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Abstract

In this chapter we discuss the H2 control for Markov jump linear
systems in a context of partial observation of both the Markov chain
and the state variable. The controller is static and depends on an
observed variable that provides the only information of the Markov
variable in a context of hidden Markov chains. We propose a new
design condition in terms of linear matrix inequalities considering rank
constraints in suitable system matrices that are easily fulfilled. Next we
investigate the case in which the detector provides perfect estimations
of the Markov chain and all the states are available to the controller.
Finally we compare this result with the so-called two-step procedure
for hidden Markov jump linear systems in an academic example of a

∗Accepted for publication in revised form on July 4, 2020
†andre.marcorin@unifesp.br Institute of Science and Technology, Federal University

of São Paulo (UNIFESP), Av. Cesare Mansueto Giulio Lattes, 1201 - Eugênio de Mello, São
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1 Introduction

Systems subject to abrupt changes in their dynamics have been receiving a
great deal of attention in the past decades. One of the main reasons concerns
the presence of faults in critical applications, which motivates to develop a
deeper understanding of how to detect and consequently act in such cases.
Specially if the changes are not deterministic, as it is usually the case, the use
of Markov jump linear systems (MJLS) to model these situations is appealing.
By now there is a large body of works on MJLS such as [13, 5, 6, 22, 2] and
the reference therein, to name a few.

The aforementioned works deal mainly with the case in which the Markov
chain can be measured, the so-called mode-dependent or perfect observation
case. However there are instances in which the Markov chain is not available
to the control, as in applications of Active Fault-tolerant Control Systems
(AFTCS) in [21, 1] in which the main jump process is a fault process. This
setting imposes challenging problems in a vast array of applications going
from control to filtering, see, for instance, [42, 15, 17, 18, 12, 16, 3], and
the references therein. Among the approaches dealing with the so-called
partial observation setting of the Markov chain used in the aforementioned
works, we can point out the cluster and mode-independent cases. In the
former setting, the modes of operation are grouped into distinguishable and
disjoint sets so that the controller/filter would jump according to the set in
which the Markov chain is currently operating; and the latter assumes that
there is no information at all concerning the jump process so that there is
only one controller for all possible modes of operation. More recently, an
alternative formulation introduced in [4] that encompasses the aforementioned
approaches has come into a great focus in the literature. The idea is to study
the problem in the context of hidden Markov chains, see for instance, [34], so
that even though the Markov chain is hidden, there is still some information
provided by a type of detector, for instance, the output of a Fault-detection
and Isolation device (FDI), that could be used in the control of the system.
We can mention a few works such as [7, 43, 29, 41] concerning state-feedback
control; [27, 32, 37] for filtering; [9, 20] for dynamic output feedback control;
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and [38, 39, 10, 11, 45] for static output feedback control. It is worth to
point out that, even though the use of hidden Markov chains in MJLS can
be found in the literature with different names such as detector approach,
hidden MJLS, asynchronous control, and mismatched control, among others,
the modeling is essentially the same. On another vein, we can also mention
the approach used in [26] for dealing with the partial observation setting of
the Markov chain.

In this work we tackle a challenging control problem that has, so far,
defied an optimal convex formulation, namely, static output feedback control.
We mention an interesting survey about the subject in [35] which points
out the fact that the problem is a Bilinear Matrix Inequality (BMI) type
that is, in general, NP-Hard, even for linear time-invariant (LTI) systems.
Nonetheless there are workarounds that have been proposed and provide at
least sub-optimal approaches for the control design, such as the two-step
procedure in [31, 23, 24, 25], the use of rank restrictions in suitable matrices
as in [46, 44, 40, 45], or the approach in [19, 33] that studies the stabilizability
problem taking a parallel with the linear quadratic regulator theory. In [11] it
was proposed a two-step procedure for the H2 static output feedback control
for hidden MJLS in terms of Linear Matrix Inequalities (LMIs), which relies
on an initial choice of a stabilizing state-feedback controller. In this work we
propose an alternative way of solving the problem that does not depend on
this initial state-feedback controler but, instead, it resorts to rank constraints
similarly as done in [40, 45], which seems to be a natural fashion of obtaining
a solution to the control problem, since it directly concerns the measurements
of the states. We show that these new condition, when applied to the case
of perfect measurement of the states and the Markov chain, yields to the H2

state-feedback design conditions of [29], which in turns leads to the optimal
control in the case we have a perfect detector of the Markov chain. We also
provide a comparison between this new condition and the two-step procedure
presented in [11].

