

gi(y) =

9∑
k=1

∂fi
∂yk

(x̄)yk +
∑
k,j

∂fi
∂ykτj

(x̄)ykτj

By denoting the coefficients in gi, i = 1, 9 we obtain:
g1(y) = v11y1 + v12y2 + v13y3 + v12y4 + v14y1τ1+

+v15y2τ1 + v16y3τ1 + v15y4τ1

g2(y) = v21y2 + v22y1τ2 + v23y2τ2 + v23y4τ2
g3(y) = v31y3 + v32y1 + v33y2 + v34y4 + v35y9+

+v36y3τ3 + v37y1τ3 + v38y2τ3 + v38y4τ3

g4(y) = v41y4 + v42y3 + v43y4τ4 + v44y2τ4 + v45y3τ4
g5(y) = v51y5 + v52y4

g6(y) = v61y6 + v62y4 + v63y5
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g7(y) = v71y7 + v72y6

g8(y) = v81y8 + v82y6τ7 + v83y7τ7 + v84y8τ5

g9(y) = v91y9 + v92y8 + v93y4 + v94y7τ8 + v95y6τ8+

+v96y9τ6 + v97y8τ6 + v98y9τ9 + v99y4τ9

Proposition 8. Assume the following conditions hold:[
v214
β1

+
v215
δ21

+
v216
δ31

+
v215
δ41

+ 2v212 + v213

]
α2
1 +2v11α1 +(β1 + δ12 + δ13 + 1) < 0

[
v223
β2

+
v222
δ12

+
v223
δ41

]
α2
2 + 2v21α2 + (β2 + δ21 + δ23 + δ24 + 2) < 0

[
v236
β3

+
v237
δ13

+
v238
δ23

+
v238
δ43

+ v232 + v233 + v234 + v235

]
α2
3 + 2v31α3 + (β3 + δ31 + δ34 + 2) < 0

[
v243
β4

+
v244
δ24

+
v245
δ34

+ v242

]
α2
4 + 2v41α4 + (β4 + δ41 + δ42 + δ43 + δ49 + 4) < 0

v252α
2
5 + 2v51α5 + 1 < 0

[
v262 + v263

]
α2
6 + 2v61α6 + (δ67 + 1) < 0

v272α
2
7 + 2v71α7 + (β7 + δ78) < 0

[
v283
β7

+
v282
δ67

+
v284
δ85

]
α2
8 + 2v81α8 + (δ85 + δ86 + 1) < 0

[
v298
β9

+
v294
δ78

+
v295
δ68

+
v296
δ96

+
v297
δ86

+
v299
δ49

+ v292 + v293

]
α2
9+2v91α9+(β9 + δ96) < 0.

Then the equilibrium points E3 and E4 are stable, independent of delays.
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Proof. The derivative of V with respect to time is:

dV

dt
=

9∑
i=1

2αiyigi(y) +
9∑
j=1

βj [y2j (t)− y2j (t− τj)]+
∑
i 6=j

δij
[
y2i (t)− y2i (t− τj)

] .

Sufficient stability conditions are obtained by forcing
dV

dt
to be negative.

We will only show the calculations corresponding to the terms that come
from g1(y), as all the others are done similarly.

The stability conditions arise from:

2α1v11y
2
1 + 2α1v12y1y2 + 2α1v13y1y3 + 2α1v12y1y4 + 2α1v14y1y1τ1+

+2α1v15y1y2τ1 + 2α1v16y1y3τ1 + 2α1v15y1y4τ1 + β1y
2
1 − β1y21τ1− (24)

−δ21y22τ1 − δ31y
2
3τ1 − δ41y4τ1

2 + δ21y
2
2 + δ31y

2
3 + δ41y

2
4 < 0

We create perfect squares by adding and substracting terms, such as:

2α1c14y1y1τ1 − β1y21τ1 +
α2
1c

2
14

β1
y21 −

α2
1c

2
14

β1
y21 = −

(
α1c14√
β1

y1 −
√
β1y1τ1

)2

+
α2
1c

2
14

β1
y21

and

2α1c12y1y2 + α2
1c

2
12y

2
1 − α2

1c
2
12y

2
1 + y22 − y22 = − (α1c12y1 − y2)2 + α2

1c
2
12y

2
1 + y22

The term y22 will be taken into account in the conditions that come from
studying g2(y). In doing so with every problematic term in (24), we restrict
the coefficient of y21 as follows:[
v214
β1

+
v215
δ21

+
v216
δ31

+
v215
δ41

+ 2v212 + v213

]
α2
1 +2v11α1 +(β1 + δ12 + δ13 + 1) < 0

By applying the same method with the next 8 parts of
dV

dt
corresponding

to the functions gi(y), i = 2, 9, we obtain the sufficient stability conditions:

