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Abstract

The design of static output feedback controllers in an anisotropic
norm setup is considered. The aim is to determine a stabilizing static
output feedback for a given four block system such that the result-
ing closed loop system has the a-anisotropic norm less than a given
γ > 0. The solvability conditions are expressed in terms of the so-
lution of a rank minimization problem with linear matrix inequalities
constraints. Based on the specific form of these constraints it is shown
that a solution of this problem may be obtained solving a semidefinite
programming problem.
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1 Introduction

The problems of robust optimal control and filtering received much atten-
tion over the last seven decades. Early solutions for these problems were
presented by Kwakernaak and Sivan [11] and robustness issues due to mod-
elling errors were considered in e.g. [18]. When the exogenous signals are
of white noise type, then H2−norm minimization is applied, leading to the
Kalman filter [7] and Linear Quadratic Gaussian (LQG) control. An alter-
native modelling of the exogenous inputs is based on deterministic bounded
energy signals. Such formulations lead to the H∞-norm based framework
([23]) and are applied in both filtering ([6], [17]) and control ([24]). Many
practical applications, however, require a compromise between the H2 and
the H∞-norm minimization since the latter may not be suitable when the
considered signals are strongly coloured (e.g. periodic signals). On the other
hand, H∞-optimization may poorly perform when these signals are weakly
coloured (e.g. white noise). For such cases mixed H2/H∞ norm minimiza-
tion problems have been formulated and analysed (see, e.g. [2], [5], [14]). A
promising alternative to accomplish such compromise is to use the so-called
a-anisotropic norm ([8], [21]) since it offers and intermediate topology be-
tween the H2 and H∞ norms. More precisely, consider the m dimensional
coloured signal w(t), t = 0, 1, ... generated by the discrete-time stable filter
G

xf (t+ 1) = Afxf (t) +Bfv(t)
w(t) = Cfxf (t) +Dfv(t), t = 0, 1, ...

(1)

where Af ∈ Rnf×nf , Bf ∈ Rnf×m, Cf ∈ Rm×nf , Df ∈ Rm×m and
where v ∈ R are independent Gaussian white noises with E[v(t)] = 0 and
E[v(t)vT (t)] = Im. Then, the a-anisotropic norm |||F |||a of a discrete-time
stable system F with the state-space realisation

x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t), t = 0, 1, ...

(2)

is defined as

|||F |||a = sup
G∈Ga

‖FG‖2
‖G‖2

, (3)

Ga denoting the set of all stochastic systems of form (1) with the mean
anisotropy Ā(G) ≤ a. The mean anisotropy of stationary Gaussian se-
quences was introduced in [8] and it represents an entropy theoretic measure
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of the deviation of a probability distribution from Gaussian distributions
with zero mean and scalar covariance matrices. In [9], it is proved based on
the Szegö-Kolmogorov theorem ([15]) that the mean anisotropy of a signal
generated by an m-dimensional Gaussian white noise v(t) with zero mean
and identity covariance applied to a stable linear system G with m outputs
has the form

Ā(G) = −1

2
ln det

(
mE

[
w̃(0)w̃(0)T

]
Tr (E [w(0)w(0)T ])

)
, (4)

where E[w̃(0)w̃(0)T ] is the covariance of the prediction error w̃(0) := w(0)−
E[w(0)|(w(k), k < 0]. In the case when the output w of the filter G is a
zero mean Gaussian white noise (i.e. its optimal estimate is just zero), w(0)
cannot be estimated from its past values and w̃(0) = w(0) which leads to
Ā(G) = 0.

It is proved (see, for instance [21]) that the anisotropic norm has the
property:

1√
m
||F ||2 = |||F |||0 ≤ |||F |||a ≤ ||F ||∞ = lim

a→∞
|||F |||a (5)

In [9], conditions for the anisotropic norm boundedness are given in terms
of a non convex optimization problem while in [10] a convex form of the
Bounded Real Lemma (BRL) type result with respect to the anisotropic
norm was obtained. One of the leading motivations to use the anisotropic
norm is the fact |||F |||a ≤ ||F ||∞ making it a relaxed version of the H∞-
norm for many practical cases in which the driving noise signals can be
characterised not just by their finite energy, but as outputs of a colouring
linear systems in a certain class, where the colouring filters are of a finite
anisotropy. In a case study presented in [20] it is shown that for a TU-
154 type aircraft landing system, the H∞ controller is more efficient than
the corresponding H2 controller for a windshear profile (which is a coloured
rather than a white noise process) but, as could be expected, is more conser-
vative, in the sense of higher gains and subsequently larger control actions;
moreover, the anisotropic-norm based controller (based on an appropriate
anisotropic norm bound) is less conservative than the H∞ controller and
requires significantly smaller control actions.

