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Abstract

This paper considers stability problems for discrete-time linear frac-
tional -order systems (LFOSs) with Markovian jumps and/ or multi-
plicative noise. For the case of LFOSs with finite delays and Markovian
jumps, we provide sufficient conditions for the mean-square asymptotic
(MSA) stability or instability of the system by using Lyapunov type
equations. In the absence of the Markovian perturbations, we use Z-
transform and operator spectral properties to derive instability criteria
for fractional-order systems with multiplicative random perturbations
and either finite or infinite delays. Four numerical results accompanied
by computer simulations illustrate the effectiveness of the theoretical
results.
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1 Introduction

Although fractional calculus (FC) has a long history, only recently it has
attracted high scientific attention due to its new and unexpected applica-
tions in engineering and in other fields of science and technology such as
electrochemistry, biophysics, quantum mechanics, radiation physics, control
theory and so forth (see [11],[8], [22], [18],[10] and the references therein for
several examples).

Among the hottest topics in the field we find stability problems for dif-
ferential/difference systems of fractional order. Even in the deterministic
case, the most general stability results concerning fractional order systems
provide only sufficient conditions for the asymptotic stability/ or instabil-
ity of solutions [1],[3], [2], [4], [6]. Some necessary and sufficient conditions
for the asymptotic stability of the deterministic LFOSs are obtained in [13]
under very restrictive conditions.

Many of these results concern autonomous systems and are based on
either LMI (linear matrix inequality) techniques [16] or Laplace transform
theory ([12], [15]).

Since many real-world phenomena are influenced by random factors, the
study of LFOSs with random perturbations becomes an important and useful
issue. Moreover, the class of LFOSs with Markovian jumps seems to be the
most suitable mathematical model for many physical processes that suffer
abrupt and unpredictable changes in their behavior.

Motivated by these considerations, in this paper we consider a class
of time-invariant finite-dimensional LFOSs affected simultaneous by mul-
tiplicative noise and Markovian jumps and we study the MSA properties
of their solutions. As far as we know, this subject is new in the case of
stochastic systems with Markovian jumps. By using a technique based on
Lyapunov type equations ( which is closed related to the LMI theory) and
an idea from [17], we derive (separately) sufficient and necessary conditions
for the mean-square asymptotic (MSA) stability of LFOSs with finite de-
lays. These conditions could be extended to the general case of LFOS’s with
infinite delays, but their verification becomes very complicated in infinite di-
mensions and we hope to refine them in a future work.

Similar results concerning MSA stability were obtained before in [17]
for one-dimensional LFOSs with finite delays and multiplicative random
perturbations. Recently, the so called ”region stability” properties of these
LFOSs are studied in [9] in a multidimensional framework. The results
from [9] are mainly based on operator spectrum and LMIs techniques and
provide deterministic characterizations of various types of region stability of
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solutions. Some of these ”region stability” properties imply MSA stability
and, consequently, certain stability criteria from [9] ensure the MSA stability
of these stochastic LFOSs.

In our case, the MSA stability problem is solved by using an expanded-
state model of the LFOS and a technique based on the mean-square repre-
sentation of solutions (see for e.g [19]). The MSA stability and instability
of the system is then discussed in terms of solvability of certain associated
Lyapunov-type equations.

In the absence of the Markov jumps, we study the MSA instability of
the LFOS with multiplicative noise by appealing to operator spectral prop-
erties and to Z transform theory. Although we treat separately the cases
of LFOSs with finite and infinite delays, the approach is the same. We
take the expectation in the stochastic LFOS and we get a deterministic sys-
tem, which asymptotic properties are studied by using the results from [12]
and Z transform theory. The obtained instability criteria are closely related
to the spectral properties of certain coefficient operators. The theoretical
results are, finally, illustrated by four numerical examples and by Matlab
simulations.

2 Preliminaries

Operators

The LFOSs discussed in the sequel are defined on the real Hilbert space
Rd, d ∈ N−{0}. As usual, we shall write 〈., .〉 for the inner product and ‖.‖
for norms of elements and operators, unless indicated otherwise. We denote
by L

(
Rd
)

the real linear space of all linear operators from Rd to Rd. For
any T ∈ L

(
Rd
)

we denote by T ∗ the adjoint operator of T .