We now do a brief comparison between our work and [40] and [45].
Even though both papers rely on rank constraints and similar controller
parametrizations, the paper [40] considered the H∞ static output feedback
control for continuous-time exponential hidden Markov jump systems. Thus
its main focus is on robust control and in the continuous-time setting. As
for [45], it deals with discrete-time linear quadratic control for hidden MJLS
in the finite and infinite-horizon settings with hard constraints on the norms
of the control input and the state. We instead focus on the H2 static output
feedback control with an emphasis on the stochastic formulation of the
infinite-horizon setting.
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This work is organized as follows. In Section 2 we introduce the notation
and in Section 3 we introduce the system, the basic definitions and the
problem formulation. In Section 4 we present the main results, namely, a
sub-optimal design condition in terms of LMIs for calculating a static output
feeddback controller that depends only on the detector that guarantees a
bound on the H2 norm of the closed-loop system, as well as a corollary that
investigates the relation between our work and the results of [29] for the
H2 state-feedback control. We also briefly revisit the result of [11] for our
setting. Finally in Section 5 we perform a numerical comparison between
our result and the one given in [11] in an academic application of systems
subject to faults and state our final remarks in Section 6.

2 Notation

The real n-dimensional Euclidean space is represented by Rn and B(Rm,Rn)
is the space of n×m real matrices. The operator (·)′ represents the transpose
of a matrix, In is the identity matrix of size n×n, 0n×m is the zero matrix of
size n×m, diag(·) is a block diagonal matrix, Tr(·) is the trace of a square
matrix, and for G ∈ B(Rn) , B(Rn,Rn) we set Her(G) , G + G′. The
symbol • represents a symmetric block for partitioned symmetric matrices.
For N and M positive integers, we set N , {1, . . . , N} and M , {1, . . . ,M}.
The set Hn,m is the linear space of all N -sequence of real matrices V =
(V1, V2, ..., VN ), Vi ∈ B(Rn,Rm), i ∈ N and, for simplicity, Hn , Hn,n and
Hn+ , {V ∈ Hn;Vi ≥ 0, i = 1, . . . , N}. For P, V ∈ Hn+, we write that
P > V if Pi > Vi for each i = 1, . . . , N .

3 Preliminaries

In a probability space (Ω,F,Prob) equipped with filtration {Fk}, we consider
the following Markov jump system

G :


x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) + Jθ(k)w(k)

y(k) = Lθ(k)x(k)

z(k) = Cθ(k)x(k) +Dθ(k)u(k) + Eθ(k)w(k)
(1)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control input, w(k) ∈ Rr is
the noise process, z(k) ∈ Rq is the controlled output, and y(k) ∈ Rp is the
measured output, with n ≥ p. The variable θ(k) is a homogeneous Markov
chain with state space N, Prob(θ(k+1) = j | Fk) =Prob(θ(k+1) = j | θ(k)) =
pθ(k)j ≥ 0, j ∈ N. We set Ni , {j ∈ N; pij > 0} and pi , {pij ; j ∈ Ni}



On the H2 Static Output Feedback Control for Hidden MJLS 409

for all i ∈ N. The system (1) evolves from x(0) = x0 and θ(0) = θ0, a
random variable taking values in N. It is assumed that w(k) is a wide-sense
white noise sequence with E(w(k)) = 0 and E(w(k)w(k)′) = Irw , k ≥ 0,
independent of θ(k).

Assumption 1 Li has full row rank p for all i ∈ N. �

We assume that θ(k) cannot be measured, but instead there is a detector
whose output depends on the Markov chain in the following fashion:

Prob(θ̂(k) = ` | F̂k) = Prob(θ̂(k) = ` | θ(k)) = αθ(k)`

where F̂k is the σ−algebra generated by {x(i), u(i), w(i), θ(i), θ̂(i), 0 ≤ i <
k − 1} ∪ {x(k), u(k), w(k), θ(k)}, for k > 0, and {x(0), u(0), w(0), θ(0)}, for
k = 0. We assume that M is the output map of θ̂(k), αi` ≥ 0 for all i ∈ N and
` ∈M, and define the set of possible outcomes of θ̂(k) given that θ(k) = i as
Mi , {` ∈ M;αi` > 0}, and set αi , {αi`; ` ∈ Mi}, i ∈ N. As discussed in
[34], the process (θ, θ̂) is known as a hidden Markov chain.