The aim of the present paper is to derive a tractable characterisation
of the static output feedback synthesis problem. Static Output Feedback
(SOF) synthesis is very useful, when the design of fixed structured con-
trollers such as PID (Proportional, Integral, Derivative) is required. Such
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controllers are very common both in the process control and aerospace con-
trol applications. However, it is well known that SOF synthesis is an NP-
hard problem. Nevertheless, under the H2 and H∞ setups, the non-smooth
optimization based software packages hinfstruct [1] and HIFOO [4] provide
efficient solutions. Although the SOF problem within the anisotropic-norm
setup has already been considered in [20], the solution there involves a couple
of Linear Matrix Inequalities (LMI) with a non-convex coupling condition,
limiting its application to some practical problems.

We next state in Section 2 the problem and provide some preliminar-
ies. An approximate solution is suggested in Section 3, whereas a solution
based on solving a rank minimization problem is offered in Section 4. It
is shown that based on the particularities of the constraints arising in this
rank minimization problem, it may solved using a semidefinite programming
problem.

2 Problem Formulation and Some Useful Known
Results

Consider the following four blocks plant

x(t+ 1) = Ax(t) +B1w(t) +B2u(t)
z(t) = C1x(t) +D11w(t) +D12u(t)
y(t) = C2x(t), t = 0, 1, ...

(6)

The state output feedback (SOF) problem considered in the present paper
consists in determining a static control matrix K, such that the closed loop
system obtained by taking u(t) = Ky(t), namely

x(t+ 1) = (A+B2KC2)x(t) +B1w(t)
z(t) = (C1 +D12KC2)x(t) +D11w(t), t = 0, 1, ...

(7)

is stable and its a-anisotropic norm is less than a given γ > 0. The solution
of this problem will be detailed in Section 4. In the following, some known
results concerning the used norms are briefly reminded.

Definition 1. The H2-type norm of the discrete-time stable system (2)
is defined as

‖F‖2 =

[
lim
`→∞

1

`

∑̀
t=0

E
[
yT (t)y(t)

]] 1
2

,
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where {y(t)}t∈Z+ with Z+ denoting the set of all positive integers, is the
output of the system (1) with zero initial conditions generated by the se-
quence {w(t)}t∈Z+ of independent random vectors with the property that
E [w(t)] = 0 and E

[
w(t)wT (t)

]
= Im.

The next result provides a method to compute the H2 norm of the system
of (2)(see e.g. [16]).

Lemma 1. The H2 type norm of the stable system (2) is given by

‖F‖2 =
(
Tr
(
BTXB +DTD

)) 1
2 where X ≥ 0 is the solution of the gener-

alised Lyapunov equation X = ATXA+ CTC.
Definition 2. The H∞ norm of the stable discrete-time system (2) is

defined as

‖F‖∞ = sup
θ∈[0,2π)

λ
1
2
max

(
F T
(
e−jθ

)
F
(
ejθ
))

,

where λmax denotes the maximal eigenvalue and F (·) is the transfer function
of the system.

The H∞ norm is characterised by the following result, well-known as the
Bounded Real Lemma (BRL).

Lemma 2. The stable system (2) has the norm ‖F‖∞ < γ for a certain
γ > 0 if and only if the Riccati equation

P = ATPA+
(
ATPB + CTD

) (
γ2I −BTPB −DTD

)−1
×
(
ATPB + CTD

)T
+ CTC

has a stabilizing solution P ≥ 0 such that γ2I −BTPB −DTD > 0.
It is recalled ([5]) that a symmetric solution P of the above Riccati equa-

tion is called a stabilising solution if the system x(t+ 1) =
(
A+BK̃

)
x(t)

is stable, where by definition

K̃ :=
(
γ2I −BTPB −DTD

)−1 (
ATPB + CTD

)T
.

To conclude this section, we state the Bounded Real LemmaL-like result
to characterise the anisotropic norm [9]. Note that for a that tends to
infinity, that the result of Lemma 2 is recovered.

Theorem 3. The stable system of (2) satisfies |||F |||a ≤ γ for a given
γ > 0 if and only if there exists q ∈

(
0,min

(
γ−2, ‖F‖−2∞

))
such that the

Riccati equation

X = ATXA+
(
ATXB + CTD

) (
1
q I −B

TXB −DTD
)−1

×
(
ATXB + CTD

)T
+ CTC

(8)
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has a stabilising solution X ≥ 0 satisfying the following conditions

Ψq :=
1

q
I −BTXB −DTD > 0 (9)

and

det

(
1

q
− γ2

)
Ψ−1q ≤ e−2a. (10)

Remark 1. An equivalent formulation of the above result can be ob-
tained replacing the Riccati equation (8) with the linear matrix inequality
(LMI) [

−X +ATXA+ CTC ATXB + CTD
BTXA+DTC −1

q I +BTXB +DTD

]
< 0 (11)

with X > 0.