The subspace of L
(
Rd
)

formed by all self adjoint operators will be de-
noted by S

(
Rd
)
. An operator A ∈ S(Rd) is called non-negative and we

write A ≥ 0, if 〈Ax, x〉 ≥ 0 for all x ∈ Rd. If A ≥ 0 is also invertible, we shall
write A > 0. Throughout this paper Id will be the identity operator on Rd.
Let Z ={1, 2, .., D}, where D ∈ N−{0} is fixed, and let lZ

L(Rd)
= {g = {gi ∈

L
(
Rd
)
}i∈Z}. It is well known (see [5]) that lZ

L(Rd)
is a real Hilbert space

with the usual term-wise addition, the (real) scalar multiplication and the
inner product 〈g, h〉 =

∑
i∈Z

Tr (h∗ (i) g (i)). For any A ∈ lZ
L(Rd)

, B ∈ lZ
L(Rd)

,

the product AB is defined by (AB) (i) = A (i)B (i) , i ∈ Z and AB ∈ lZ
L(Rd)

.

Also A[∗] denotes the element of lZ
L(Rd)

defined by A[∗](i) = A(i)∗, i ∈ Z.
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An element X ∈ lZ
L(Rd)

is said to be non-negative (we write X � 0) iff X (i)

≥ 0 for all i ∈ Z. An element {Xi}i∈N ∈ lZ
L(Rd)

is called positive (we

write X � 0) if and only if there is γ > 0 such that X(i) − γId ≥ 0 for all

i ∈ Z. A linear and bounded operator Γ ∈ L
(
lZ
L(Rd)

)
is said to be positive

if Γ (X) � 0 for all X � 0.
Note that, in the rest of the paper, we do not distinguish between the

matrix and the linear operator defined by it.
Z transform
Let us recall that the transform Z of a sequence yn ∈ Rd, n ∈ N is a

function Z (yn) defined by

Z (yn) (z) =
∞∑
n=0

ynz
−n,

for all z ∈ C for which the series is convergent. The domain of definition of
Z (yn) is called the region of convergence (ROC) of Z (yn). Abel theorem
for power series ensures that the ROC of Z (yn) is either the wide set or the
outside of a circle (see [14] for e.g.). Sometimes, if no confusion is possible,
we will use the notation Z (y) (z) or Y (z) for Z (yn) (z).

Random variables
Let (Ω,F , P ) be a probability space. If ξ is an integrable random variable

on (Ω,F , P ), we write E [ξ] for its mean (expectation). If η is another
integrable random variable and F1 ⊂ F is a σ− algebra, we denote by
E [ξ|η = x] and E [ξ|F1 ] the conditional expectations on the event η = x and
on F1, respectively. We will denote by L2

(
Ω,Rd

)
, the Hilbert space of all

Rd valued random variables ξ with the property that

‖ξ ‖2 =def

√
E
[
‖ ξ‖2

]
<∞.

3 Linear discrete-time fractional order systems with
infinite time delays

Let R∗+ = {x ∈ R, x > 0}, α ∈ R∗+, α < 2 be fixed and let

(
α
j

)
, j ∈ N

denote the generalized binomial coefficient(
α
j

)
:=

{
1, j = 0

α(α−1)·...·(α+1−j)
j! , j > 0
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The fractional systems studied in the sequel are defined by the following
fractional-order Grünwald–Letnikov operator:

∆[α]xk =
1

hα

k∑
j=0

(−1)j
(
α
j

)
xk−j ,

where h ∈ R∗+ is the sampling period or time increment.

Throughout this paper we assume that the following hypothesis is satis-
fied.

(H1) (i) A,B ∈ lZ
L(Rd)

(ii) {rn}n∈N is an homogeneous Markov chain on (Ω,F , P ) with the
finite state space Z ={1, 2, .., D}, D ∈ N − {0}, the transition probability
matrix

Q = {qi,j := P (rn+1 = j|rn=i)}(i,j)∈Z×Z , n ∈ N

and P (rk = i) > 0, k ∈ N, i ∈ Z.