We aim at designing the following static output feedback controller,

u(k) = Kθ̂(k)y(k) (2)

that depends on the measured outputs y(k) and θ̂(k), for K , (K1, . . . ,KM ).
By connecting (1) and (2), we get the following closed-loop system

GK :

{
x(k + 1) = Āθ(k)θ̂(k)x(k) + Jθ(k)w(k)

z(k) = C̄θ(k)θ̂(k)x(k) + Eθ(k)w(k)
(3)

for Āθ(k)θ̂(k) , Aθ(k)+Bθ(k)Kθ̂(k)Lθ(k) and C̄θ(k)θ̂(k) , Cθ(k)+Dθ(k)Kθ̂(k)Lθ(k).

Remark 1 As discussed in [7], the pair (θ(k), θ̂(k)) generalizes some obser-
vation models typically applied to MJLS.

(i) The mode-dependent case, see, for instance, [5]. If we assume that
M = N and αii = 1 for all i ∈ N, we get that θ̂(k) = θ(k), that is, the
detector provides perfect estimates of the Markov chain.

(ii) The cluster case, see, for instance, [42]. We consider that M ≤ N so
that N can be written as the union of M disjoint sets (clusters) Ni, that
is, N = ∪Mi=1Ni. By defining a function g : N→ M such that g(i) = j
for all i ∈ Nj, then g(i) represents to which set (cluster) the state i

belongs to. By considering Mi = {g(i)} and αig(i) = 1, then θ̂(k) would
indicate the cluster in which θ(k) is.
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(iii) The mode-independent case, see, for instance, [12]. By setting M = 1
and αi1 = 1 for all i ∈ N, we get that θ̂(k) cannot provide any useful
information on θ(k).

We present some basic definitions next.

Definition 1 Given K, system (3) with w ≡ 0 is said to be stochastically
stable (SS) if

‖x‖22 ,
∞∑
k=0

E(‖x(k)‖2) <∞,

regardless of x0, θ0. �

The set of admissible controllers is given by K , {K such that (3) is SS}.
By defining the operators L ∈ Hn+ and E ∈ Hn+ for S ∈ Hn+ such that

Ei(S) ,
∑
j∈N

pijSj ,

Li(S) ,
∑
`∈Mi

αi`Ā
′
i`Ei(S)Āi`,

we get from [7] that if there exists P ∈ Hn+, P > 0 and K, such that

P − L(P ) > 0 (4)

then K ∈ K.

Let us now recall some basic definitions regarding the H2 norm of (3)
and introduce a necessary assumption.

Assumption 2 The Markov chain is ergodic, see, for instance, [34]. �

Assumption 2 is needed to ensure that there exists µi > 0, i ∈ N,
∑

i∈N µi = 1
such that as k →∞, µi(k)→ µi, where Prob(θ(k) = i) = µi(k). Let us now
define the stochastic version of the H2 norm of (3) as discussed in [27].

Definition 2 For K ∈ K, ‖GK‖22 , limk→∞E
(
‖z(k)‖2

)
.

We now discuss the conditions in which the limit in Definition 2 exists and
recall how to calculate ‖GK‖22 through the next proposition based on the
discussion presented in [27].
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Proposition 1 For K ∈ K and considering that Assumption 2 holds, let
P̄ ∈ Hn+ be the unique solution of

P̄ = L(P̄ ) + C, (5)

where C ∈ Hn+, Ci ,
∑

`∈Mi
αi`C

′
i`Ci`. Then,

‖GK‖22 =
∑
i∈N

µiTr(J ′iEi(P̄ )Ji + E′iEi). (6)

where limk→∞Prob(θ(k) = i) = µi, i ∈ N.

We will need the following auxiliary result adapted from [5].

Proposition 2 For K ∈ K and S ≥ T ≥ 0 (>, respectively), let P , L be the
unique solutions of P − L(P ) = S, and L − L(L) = T , respectively. Then
P ≥ L ≥ 0 (> 0).