[
v223
β2

+
v222
δ12

+
v223
δ41

]
α2
2 + 2v21α2 + (β2 + δ21 + δ23 + δ24 + 2) < 0

[
v236
β3

+
v237
δ13

+
v238
δ23

+
v238
δ43

+ v232 + v233 + v234 + v235

]
α2
3 + 2v31α3 + (β3 + δ31 + δ34 + 2) < 0
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[
v243
β4

+
v244
δ24

+
v245
δ34

+ v242

]
α2
4 + 2v41α4 + (β4 + δ41 + δ42 + δ43 + δ49 + 4) < 0

v252α
2
5 + 2v51α5 + 1 < 0[

v262 + v263
]
α2
6 + 2v61α6 + (δ67 + 1) < 0

v272α
2
7 + 2v71α7 + (β7 + δ78) < 0[

v283
β7

+
v282
δ67

+
v284
δ85

]
α2
8 + 2v81α8 + (δ85 + δ86 + 1) < 0[

v298
β9

+
v294
δ78

+
v295
δ68

+
v296
δ96

+
v297
δ86

+
v299
δ49

+ v292 + v293

]
α2
9 + 2v91α9 + (β9 + δ96) < 0.

The stability conditions concern the linear system. From the Stability in
the first approximation theorem, a stability result is transfered to the nonlin-
ear system. The study of stability of equilibria for equations with multiple
delays has been approached by many authors . Especially interesting are
the recent papers [27], [4], [11], [28].

4.3.1 Numerical simulations for equilibrium points E3 and E4

While E31 = (0, 0, 0.0027, 13.7986, 0.8066, 0.5800, 0.0017, 0.0538, 6.0394) and
E4 = (0.7812, 10.5986, 0.0493, 44.1989, 0.9299, 0.2102, 0.0047, 0.0536, 5.0211)
are unstable, E32 = (0, 0, 1.2462, 103.4748, 0.9687, 0.0936, 0.0105, 0.0531,
4.6697) is asymptotically stable.

Equilibrium points E31 and E4 display different behaviours depending
on the initial conditions. In figures 3 and 5 we clearly see that the pacient’s
condition improves. Figures 4 and 6 show the case in which the patient has
taken a turn for the worse. Both situations occur in the neighborhoods of
E31 and E4 respectively. In the first situation, E31 and E4 are attracted
to a healthy state. In the latter case, the patient’s blood cell populations
stabilize around equilibrium point E32.

Figure 3: Evolution of healthy and
leukemic cell populations starting
near E31 (the patient recovers)

Figure 4: Evolution of healthy and
leukemic cell populations starting
near E31 (the patient’s condition
worsened)
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Figure 5: Evolution of healthy and
leukemic cell populations starting
near E4 (the patient’s condition
worsened)

Figure 6: Evolution of healthy and
leukemic cell populations starting
near E4 (the patient recovers)

5 The immune system and different scenarios for
the evolution of the disease

Figures 7 and 8 show the evolution of the healthy and leukemic cell popula-
tions with and without the influence of the immune system (when b4 = 0).
We can see that the response of the immune system to the leukemic cells is
important. It helps slow down the growth of leukemic cells and the decrease
of healthy cells until treatment can be administrated.

Figure 7: Evolution of healthy and
leukemic cell populations with and
without the influence of the immune
system starting near E4

Figure 8: Evolution of healthy and
leukemic cell populations with and
without the influence of the immune
system starting near E1

In real life, there are not two persons with the same parameters. This is
why the evolution of any disease is different from pacient to pacient. Even
for the same person, the parameters may change with time. Accordingly,
it is important to see the progression of the disease for different parameter
values. To do so, we considered two other scenarios. These will be presented
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as compared to the configuration of the initial parameters. We will refer to
the latter as the default scenario.

◦ Scenario 2 - a more aggressive evolution of the leukemic cells

For some people, leukemia has a faster evolution. To illustrate this,
we considered a lower apoptosis rate (γ2l = 0.1) and higher multiplica-
tion (amplification) rate for the mature leukemic cells (Al = 4800). We
also increased the predisposition of stem-like leukemic cells to go through
differentiation(θ1l = 0.8, θ2l = 20).

Figure 9: Scenario 2 (γ2l = 0.1,
Al = 4800, θ1l = 0.8, θ2l = 20)

Figure 10: Scenario 2 (γ2l = 0.1,
Al = 4800, θ1l = 0.8, θ2l = 20)

As it can be seen in figures 9 and 10, a more aggressive evolution of
leukemic cells can lead to the patient’s death.