(iii) {ξk}k∈N is a sequence of real-valued, mutually independent random
variables on (Ω,F , P ) such that {ξk}k∈N is independent of {rk}k∈N and

E [ξk] = 0, E
[
ξ2k
]

= b <∞

for all k ∈ N.

We note here that condition P (rk = i) > 0 ensures the nontrivial com-
putation of the conditional mean E [ξ|rn = i] , ξ ∈ L2

(
Ω,Rd

)
.

Now, we consider the discrete-time fractional system

∆[α]xk+1 = A (rk)xk + ξkB (rk)xk, k ∈ N (1)

x0 = x ∈ Rd. (2)

As in [1], we multiply (1) by hα and, since

hα∆[α]xk+1 =
k+1∑
j=0

(−1)j
(
α
j

)
xk+1−j = xk+1 −

k∑
j=0

(−1)j
(

α
j + 1

)
xk−j ,

the equation (1) becomes

xk+1 = hαA (rk)xk +
k∑
j=0

(−1)j
(

α
j + 1

)
xk−j + ξkh

αB (rk)xk.
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If we denote A (i) = hαA (i) ,B (i) = hαB (i), i ∈ Z, cj := (−1)j
(

α
j + 1

)
and Aj = cjIRd , j ∈ N, the system (1) can be equivalently rewritten as

xk+1 = A (rk)xk +
k∑
j=0

Ajxk−j + ξkB (rk)xk, (3)

x0 = x ∈ Rd. (4)

Let Fk and Gk be the σ-algebras generated by {ξn, 0 ≤ n ≤ k} and
{rn, 0 ≤ n ≤ k}, respectively, and let Hk = Fk∨ Gk for all k ≥ 0 ([5]).
As in the case of classical linear stochastic systems, it can be proved that
(3)-(4) has a unique solution xk which belongs to L2

(
Ω,Rd

)
(see [21]) and

is Hk-measurable.
The mean-square representation of the solution xk leads to an infinite

dimensional system with a complicated form, which properties are very dif-
ficult to determine. However, the rapidly decrease to 0 of the sequence
{Aj}j∈N, representing the coefficients of the delay terms from (3)-(4), makes
from a system with a finite number N of time delays a good enough model
for the most practical purposes.

Therefore, we associate with (3)-(4) the stochastic system

xk+1 = A (rk)xk +
N∑
j=0

cjxk−j + ξkB (rk)xk, (5)

x0 = x ∈ Rd, x−p = 0, p ∈ {1, .., N} (6)

and we study the mean square asymptotic stability properties of its solu-
tions. The stability notions that we use in the sequel are the ones defined
below.

Definition 1 The solution xk of the system (3)-(4) (or (5)-(6)) is said to
be MSA stable if limk→∞ ‖xk‖2 = 0 for all x0 ∈ Rd. If the solution of the
stochastic fractional system (3)-(4)(or (5)-(6)) is not MSA stable, we will
say that it is mean square unstable.

4 Linear discrete-time fractional order systems with
finite delays

In this section we study the MSA stability of the stochastic systems (5)-(6)
by using a classical technique based on Lyapunov equations. We first asso-
ciate with (5)-(6) an equivalent linear expanded-state stochastic system and
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we obtain a solution mean-square representation, which involves a Lyapunov
type operator. The solvability of certain algebraic Lyapunov equations de-
fined by this operator will be the key tool in the analysis of the MSA stability
of the discussed LFOSs.

4.1 An expanded state model

In this section we use a technique based on Lyapunov equations to derive
necessary and sufficient conditions for the asymptotic stability of the system
(5)-(6).

First, we rewrite the LFOSs (5)-(6) as a regular linear stochastic system.

We introduce the linear operators A (i) ,B (i) :
(
Rd
)N+1 →

(
Rd
)N+1

, i ∈
{1, .., D} defined by the matrices

A (i) =


A (i) + c0IRd c1IRd ... cNIRd

IRd 0 . 0
. IRd . .
. . IRd 0

 ,

B (i) =


B (i) 0 . . 0

0 0 . . .
. . . . .
0 . . . 0

1 N+1

 .

and the expanded state vector XT
k =

(
xTk
1

, xTk−1, ..., x
T
k−N
N+1

)
∈
(
Rd
)N+1

,

where the superscript T denotes the transpose.