We get that if there exists P ∈ Hn+, P > 0, such that the following inequality

P − L(P ) > C (7)

holds, then from (4), we get that K ∈ K. Furthermore, since there exists
V ∈ Hn+, V > 0 such that P − L(P ) = C + V , then by considering
Proposition 2, we get that P > P̄ . It follows from (6) that ‖GK‖22 <∑

i∈N µi Tr(J ′iEi(P )Ji + E′iEi).

We are now able to state the main goal of this work, that is, finding
K ∈ K that minimizes γ such that ‖GK‖2 < γ. Formally,

inf
γ,K∈K,P

γ (8)

such that (7) and ∑
i∈N

µiTr(J ′iEi(P )Ji + E′iEi) < γ2 (9)

hold. The problem in (8) is non-linear and hard to solve. As we are going
to see in the next section, we propose a sub-optimal condition formulated
in terms of LMIs and based on slack variables and rank restrictions that
guarantees that ‖GK‖2 < γ. For the case in which all states are available,
and also that θ̂ = θ, we are able to achieve the optimal H2 state-feedback
controller.
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4 Main Result

In this section, we introduce the main design result in Theorem 1, discuss
the special case of all states being available in Corollary 1, and recall the
results in [10, 11] for comparison.

Considering that Assumption 1 is fulfilled, we get that there exists full
rank real matrices Ti ∈ B(Rn) for i ∈ N such that

LiTi = U ,
[
Ip 0p×n−p

]
,∀i ∈ N. (10)

Furthermore, we define G` ∈ B(Rn) for all ` ∈Mi, i ∈ N with the following
partition

G` ,

[
G1` 0p×n−p
G2` G3`

]
(11)

for real matrices G1`, G2`, and G3` of compatible dimensions. For siκ ≥ 0
such that

∑
κ∈K siκ = 1, for all i ∈ N, and K ⊆ N, we define si , {siκ;κ ∈

Ki}, i ∈ N, where Ki , {κ ∈ K; siκ > 0}, Ki , {κi, . . . , κ̄i}, and

Gi(s) ,
[√
siκiIn . . . ,

√
siκ̄iIn

]′
.

In what follows we will consider either si = pi and Ki = Ni or si = αi
and Ki = Mi. For Mi , {Mi` ∈ B(Rn); ` ∈ Mi}, i ∈ N, and N ,
{Nj ∈ B(Rn); j ∈ Ni}, we set Piα(M) , diag(Miκi , . . . ,Miκ̄i) and Pp(N) ,
diag(Nκi , . . . , Nκ̄i), respectively. We consider the following inequalities,∑

i∈N
µiTr(Wi) < υ (12) Wi • •

Gi(p)Ji Pp(Q) •
Ei 0 Iq

 > 0 (13)

[
Qi •

Gi(α)Qi Piα(M)

]
> 0, (14)

 Her(TiG`)−Mi` • •
Gi(p)(AiTiG` +BiY`U) Pp(Q) •

CiTiG` +DiY`U 0 Iq

 > 0 (15)

for i ∈ N, ` ∈Mi. The next theorem provides a sub-optimal approach to (8).
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Theorem 1 Given Ti ∈ B(Rn) as in (10), i ∈ N, if there exists υ ∈ R+,
W ∈ Hr+, W > 0, Q ∈ Hn+, Q > 0, Mi` > 0, i ∈ N, ` ∈ Mi, Mi` ∈ B(Rn),
G` ∈ B(Rn) partitioned as in (11), and Y` ∈ B(Rp,Rm), ` ∈ M, such that
(12)-(15) hold for all i ∈ N, ` ∈Mi, then by setting K` = Y`G

−1
1` and γ =

√
υ,

we get that K ∈ K and ‖GK‖2 < γ. �

Proof: First note that if (15) holds for all i ∈ N, ` ∈ Mi, we get that
Her(TiG`)−Mi` > 0, and since Mi` > 0, then TiG` is full rank. Recalling
that Ti is full rank, we get that G` is non singular, see for instance, [40], and
due to the lower triangular block structure of (11), we get that G1` is non
singular as well. Thus it follows that