3 Approximate Characterisation of the Anisotropic
Norm

Denoting η =
√

1/q we first restate the result of Theorem 3 above, as

||F ||∞ < η

so that
det(η2 − γ2)Ψ−1q ≤ e−2a

or equivalently
η2 − γ2 ≤ (detΨq)

1/me−2a/m

However, it is well known that for positive semidefinite matrices the following
inequality holds (see e.g. [3])

(detΨq)
1/m ≤ TrΨq

m

Combining those two inequalities, we readily obtain

η2 − γ2 ≤ TrΨq

m
e−2a/m

Noting now that Ψq = η2I −BTXB −DTD the latter inequality becomes

γ2 ≥ η2 −
(
η2 − Tr(BTXB +DTD)

m

)
e−2a/m.
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After arranging terms, we obtain

γ2 ≥ η2(1− e−2a/m) +
Tr(BTXB +DTD)

m
e−2a/m

Noting that X of Theorem 3 provides and upper bound on the corresponding
X of Lemma 1, and also noting that η is an upper bound on the H∞-norm
of the system of (1), we readily obtain the following result.

Lemma 4. Consider the system F given by (2). Let η and σ respectively
satisfy

||F ||∞ < η and ||F ||2 < σ

The a-anisotropic norm of the system of (2) is then upper bounded by the
following linear interpolation between its H∞ and H2 norms. Namely,

γ2 ≥ η2(1− e−2a/m) +
σ2

m
e−2a/m

In view of (5) one may interpret the a-anisotropic norm, the following ap-
proximate relation

|||F |||2a ≈ |||F |||2∞(1− e−2a/m) + |||F |||20e−2a/m

Thus Lemma 4 provides a useful insight to the a-anisotropic norm, which can
lead to using mixed H2/H∞ optimisation, in the exact proportions dictated
by the Lemma.

4 Static Output Feedback

We next provide a solution to the problem of synthesis of SOF control syn-
thesis under the anisotropic norm, using iterative solution for LMIs. To this
end, we define the cost function to be

J(K) = |||Fc`(K)|||a (12)

where Fc`(K) is given by (7). Using Theorem 3 and Remark 1, if follows
that the closed loop system Fc` is stable and it has the a-anisotropic norm
less than a given γ > 0 if and only if there exist a q ∈

(
0,min(γ−2, ‖Fc`‖−2∞ )

)
and a symmetric matrix X > 0 such that[

E1(X,K) E2(X,K)
(1, 2)T −1

q I +BT
1 XB1 +DT

11D11

]
< 0 (13)
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where

E1(X,K) := −X + (A+B2KC2)
T X (A+B2KC2)

+ (C1 +D12KC2)
T (C1 +D12KC2)

E2(X,K) := (A+B2KC2)
T XB1 + (C1 +D12KC2)

T D11

and

1

q
− γ2 < e−

2a
m

(
det

(
1

q
I −BT

1 XB1 −DT
11D11

))1/m

(14)

Based on Schur complements arguments, one can see that the inequality
(13) is equivalent with

−X 0 (A+B2KC2)
T (C1 +D12KC2)

T

0 −1
q I BT

1 DT
11

A+B2KC2 B1 −X−1 0
C1 +D12KC2 D11 0 −I

 < 0.

Multiplying the above inequality to the left and to the right by
diag(I, I,X, I) one obtains that is is equivalent with

−X 0 (A+B2KC2)
T X (C1 +D12KC2)

T

0 −1
q I BT

1 X DT
11

X(A+B2KC2) XB1 −X 0
C1 +D12KC2 D11 0 −I

 < 0(15)

which may be re-written as

Z + PTKQ+QTKTP < 0, (16)

where one denoted

Z :=


−X 0 ATX CT1

0 −1
q I BT

1 X DT
11

XA XB1 −X 0
C1 D11 0 −I

 , PT :=


0
0

XB2

D12

 ,
Q :=

[
C2 0 0 0

]
. (17)

According with the so-called Projection lemma (see e.g. [16]), the inequality
(16) is feasible with respect to K if and only if the following conditions are
accomplished

W T
PZWP < 0 (18)
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and

W T
QZWQ < 0 (19)

where WP and WQ are any bases of the null spaces of P and Q, respectively.
Since a base of the null space of P is

WP =


I 0 0 0
0 I 0 0

0 0 X−1
(
BT

2

)⊥
0

0 0 0
(
DT

12

)⊥
 ,

where (·)⊥ denotes the null space of the matrix (·), one directly obtains from
condition (18)