Then (5)-(6) can be equivalently rewritten as

Xk+1 = A (rk)Xk + ξkB (rk)Xk, k ≥ 0 (7)

XT
0 =

(
xT0
1
, 0, ..., 0

N+1

)
. (8)
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Let us define the linear operators

P (R) (i) =
∑
j∈Z

qijR (j) , i ∈ Z, R ∈ lZ
L
(
(Rd)

N+1
),

Λ (R) (i) =
(
A[∗]P (R)A

)
(i) , R ∈ lZ

L
(
(Rd)

N+1
) (9)

Γ (R) (i) = b
(
B[∗]P (R)B

)
(i) , R ∈ lZ

L
(
(Rd)

N+1
) (10)

The following representation result is a direct consequence of Theorem
3.1 from [5] or of Theorem 4 from [20].

Lemma 1 For any S ∈ lZ
L
(
(Rd)

N+1
) we have

E [〈S(rk+1)Xk+1, Xk+1〉 |r0=i] = E [〈(Λ + Γ) (S) (rk)Xk, Xk〉 |r0=i] . (11)

4.2 Lyapunov equations and mean square asymptotic stabil-
ity

4.2.1 Main results

Following [17], we associate with (11) the Lyapunov equation

R = Λ (R) + U, (12)

where U is a sequence of operators with the following property:
(P1) i) U ∈ lZ

L
(
(Rd)

N+1
) is a sequece of self-adjoint operators with the

property that there is U (i) ∈ lZ
L(Rd)

, i ∈ Z such that

U (i) =


U (i) 0 . . 0

0 0 . . .
. . . . .
0 . . . 0

 for all i ∈ Z and

ii) U � 0.

We note that (P1) i) implies that U (i) , i ∈ Z is also a sequence of self-
adjoint operators. If R is a solution of the Lyapunov equation (12), then we
will denote by R1 (i) , i ∈ Z the block matrix defined by the first d rows and
d columns of the matrix R (i) , i ∈ Z.

Now we can prove the main result of this section, which gives a sufficient
condition for the mean square asymptotic stability of (5)-(6).
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Theorem 1 Assume that there is U with the property (P1) such that equa-
tion (12) has a non-negative solution R ∈ lZ

L
(
(Rd)

N+1
). If

U (i)− bB[∗] (i)

∑
j∈Z

qijR1 (j)

B (i) > 0, (13)

for all i ∈ {1, .., D}, where R1 is the sequence of block matrices of R defined
above , then the unique solution of (5)-(6) is MSA stable.

Proof. From Lemma 1 and (12) it follows that

E [〈R(rk+1)Xk+1, Xk+1〉 |r0=i] = E [〈(Λ + Γ) (R) (rk)Xk, Xk〉 |r0=i] (14)

= E [〈R (rk)Xk, Xk〉 |r0=i] + E [〈Γ (R) (rk)Xk, Xk〉 |r0=i]
−E [〈U (rk)Xk, Xk〉 |r0=i]

for all i ∈ {1, .., D}. A direct computation and the special form of B lead us
to the conclusion that

〈Γ (R) (i)Xk, Xk〉 =

〈
bB[∗] (i)

∑
j∈Z

qijR1 (j)

B (i)xk, xk

〉
. (15)

Condition ( 13) implies that there is γ > 0 such that

U (i)− bB[∗] (i)

∑
j∈Z

qjiR1 (j)

B (i) ≥ γId.

Hence

E [〈U (rk)Xk, Xk〉 − 〈Γ (R) (rk)Xk, Xk〉 |r0=i] =

E

〈U (rk)− bB[∗] (rk)

∑
j∈Z

qrkjR1 (j)

B (rk)

xk, xk

〉
|r0=i

 ≥
γE [〈xk, xk〉 |r0=i]

and, from (14), we obtain

γE
[
‖xk‖2 |r0=i

]
+E [〈R(rk+1)Xk+1, Xk+1〉 |r0=i] ≤ E [〈R (rk)Xk, Xk〉 |r0=i] .