AiTiG` +BiY`U = AiTiG` +BiK`G1`U

= (AiTi +BiK`U)G`

= (Ai +BiK`Li)TiG` = Āi`TiG`

where the second equality comes from the structure of G` in (11) and the
last equality, from (10). Similarly CiTiG` +DiY`U = (CiTi +DiK`U)G` =
C̄i`TiG`. Recalling the results in [30] and [8], we get that (TiG`)

′M−1
il (TiG`)

≥ Her(TiG`)−Mi`, and thus from (15), we get that(TiG`)
′M−1

il (TiG`) • •
Gi(p)Āi`TiG` Pp(Q) •
C̄i`TiG` 0 Iq

 > 0. (16)

By applying the congruence transformation diag((TiGi)
−1, I, Iq) to (16) and

the Schur complement, we get that M−1
i` > Ā′i`Ei(P )Āi` + C̄ ′i`C̄i` where

Pi = Q−1
i for all i ∈ N, ` ∈Mi. By applying the congruence transformation

diag(Q−1
i , I) to (14), and successively applying the Schur complement, we

get that Pi >
∑

`∈Ni
αi`M

−1
i` >

∑
`∈Ni

αi`[Ā
′
i`Ei(P )Āi` + C̄ ′i`C̄i`] for all i ∈ N.

Thus (7) holds and K ∈ K, and by Proposition 2, we get that P > P̄ , where
P̄ is the solution of (5). Furthermore, from (13), by applying similar steps
as previously described, we get that Wi > J ′iEi(P )Ji + E′iEi, and thus by
multiplying the last inequality by µi, summing up for all i ∈ N, taking
the trace operator, considering (12) and that P̄ > P , we get (9) so that
‖GK‖2 < γ, and thus the claim follows. �

An approximation of the main goal in (8) can be now written as follows:

inf
φ∈Φ(T )

{υ : such that (12)− (15) hold } (17)
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where φ = (υ,G`, Y`, Qi,Mi`,Wi, i ∈ N, ` ∈ M) and Φ(T ) is the set of all
solutions of (12)-(15) for a given T = (T1, . . . , TN ).

We now analyze a by-product of Theorem 1, that is the state-feedback
design. We show that, whenever we have perfect access to the system
states, we retrieve the conditions of [28] for hidden MJLS. That is useful,
as the conditions, for the mode-dependent case, leads to the optimal H2

state-feedback control.

Corollary 1 If Li = In for all i ∈ N, then (12)-(15) are equivalent to
Equations (14), (24)-(26) of [29]. �

Proof: It follows by noting that Ti = U = In, i ∈ N, if Li = In, ∀i ∈ N. �

Next we revisit the result presented in [10, 11] that uses the two-step
algorithm for solving (8), but adapted to our setting. For that, we consider
the following inequalities Wi • •

GiJi Her(Gi)− Ei(P ) •
Ei 0 I

 > 0, (18)

Pi >
∑
`∈Mi

αi`Ri`, (19)


Ri` • • •

Gi(Ai +BiH`) Her(Gi)− Ei(P ) • •
Ci +DiH` 0 I •
X`H` − Y`Li B′iG

′
i D′i Her(X`)

 > 0 (20)

for all i ∈ N, ` ∈ Mi, set H = (H1, . . . ,HM ), and define H as the set of SS
state-feedback controllers for (1) in the form u(k) = Fθ̂(k)x(k). The following

theorem is a direct adaptation of Theorem 2 of [11].

Theorem 2 Given H ∈ H, if there exists υ ∈ R+, W ∈ Hr+, W > 0,
Z ∈ Hn, G ∈ Hn, P ∈ Hn+, P > 0, Ri` ∈ B(Rn), X` ∈ B(Rm), Y` ∈
B(Rp,Rm), such that (12), (18)-(20) hold for all i ∈ N, ` ∈ Mi, then by
setting K` = X−1

` Y` for all ` ∈ M and γ =
√
υ, we get that K ∈ K and

‖GK‖2 < γ.
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Then, alternatively we rewrite (8) as follows

inf
ξ∈Ξ(H)

{υ : such that (12), (18)− (20) hold } (21)

where ξ , (υ,Wi, Pi, Gi, Ri`, X`, Y`, i ∈ N, ` ∈ M) and Ξ(H) is the set of
solutions of (12), (18)-(20) for a given H ∈ H. The simple two-step procedure
is illustrated by Algorithm 1. For improving the conservatism of the choice
of H ∈ H in the first step, a possible implementation is the iterative two-step
procedure described in [11], which we do not pursue here.