−X 0 AT
(
B⊥2
)T

CT1
(
D⊥12

)T
0 −1

q I BT
1

(
B⊥2
)T

DT
11

(
D⊥12

)T
B⊥2 A B⊥2 B1 −B⊥2 X−1

(
B⊥2
)T

0

D⊥12C1 D⊥12D11 0 −D⊥12
(
D⊥12

)T

 < 0. (20)

Further, taking into account that WQ = diag
(
C⊥2 , I, I, I

)
, the condition

(19) becomes
−
(
C⊥2
)T
XC⊥2 0

(
C⊥2
)T
ATX

(
C⊥2
)T
CT1

0 −1
q I BT

1 X DT
11

XAC⊥2 XB1 −X 0
C1C

⊥
2 D11 0 −I

 < 0. (21)

Since the inequalities (20) and (21) depends both on X > 0 and its
inverse X−1, one obtains the rank minimization problem

min
X>0, Y >0

rank

[
X I
I Y

]
(22)

with the constraints (20) and (21), where in (20), X−1 is denoted by Y .
The next result proved in [13] is useful to show that the above rank mini-

mization problem may be solved using a semidefinite programming problem
(SDP).

Proposition 1. Let D ∈ Rm×n(m ≤ n) be a full row rank, Q ≤ 0 and
C invertible. Then the RMP

min
X≥0

rankX
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with the constraint

D

(
Q+ CXCT −

∑
i

MiXM
T
i

)
DT ≥ 0 (23)

can be solved as the semidefinite programming problem

min
X≥0

traceX

with the same constraint (23).
After swapping the second and the third columns and rows of the matrix

from the left hand side of (20), using Schur complements arguments, it
results that (20) is equivalent with

−
[
I 0
0 B⊥2

] [
X I
I Y

] [
I 0
0 B⊥2

]T
+ P

+

[
0

(
B⊥2
)T (

I +AT
)

(I +A)B⊥2 0

]
< 0

, (24)

where one denoted

P :=

[
0 CT1

(
D⊥12

)T
B⊥2 B1 D11

(
D⊥12

)T
][

1
q I 0

0 D⊥12
(
D⊥12

)T
]−1

·

[
0 BT

1

(
B⊥2
)T

D⊥12C1 D⊥12D11

]
≥ 0.

Since[
µI

(
B⊥2
)T (

I +AT
)

(I +A)B⊥2 µI

]
>

[
0

(
B⊥2
)T (

I +AT
)

(I +A)B⊥2 0

]
,

∀µ > 0, one may replace the last term from the left hand side of (24) by[
µI

(
B⊥2
)T (

I +AT
)

(I +A)B⊥2 µI

]
> 0

for a certain µ > 0, obtaining thus

−
[
I 0
0 B⊥2

] [
X I
I Y

] [
I 0
0 B⊥2

]T
+ P̂ < 0, (25)
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with P̂ > 0, where

P̂ := P +

[
µI

(
B⊥2
)T (

I +AT
)

(I +A)B⊥2 µI

]
> 0.

Denote B̃2 ∈ R`×n a full rank matrix such that

[
B⊥2
B̃2

]
is square and

invertible. Then (25) may be written as

[
In 0n×`

]−
 In 0n

0n

[
B⊥2
B∗2

] [ X In
In Y

] In 0n

0n

[
B⊥2
B∗2

] T

+

[
P̂ 0
0 P ∗

]}[
In

0`×n

]
< 0

(26)

where P ∗ ∈ R`×` is an arbitrary positive definite matrix. The above condi-

tion coincides with the form (23) for D :=
[
In 0n×`

]
, X ←

[
X In
In Y

]
,

Q = −
[
P 0
0 P ∗

]
, C =

 In 0n

0n

[
B⊥2
B∗2

]  and Mi = 0.

A similar reasoning may be easily used to show that (21) may be repre-
sented under (23) form after writing (21) in the equivalent form

−
(
C⊥2
)T
XC⊥2 0

(
C⊥2
)T
AT

(
C⊥2
)T
CT1

0 −1
q I BT

1 DT
11

AC⊥2 B1 −X−1 0
C1C

⊥
2 D11 0 −I

 < 0, (27)

obtained multiplying (21) to the left and to the right by diag
(
I, I, X−1, I

)
.

Based on the above developments, the following result provides a solution
of the static output feedback problem with bounded a-anisotropic norm.

Theorem 5. Assume that for a certain q > 0, X > 0, Y > 0 satisfy

(20) and (27) in which X−1 is replaced by Y , so that rank

[
X I
I Y

]
= n.

Then K obtained as a solution of the linear matrix inequality (16), provides
a solution to the static output feedback problem for which the resulting
closed loop system Fc` defined by (7) has an a-anisotropic norm less than
γ >0 for any γ satisfying the conditions (14) and q ∈ (0,min{γ−2, ‖Fc`‖−2∞ }).
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