Summing up the above inequality for k = 0 to n, we get,
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γ
n∑
k=0

E
[
‖xk‖2 |r0=i

]
+E [〈R(rn+1)Xn+1, Xn+1〉 |r0=i] ≤ E [〈R (r0)X0, X0〉 |r0=i] .

Since R is non-negative, we deduce that

n∑
k=0

E
[
‖xk‖2 |r0=i

]
≤ γ−1E [〈R (r0)X0, X0〉 |r0=i]

for all n ∈ N, i ∈ {1, .., D}. Thus, the series of positive numbers
∞∑
k=0

E
[
‖xk‖2 |r0=i

]
is convergent for all i ∈ {1, .., D} and we conclude that

lim
k→∞

E
[
‖xk‖2 |r0=i

]
= 0

for all i ∈ {1, .., D}. Since E
[
‖xk‖2

]
=
∑
i∈Z

E
[
‖xk‖2 |r0=i

]
pi, pi = P (r0 = i),

i ∈ {1, .., D} , it follows that limk→∞ ‖xk‖2 = 0, i.e. the system (5)-(6) is
MSA stable.

Proposition 1 The following statements are equivalent:
a) There is U with the property (P1) such that equation (12) has a non-

negative solution R ∈ lZ
L
(
(Rd)

N+1
) and

U (i)− bB[∗] (i)

∑
j∈Z

qijR1 (j)

B (i) > 0, i ∈ Z, (16)

where R1 is defined as in the above theorem.
b) There is U with the property (P1) such that equation

R = (Λ + Γ) (R) + U (17)

has a non-negative solution R ∈ lZ
L
(
(Rd)

N+1
).

Proof. Assume that a) holds. We note that condition (16) is equivalent

with U − bB[∗]

(∑
j∈Z

q(.)jR1 (j)

)
B � 0. By denoting U0 = U − Γ (R), we

get R = (Λ + Γ) (R) + U0. Since U0 (i) , i ∈ Z , the block matrix defined
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by the first d rows and d columns of the matrix U0, i ∈ Z, coincides with

U− bB[∗]

(∑
j∈Z

q(.)jR1 (j)

)
B, we deduce that U0 has the property (P1) and

b) follows.
Assume that b) is satisfied. Then, there is U0 with the property (P1)

such that R = (Λ + Γ) (R)+U0 has a non-negative solution R ∈ lZ
L
(
(Rd)

N+1
).

By taking U = U0 +Γ (R) in (12), the equation (12) will have the same non-
negative solution R. Arguing as in the proof of the above theorem, we deduce

that U has the property (P1) i). Since U (i)−bB[∗] (i)

(∑
j∈Z

qijR1 (j)

)
B (i) =

U0 (i) > 0, it follows that U also satisfies (P1) ii) and the proof is complete.

The following result gives a condition which ensures that (5)-(6) is not
MSA stable.

Theorem 2 If U ∈ lZ
L
(
(Rd)

N+1
) is a non-negative operator such that equa-

tion
R = (Λ + Γ) (R)− U (18)

has a solution R ∈ lZ
L
(
(Rd)

N+1
) with the property that

R1 (i) + U1 (i) > 0 (19)

for all i ∈ Z, then the system (5)-(6) is not MSA stable. Here, (as in
the above theorem) R1 (i) and U1 (i) , i ∈ Z are the block matrices defined
by the first d rows and d columns of the matrices R (i) and U (i) , i ∈ Z,
respectively.

Proof. Let i ∈ Z and U ∈ lZ
L
(
(Rd)

N+1
) be a non-negative operator which

satisfies the hypotheses of the theorem. Arguing as in the proof of Theorem
1, we have

E [〈R(rk+1)Xk+1, Xk+1〉 |r0=i] = E [〈(Λ + Γ) (R) (rk)Xk, Xk〉 |r0=i]
= E [〈R (rk)Xk, Xk〉 |r0=i] + E [〈U (rk)Xk, Xk〉 |r0=i]

Summing the above inequality for k = 0 to n, we get,

n∑
k=0

E [〈U (rk)Xk, Xk〉 |r0=i]+〈R (i)X0, X0〉 = E [〈R (rn+1)Xn+1, Xn+1〉 |r0=i] .
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The properties of the operator U and the last equation imply that