Algorithm 1 The two-step procedure based on [31]

1: Calculate H` = Y`G
−1
1` through Theorem 1 by setting Ti = In, i ∈ N, and

U = In;
2: Use H ∈ H as an input to (21) and calculate K ∈ K.

The two methods of calculating the static output feedback control, de-
scribed by the inequalities in (12)-(15) and (12), (18)-(20), have important
similarities and differences. In the case of (12)-(15), we have to fix T , and
this choice is strongly linked to the properties of the sensors being used,
that is, to the matrices L. Regarding (12), (18)-(20), we note that if we
consider H as a decision variable, the problem becomes bilinear and hard
to solve. Then the solution is to fix H following some reasoning to find a
suitable solution. We note the relationship of the existence of a solution
of (12), (18)-(20) and the fact that system (1) must be stabilizable through
state-feedback control, hence the assumption that H ∈ H. However both
cases rely heavily on the choice of T or H and, if there are no solutions to (17)
or (21), some workarounds should be adopted. For the former case, a change
of basis of the states of (1) leads to a different T and may yield a feasible
solution to (17). As for the latter case, another state-feedback controller
must be calculated and tested in (21). Finally it is important to note that
solving (21) through the two-step procedure described in Algorithm 1 is more
computationally demanding than obtaining the solution from (17). This is
evident as solving (17) (or some similar method) is required in the first step
of Algorithm 1 in order to get the stabilizing state-feedback controller H ∈ H.
Besides an important fact is that the matrices G` in (12)-(15) have a block
fixed to a constant value. That may suggest that the bounds on the H2 norm
provided by Algorithm 1 may be less conservative when compared with the
ones calculated through (12)-(15). In the next section, we will briefly expand
this discussion through numerical simulations.
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5 Illustrative Example

In this example, we briefly compare both methods employed in (17) and (21).
For that we resort to the unstable lateral dynamics of the unmanned aircraft
of [14]. Here we interchange the states of the original system through a simple
coordinate transformation so that x(t) =

[
∆β(t) ∆φ(t) ∆p(t) ∆r(t)

]′
,

where ∆β(t) is the variation in the sideslip angle, ∆φ(t), the variation in the
roll angle, ∆p(t), the variation in the roll rate, and ∆r(t), the variation in
the yaw rate. The reason for doing so will be discussed shortly. We discretize
the system through a zero-order hold with sampling time Ts = 50 ms so that

Ad ,


0.9481 0.0159 0.0033 −0.0450
−0.0164 0.9999 0.0381 0.0073
−0.6607 −0.0062 0.5637 0.1133

1.0512 0.0089 0.0198 0.8368

 ,
B′d ,

[
0.0112 0.0812 2.9735 −0.1175
−0.0165 −0.0006 −0.0618 0.6414

]
.

We assume that we can measure only the variations on the angles, namely
Ld ,

[
I2 02×2

]
, and that all states are subject to white noise, that is,

Jd , I4. The system is subject to faults on the rudder and we consider that
the angle measurements can also be corrupted. In this case, we consider three
possible states, the nominal mode of operation θ(k) = 1, the case in which
the rudder is faulty θ(k) = 2, and the case in which the angle measurements
are not correct θ(k) = 3 so that N = {1, 2, 3}. The transition probabilities
are given as follows

[pij ] =

0.7 0.2 0.1
0.4 0.2 0.4
0.6 0.2 0.2


and then, we get that µ = (0.6222, 0.2000, 0.1778); B1 = B3 = Bd,

B2 = Bd

[
1 0
0 0

]
;

L1 = L2 = Ld, L3 = 0.5Ld; and finally Ai = Ad, Ji = Jd for all i ∈ N, along
with

Ci =

[
I4

02×4

]
, Di =

[
04×2

I2

]
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for all i ∈ N. We assume that we cannot measure the exact state θ(k), but
instead only estimation θ̂(k) taken in the set M = {1, 2, 3} following the
emission probabilities