◦ Scenario 3 - a slower evolution of the leukemic cells

In this scenario, the leukemic cells have a more similar evolution to the
healthy cells. The mortality rates for both the naive and mature cells are
the same as the ones for the healthy cells (γ1l = 0.1, γ2l = 1.5). The rates
of symmetric and asymmetric division are closer in value to those of healthy
cells (η1l = 0.2, η2l = 0.5).

Figure 11: Scenario 3 (γ1l = 0.1,
γ2l = 1.5, η1l = 0.2, η2l = 0.5)

Figure 12: Scenario 3 (γ1l = 0.1,
γ2l = 1.5, η1l = 0.2, η2l = 0.5)
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For these parameter values, the patient has more chances to reaching a
healthy state, as can be seen in figures 11 and 12.

6 Conclusions

In this paper, it is for the first time that the dynamics of leukemic and
healthy cell populations in CML is analyzed, taking into account the effect
of cell competition and the complex involvement of the immune system. In
the construction of the mathematical model, using delay differential equa-
tions, two important assumptions are made: i) leukemic cells suppress anti-
leukemia immune response, ii) only cytotoxic T-cells actively fight leukemic
cells. Four types of steady states were found analytically. We infer that
each of them corresponds to a certain phase, namely: 1) to the disease free
(healthy) situation - equilibria E2; 2) to an incipient or middle stage of the
disease when there are still enough healthy cells - equilibria E4; 3) to an ag-
gravated phase of leukemia when the healthy cell populations were subject
to a serious decline - equilibria E3 and 4) to the last condition, correspond-
ing to death - equilibria E1. Two steady states of type E3 (denoted E31

and E32) are found numerically, for certain sets of parameters values. The
equilibrium point E31 corresponds to a less aggravated phase, while E32

corresponds to a more aggravated one. The stability of the steady states
is analyzed through the decomposition of the characteristic equation or by
constructing Lyapunov-Krasovskii functionals.

Numerical simulations validate the model and show the importance of
the immune system in the fight against the illness. Before the leukemic cell
population grows large enough in order to be able to inhibit the immune
system, the cytotoxic T-cells slow the growth of leukemic cells. As expected,
the immune system is not sufficient to cure CML, but it plays an important
role in the evolution of the disease.

The tumor burden at the time of the diagnosis - related to some type of
the equilibrium and the features of the disease accompanied by the possible
determination of some of the parameters, might be an important decision
factor in planning the treatment strategy. This strategy might involve the
type and/or the dose of the medicine, in order to affect some of the cell mul-
tiplication rates. Certainly, this could also include combinations of drugs.

From our analysis, we observe that the dynamics of the system around
the equilibrium points is highly dependent on the parameters’ values. In
order to get a better view of the evolution of leukemia, three different pa-
rameter configurations (scenarios) are considered. For the first scenario, the
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parameter values were taken mainly from literature. This is called the de-
fault scenario. The next two scenarios illustrate a more aggressive leukemia,
respectively a less aggressive one. As expected, the results varied signif-
icantly. This is important, as the disease progresses differently for every
patient. For example, comparing scenario 2 with the default scenario, one
can notice that for the same type of equilibria (E2 - Fig. 8, respectively
E4 - Fig. 9), the dynamics of the system changes drastically. The same
conclusion stands when comparing the scenario 3 with the default scenario
(equilibria E31 - Fig. 10, equilibria E4 - Fig. 11). These findings sug-
gest that, from a clinical point of view, not only the tumor amount at the
moment of the diagnosis is important, but also the characteristics of the pa-
tients leukemia. From a treatment perspective, developing some technical
means in order to compute the important specific parameters for a certain
patient, would create the premise for a better treatment strategy, adapted
to the disease phase and features. However, this is a challenging task and it
still belongs to the medicine of the future.