E [〈R (rn+1)Xn+1, Xn+1〉 |r0=i] ≥ 〈R (i)X0, X0〉+ 〈U (i)X0, X0〉 =

〈(R1 (i) + U1 (i))x0, x0〉 > 0

for all n ∈ N and x0 6= 0. From (19) it follows that there is γ > 0
such that 〈(R1 (i) + U1 (i))x0, x0〉 > γ ‖x0‖2 for all x0 ∈ Rd. On the

other hand, E [〈R (rn+1)Xn+1, Xn+1〉 |r0=i] ≤ E
(
‖R‖ ‖Xn+1‖2

)
and we de-

duce that ‖R‖E
[
‖Xn+1‖2 |r0=i

]
> γ ‖x0‖2 for all n ∈ N, x0 ∈ Rd and

i ∈ Z. Therefore, lim supk→∞E
[
‖Xk‖2 |r0=i

]
cannot be zero. Consequently,

lim supk→∞E
[
‖xk‖2 |r0=i

]
is not zero and the conclusion follows by virtue

of (H1) (ii) (P (rk = i) > 0, k ∈ N, i ∈ Z ) and Definition 1.

4.2.2 Procedural issues

For any i ∈ Z, let Qi be the matrix obtained from the probability matrix Q
by replacing with 0 all the elements from the lines j ∈ Z − {i}. We define
the matrix

L =
∑
i∈Z

Qi⊗K
(
A[∗] (i)⊗K A[∗] (i)

)
+b
∑
i∈Z

Qi⊗K
(
B[∗] (i)⊗K B[∗] (i)

)
(20)

where ⊗Kdenotes the Kronecker product of two matrices.
Now let vec(X) be the vectorization of a matrix X, i.e the vector formed

by stacking the columns of X into a single column vector. Then equation
(17) can be equivalently rewritten as

vec (R) = L · vec (R) + vec (U) , (21)

where vec (T ) =

 vec(T (1))
.

vec (T (D))

 , T = R,U .

Similarly, (18) is equivalent to

vec (R) = L · vec (R)− vec (U) . (22)

It is not difficult to see that the above linear and non-homogeneous systems
are easier to implement and to solve than equations (21) and (22). Conse-
quently, they are useful for many numerical computations. These systems
will be used it in the last section to check the MSA stability/instability in
some numerical examples.
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5 Mean-square asymptotic instability of LFOs with
multiplicative noise

In this section we provide sufficient conditions for the asymptotic instability
of both systems (3)-(4) and (5)-(6), in the special case when their coefficients
are not affected by Markovian jumps. In contrast with Theorem 2, the
new conditions are easier to check and ensure that lim supk→∞ ‖xk‖2 =∞.
However, they do not apply for systems with Markovian jumps, as Theorem
2 does.

5.1 Fractional systems with infinite delays

In this section we assume that A, B ∈ L
(
Rd
)

and (H1) iii) holds, without
any reference to the Markov chain.

We consider the following stochastic fractional order system

xk+1 = Axk +

k∑
i=0

Aixk−i + ξkBxk (23)

x0 = x ∈ Rd. (24)

By taking the expectation in (23) and by using (H1) iii), we obtain the
deterministic fractional system

E [xk+1] = AE [xk] +
k∑
i=0

AiE [xk−i] (25)

E [x0] = x ∈ Rd.

The asymptotic behavior of the above deterministic system was stud-
ied in [12] by using Z-transform techniques. The next result follows from
Proposition 38 b) in [12] and provides a sufficient condition for the mean
square instability of (23).

Proposition 2 Let R denote the set of roots of the equation

det

(
z

(
1− 1

z

)α
Id −A

)
= 0. (26)

If there is z ∈ R with the property |z| > 1, then lim supk→∞ ‖xk‖2 =∞,
where xk is the unique solution of (23)-(24).
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Proof. From Proposition 38 b) in [12], it follows that lim supk→∞E [xk] =
∞. Now we apply the well known inequality

‖E [xk]‖2 ≤ E
[
‖xk‖2

]
(27)

and we get the conclusion

In the last section we provide an example (see Example 3) which illus-
trates the applicability of Proposition 2.