[αi`] =

1 0 0
0 ρ 1− ρ
0 1− ρ ρ


where ρ ∈ [0, 1] is the probability of correct detection, that is, Prob(θ̂(k) =
i | θ(k) = i) = ρ for i ∈ {2, 3}. We solve (17) for ρ ∈ [0, 1] by setting T1 = I4

and T2 = diag(2, 2, 1, 1). The minimum attained in (17) is represented by υ∗1.
The calculated υ∗1 and ‖GK‖22 are presented in Figure 1. We note that the
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Figure 1: υ∗1 and ‖GK‖22 against ρ obtained through (17).

behavior of Figure 1 is consistent with the previous works on hidden MJLS,
see, for instance [7, 11]. There is a maximum occurring in ρ = 0.5, so that
the modes of operation θ(k) = 2 and θ(k) = 3 cannot be distinguished. In
this case, there is a natural clusterization given by N1 = {1} and N2 = {2, 3}
so that the controllers are given by

K1 =

[
0.1170 −0.2507
−1.0436 −0.0146

]
, K2 = K3 =

[
0.1499 −0.3777
−1.3429 −0.0222

]
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with υ∗1 = 104.1149 and ‖GK‖22 = 73.6410, see Remark 1. Conversely, the
minimum is attained for ρ = 1 which correspond to the mode-dependent case,
see Remark 1, but also in ρ = 0: since we have three modes of operation
and one of them can perfectly detected (θ(k) = 1), then if we know for sure
that the value of θ̂(k) is wrong, we can always take the other one. It is
noteworthy to point out that, even for the mode-dependent case, there is
still a small degree of conservatism due to the sub-optimal approach used,
since υ∗1 = 64.7260 and ‖GK‖22 = 63.3252.

We can mention that the case in which Li = 0 can be handled by this
method if we set Bi = 0 and Di = 0 in (15) and Ti = In. This is a
common situation for modeling packet dropouts in NCS, see, for instance,
the zeroing strategy discussed in [36]. Additionally, if the structure of Li
yields a permutation matrix Ti that moves the block 0n×n−q in (11) to the
diagonal of (15), then it is not possible to find a solution to (17). However
this limitation can be easily overcome by rearranging the states of the original
system by a simple change of basis. This is the reason why the states of this
example were changed with respect to the original source [14].

Let us move now to the two-step procedure of (21). As described in
Algorithm 1, for calculating the stabilizing state-feedback controller H` =
Y`G

−1
` in the first step, we resort to Theorem 1 considering that U = Ti = I4,

i ∈ N. Given H, we proceed in solving (21). The solutions of (21) for
ρ ∈ [0, 1] are represented by υ∗2 and shown in Figure 2. We note a similar
behavior of υ∗2 and ‖GK‖22 against ρ compared to Figure 1, however the value
of the costs in Figure 2 are smaller and less conservative in most of the interval
of ρ. For the case ρ = 0.5, we get that υ∗2 = 69.7429 and ‖GK‖22 = 67.9100,
and for the mode-dependent case, υ∗2 = 63.9917 and ‖GK‖22 = 63.0027. That
is, in this example, the controllers obtained by (21) outperforms the ones
given by (17) . That may be explained for the use of different state-feedback
controllers calculated for each ρ as inputs for (21), whereas in (17) there is no
such variation, and also that one of the blocks of G` in (11) is fixed to zero.
Nonetheless, it is important to stress that using (21) amounts in solving
two different optimization problems, one of them being (17) as illustrated in
Algorithm 1, whereas in the first approach, we only have to solve (17).

6 Conclusion

We studied the H2 static output feedback control for MJLS considering that
the Markov chain cannot be perfectly measured and used in the control. In
the place of θ, it is assumed that there is a variable θ̂ that could be viewed
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Figure 2: υ∗2 and ‖GK‖22 against ρ obtained through (21).

as a estimation of θ. Thus, the detector θ̂ is the only information that can be
used by the controller, along with the measured output of the system, y. We
introduce and discuss a new sub-optimal and convex result for obtaining the
static output feedback controller depending only on θ̂(k), y(k) that requires
only simple assumptions concerning the rank of the sensor matrices. Finally
we compare this design strategy with the two-step procedure of [11] in terms
of the provided bounds on the H2 norm of the closed-loop system through an
academic application. This example indicates that the proposed technique
can be a viable alternative with less computational effort when compared to
the two-step procedure presented in [11], since the controller can be obtained
in just one shot.
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