7 List of parameter values

Coefficient of the feedback function l1 b1 2

Coefficient of the feedback function l2 b2 1.5

Coefficient of the feedback function l3 b3 5

Loss of mature leukemic leukocytes due to cytotoxic T cells b4 0.6

Coefficient for apopthosis rate and regulatory mechanism b5 0.8

Loss of stem-like leukemic cells due to cytotoxic T cells b6 0.06

Supply dayly rate of immature APCs ([23]) c1 0.3

Death/turnover daily rate of immature APCs ([23]) c2 0.3

Coefficient of the feedback function c3 1

Death/turnover daily rate of mature APC ([23]) d1 0.1

Supply rate of naive T cells both fenotypes ([23]) d3 0.02

Death/turnover daily rate of naive CD4+ and CD8+ T cells ([23]) d2 0.03

Kinetic coefficient ([22]) d4 20

Kinetic coefficients ([22]) d41, d42 10, 10

The number of antigen depending divisions n1 2

Number of divisions in minimal CD4+ developmental program m1 2

Number of divisions in minimal CD8+ developmental program m2 7

Coefficient of the positive growth signal (Il2), ζ1 p 2



46 I. Badralexi, S. Balea, A. Halanay, D. Jardan, R. Rădulescu

Maximal value of the βh function β0h 1.77

Maximal value of the βl function β0l 2

Maximal value of the function kh k0h 0.1

Maximal value of the function kl k0l 0.4

Parameter for the βh function θ1h 0.5

Parameter for the βl function θ1l 0.5

Parameter for the function kh θ2h 36

Parameter for the function kl θ2l 36

Parameter for the βh function mh 2

Parameter for the βl function ml 2

Parameter for the function kh nh 2

Parameter for the function kl nl 4

Loss of stem cells due to mortality for healthy cells γ1h 0.1

Loss of stem cells due to mortality for leukemic cells γ1l 0.04

Rate of asymmetric division for healthy cells η1h 0.7

Rate of asymmetric division for leukemic cells η1l 0.1

Rate of symmetric division for leukemic cells η2l 0.7

Rate of symmetric division for healthy cells η2h 0.1

Instant mortality of mature leukemic leukocytes γ2l 0.15

Instant mortality of mature normal leukocytes γ2h 2.4

Multiplication (amplification) factor for leukemic leukocytes Al 1440

Multiplication (amplification) factor for normal leukocytes Ah 1200

Duration of cell cycle for normal stem cells τ1 2.8

Duration of cell cycle for normal leukocytes τ2 3.5

Duration of leukocyte cycle for leukemic cells τ3 2.7

Duration of leukocyte cycle for normal cells τ4 1.4

Duration of one CD4+ T cell division τ5 1.4

Duration of one CD8+ T cell division τ6 1

Duration of minimal developmental program τ7 1 + (m1 − 1)τ5
Duration of minimal developmental program τ8 1 + (m2 − 1)τ6
Duration of minimal developmental program τ9 n1τ6
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Death/turnover dayly rate of effector CD4+ T helper cells ([23]) e1 0.23

Coefficient of the autocrine loop function e2 0.2

Coefficient of the regulatory process function, ζ2 (([22]),[23]) e3 60

Death/turnover rate of effector CD8+ T cytotoxic cells ([23]) e4 0.4

Coefficient of the ”regulatory process” function, ζ2 e5 0.2

Coefficient of the ”regulatory process” function, ζ2 e6 3.48

Coefficient of the ”positive growth signal” function ζ1 ([23]) e7 40

Coefficient of the level of down-regulation due to leukemic cells ([21]) e8 0.4
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[9] J. Beckman, S. Scheitza, P. Wernet, J. Fischer, B. Giebel., Asymmetric
cell division within the human hematopoietic stem and progenitor cell
compartment: identification of asymetrically segregating proteins, Blood,
No. 12, 109, 5494–5501 (2007).

[10] R. Bellman, K. L. Cooke, Differential-Difference Equations, Academic
Press New York, (1963).

[11] E. Beretta, Y. Kuang, Geometric Stability Switch Criteria in Delay
Differential Systems with Delay-dependent Parameters, SIAM J. Math.
Anal., 33(5), 1144-1165 (2002).

[12] S. Bernard, J. Bélair, M.C. Mackey, Oscillations in cyclical neutrope-
nia: New evidence for origins based on mathematical modeling, J. Theor.
Biol., 223, 283-298 (2003).

[13] C. Colijn, M.C. Mackey, A mathematical model of hematopoiesis I-
Periodic chronic myelogenous leukemia. J. Theor. Biology, 237, 117–132
(2005).

[14] K. Cooke, Z. Grossman,Discrete Delay, Distribution Delay and Stability
Switches. J. Math. Anal. Appl., 86, 592-627 (1982).

[15] K. Cooke, P. van den Driessche,On Zeroes of Some Transcendental
Equations. Funkcialaj Ekvacioj, 29, 77-90 (1986).

[16] M.W.N. Deininger, J.M. Goldman, J.V. Melo,The molecular biology of
chronic myeloid leukemia, Blood 96 , 3343-3356 (2000).

[17] L.E. El’sgol’ts, S.B. Norkin, Introduction to the theory of differen-
tial equations with deviating arguments, (in Russian). Nauka, Moscow
(1971).

[18] S. Faderl, M Talpaz, Z . Estrov, S . OBrien, R . Kurzrock, H . Kantar-
jian, The biology of chronic myeloid leukemia, New Engl. J. Med. 341
(3), 164-172 (1999).
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