5.2 Fractional systems with finite delays

As in the case of LFOSs with infinite delays, we use Z -transform to establish
sufficient conditions for the stochastic instability of LFOSs with finite delays.

We assume that A, B ∈ L
(
Rd
)

and (H1) iii) holds and we consider
system (5)-(6) in the absence of the Markovian jumps. We get the following
system

xk+1 = Axk +

N∑
i=0

cixk−i + ξkBxk (28)

x0 = x ∈ Rd, x−p = 0, p ∈ {1, .., N} .. (29)

By taking the expectation, we obtain the deterministic system

E [xk+1] = AE [xk] +

N∑
i=0

ciE [xk−i] . (30)

If we denote by W (z) the transform Z of the sequence {E [xk]}k∈N and
we use the shifting property of the transform Z, we get

Z

(
N∑
l=0

clE [xk−l|r0=i]

)
= c (z)W (z) ,

where c (z) =
N∑
n=0

cnz
−n. Applying Z transform to (30), we obtain the

following algebraic equation

zW (z)− zE [x0] = AW (z) + c (z)W (z)⇔
((z − c (z)) Id −A)W (z) = zx0. (31)
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Proposition 3 Let R denote the set of roots of the equation

det ((z − c (z)) Id −A) = 0. (32)

If there is z0 ∈ R such that |z0| > 1, then lim supk→∞ ‖xk‖2 =∞.

Proof. The function f (z) = z ((z − c (z)) Id −A)−1 x0 is rational and
holomorphic on C−R. Then, on (C−R) ∩ROC (W (z)) we have

W (z) = f (z) .

From the hypothesis, the complex number z0 ∈ R satisfying |z0| > 1 is
a pole for f (z). Let R be the radius of convergence of W (z). We know
that W (z) is holomorphic outside the circle |z| = R. If R < |z0|, then
limz→z0 f (z) = limz→z0 W (z) = W (z0), which contradicts the hypothesis
that z0 is a pole for f (z). It follows that R ≥ |z0| > 1. From the Cauchy-
Hadamard’s theorem, we have R = lim supk→∞

k
√
‖E [xk]‖ ≥ |z0| > 1,

which implies that supn≥k ‖E [xn]‖ ≥ |z0|k for k sufficiently large. Then
lim supk→∞E [xk] =∞ and the conclusion follows from (27).

6 Numerically solutions

In this section we provide some numerical examples which illustrates the
theory. We first consider the system (5)-(6) for different values of coef-
ficients and a sequence {ξk}k∈N of real-valued, identically and uniformly
distributed random variables from L2 (Ω,R), which is generated by Matlab.
The Markov chain and the solution’s graph are generated by a computer
program written by the author for this purpose.

Example 1 Let us consider system (5)-(6) for d = 2, h = 1, α = 1/2,

A (1) =

(
−2/5 0

0 1/5

)
, A (2) =

(
1 2
−1 3

)
,B = 1

10

(
1 1
1 1

)
, x0 =

(10, 20) and N = 1. The Markov chain has the state space Z = {1, 2},

the transition matrix Q =

(
0.5 0.5
0.7 0.3

)
and the initial distribution p =

(0.8, 0.2).
We will apply Theorem 2 to prove that (5)-(6) is MSA instable. We

consider (18) for U (i) =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , i ∈ {1, 2}. The equation (18)
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can be equivalently rewritten as (22). We use a Matlab program to generate
the operator L and function linsolve to find the solution R of (18). We

obtain the block matrices R1 (1) =

(
−0.9281 −0.0408
−0.0408 0.0335

)
and R1 (2) =(

4.3206 −0.7727
−0.7727 2.0263

)
. The sets of eigenvalues of the matrices

R1 (1) + U1 (1) =

(
0.071 9 −0.040 8
−0.040 8 1. 033 5

)
,

R1 (2) + U1 (2) =

(
5. 320 6 −0.772 7
−0.772 7 3. 026 3

)
are S1 = {1. 035 2, 7. 017 2×10−2} and S2 = {5. 556 6, 2. 790 3} , respectively,
and contain only positive numbers. It follows that condition (19) holds and,
by Theorem 2, the solution xk of (5)-(6) is MSA unstable. A Matlab sim-
ulation of 10 instances of the sequence xk, k = 1, 30 is shown in Fig.1 (a)
and confirms the theoretical result.

Example 2 Now, we consider system (5)-(6) for d = 2, h = 1, α = 1/10,
A (1) = −1

5 Id, A (2) = −Id,B (1) = Id, B (2) = 0, b = 1, x0 = (10, 20) , N =
9 and the same Markov chain as in Example 1. Now we solve equation (17)
for a sequence of operators U having the property (P1) with U (i) = I2,
i = 1, 2. A computer program, similar to that used for solving (18), leads
us to the conclusion that (17) has a non-negative solution R ∈ lZ

L
(
(Rd)

N+1
).

For reason of space we do not give the elements of R for N = 9 (because the
associate matrix will have 100 entries). Instead, we give the sequence R for
the case when N = 1. We have

R (1) =


18. 419 0 −0.095 6 0

0 18. 419 0 −0.095 6
−0.095 6 0 0.034 7 0

0 −0.095 6 0 0.034 7

 ,

R (2) =


15. 841 0 −0.727 5 0

0 15. 841 0 −0.727 5
−0.727 5 0 0.035 7 0

0 −0.727 5 0 0.035 7

 .

The eigenvalues of R (1) and R (2) are 18.4193, 18.4193, 0.0342, 0.03420
and 15.8746, 15.8746, 0.0023, 0.0023, respectively. We conclude, that R is
nonnegative and, by Theorem 1, the stochastic system is MSA stable (in both
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Figure 1: Finite delays case - the states xk, k = 1, ..30 of the system (5)-(6).

cases N = 1 and N = 9). For N = 9, the first 30 values of 10 instances of
the solution xk of the stochastic system (5)-(6) are shown in Fig.1 (b) .

The next two examples consider fractional systems without Markovian
jumps.

Example 3 We analyze the asymptotic behavior of system (23) -(24) un-

der the assumption that d = 2, α = 1/2, A =

(
2 −3

2
1 −1

)
, B =

(
0 1

2
1
2 0

)
,

h = 1, b = 1, x0 = (10, 20). In the case α = 1/2, the matrix Aα (z) =

A− z
(
1− 1

z

)α
Id becomes Aα (z) = A−

(√
z2 − z

)
Id. Since the eigenval-

ues of the matrix A are 1
2

√
3 + 1

2 ,
1
2 −

1
2

√
3, the equation det (Aα (z)) = 0

implies that z2 − z =
(
1
2

√
3 + 1

2

)2
. The solutions of the last equation are

z1 = −0.954 66, z2 = 1. 954 7 and one of them is placed outside the unit
circle. From Proposition 3 it follows that solution xk of the stochastic frac-
tional system (23) -(24) is mean square unstable. By simulating the first 50
elements of 10 instances of xk, we get the graph from Fig.2 (a).

Example 4 Now we consider the system (28)-(29) with α = 1/2, N =
9 and the same numerical values for the coefficients and for the random
sequences as in Example 3. In this case we have to determine the set R
of solutions of equation det ((z − c (z)) Id −A) = 0. Obviously R is the
reunion of the solutions sets of the following two algebraic equations

z − c (z) = λk, k = 1, 2 (33)
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Figure 2: The states xk, k = 1, ..30 of the systems (23) -(24) and (28)-(29),
respectively.

where λk, k = 1, 2 are the eigenvalues of the matrix A. Since λ1 = 1
2

√
3 +

1
2 , λ2 = 1

2 −
1
2

√
3, one of the equations (33) is

z − (0.5− 0.1250
1

z
+ 0.1250

1

z2
−

0.0625
1

z3
− 0.0391

1

z4
+ 0.0273

1

z5
− 0.0205

1

z6
+

0.0161
1

z7
− 0.0131

1

z8
+ 0.0109

1

z9
) =

1

2

√
3 +

1

2
.

A solution of the above equation is z = 1.822, 2 and lies outside the unit
circle C = {z, |z| = 1} . Since the hypotheses of Proposition 3 are fulfilled,
we conclude that the solution xn of the stochastic fractional system (28)-(29)
is MSA unstable. A computer simulation of 10 instances of this solution is
shown in Fig.2 (b).
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