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Abstract

The present paper starts from a model with distributed parameters
(i.e. described by hyperbolic partial differential equations with non-
standard (derivative) boundary conditions) of a hydroelectric power
plant with tunnel, surge tank and penstock. The association of a sys-
tem of functional differential equations of neutral type and the one-
to-one correspondence between the solutions of the two mathematical
objects is given. Further, it is given the deduction - via singular pertur-
bations - of the nonlinear ordinary differential equations for modeling
the surge tank in order to discuss its stability under constant power
delivery of the hydraulic turbine. Some other unsolved problems are
pointed out.
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1 Introduction. State of the art

In the analysis of hydroelectric plant dynamics two basic phenomena are
observable: water hammer and frequency/megawatt control [1, 2]. From
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Water Hammer Stability 383

the mathematical and engineering points of view, the water hammer is bet-
ter described by distributed parameters (water wave propagation) while the
second one is described by lumped parameters i.e. by ordinary differential
equations. It may happen to these types of models to interact - there ex-
ist control models for turbine control dynamics which integrate the “water
column” [3] - a standard distributed model - in the turbine dynamics.

A. Usually the two aspects of the modeling do not interact since water
hammer is a research problem for civil engineers while frequency/megawatt
control concerns power and control engineers. Both aspects can be followed
having in mind the hydroelectric plant structure of Figure 1
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Figure 1: Hydroelectric plant structure. 1. Lake. 2. Tunnel. 3. Surge tank.
4. Penstock. 5. Hydraulic turbine.

This structure is common for the hydroelectric power plants throughout
the world: such examples as “Bicaz” and “Someş Mărişelu” in Romania [1]
or “Tanzmühle” in Germany [4, 5] illustrate this assertion.

The hydraulic turbine dynamics for control is a long term interest: this
fact follows from the state of the art studies on turbine dynamics models
which are made and published by the IEEE (Institute of Electrical and Elec-
tronic Engineers) at intervals around 20 years [6, 7, 8]. Such studies contain
also a “bunch” of models for mechanical, hydraulic or electro-hydraulic con-
trollers. Models of hydraulic turbines and their solutions for controllers can
be found in [9].

On the other hand, the water hammer models are almost unchanged
along several decades since they strongly rely on the Saint Venant equations:
one can meet them in such references as [10, 11, 1]. It is true that the
computational approaches to water hammer have progressed since the basics
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of Joukowsky and Allievi, due to the development of computing methods
and computers themselves (both hardware and software). Nevertheless, an
evergreen problem continues to exist - the surge tank role and design. The
surge tank appeared as “smoother” of the water hammer, having thus a
stabilizer role for water mass oscillations [11, 1]. Since it accumulates a
huge mass of water, the surge tank may be viewed as a filtering capacitor
in some electronic filter but unlike the electric capacitor, the surge tank is
a construction hence its design must avoid errors. This fact explains the
continued interest for surge tanks along decades [11, 1]. As it appears from
some recent papers [12, 13], in the water hammer process, when the hydraulic
turbine with its controller are decoupled from the upstream structure (Figure
1), the surge tank remains the only stabilizer of the water hammer process.
On the other hand, some recent studies show a certain influence of the surge
tank on the control process of the hydraulic turbine [14, 15] thus pointing
towards an interaction of the upstream and turbine dynamics.

B. The considerations presented previously indicate the usefulness of a
unified model for the two phenomena - water hammer and frequency/megawatt
control. We can mention here the pioneering papers [16, 17, 18] where dis-
tributed parameters are in pair with the lumped ones. These papers deal
however with relatively small power plants without surge tanks, with the
tunnel uniting directly the lake and the turbine. An interesting, even pio-
neering model, can be met in [19] where the structure of Figure 1 is modeled
via the Saint Venant equations and a surge tank with throttling; since the
authors are interested in water hammer, the turbine models are missing.
The main contributions of the paper are the model with several time scales
and the stability analysis of an associated system of functional differential
equations of neutral type. Further studies [12, 13] have completed the water
hammer stability analysis of [19].

C. The present paper continues the aforementioned papers by completing
the model of the surge tank [19]with the mass oscillation dynamics [11] in
the context of the water hammer model with distributed parameters and by
using a more recent formula for hydraulic turbine active torque [2] instead
of the oldest one in [17]. On the new model we shall discuss the time scales
of the model and possible simplifying assumptions. The role of the singular
perturbations and, consequently, the importance of the approaches of [20]
will be thus pointed out. Other issues of the analysis will be concerned with
steady states and inherent stability of the surge tank itself.
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2 The equations of the mathematical model and
its parameters

The basic equations are those of all textbooks of the field, with additional
terms accounting for various local head losses, borrowed from [19, 1], also
from [11, 21, 22, 23]
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)
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√
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JΩc
dΩ
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= η

γ

2g
Q2(L2, t)H2(L2, t)−Ng

(1)

where i = 1 accounts for the tunnel and i = 2 for the penstock; the signifi-
cance of the notations for state variables and technical parameters is given
in the Appendix.

In comparison to other models we used e.g. [12, 13], this basic model
contains the turbine speed correction factor k ∈ (0, 1) in the formula for the
wicket gate flow Q2(L2, t), according to [11], and the more recent formula
for the turbine active power [2] in the differential equation of Ω, also the
dynamic heads in the boundary conditions corresponding to the surge tank
throttle.

For the mathematical treatment as well as for the numerical simulations,
equations (1) undergo some transformations which can be defined as intro-
duction of the p.u. (per unit) variables and of the rated conduit lengths as
follows. The flows Qi = FiVi are rated to the maximally available flow
Q̄ = αqFθmax

√
H0; the piezometric heads Hi, Z are rated to the piezometric

head H0 of the lake (Figure 1) and the rotating speed Ω is rated to the
synchronous speed Ωc equal to 3000 rpm in Europe and 3600 rpm in USA.

In the following we shall denote by lower case letters the rated variables
qi, hi, z; let ϕ := Ω/Ωc be the rated rotating speed and fθ - the rated cross



386 V. Răsvan

section area of the turbine wicket gates. The p.u. lengths of the two water
conduits are defined as ξi = xi/Li, i = 1, 2. The available power of the
hydraulic turbine is rated to the value

N̄a = η
γ

2g
Q̄H0 ⇒ νg = Ng/N̄a

In the process of introducing the p.u. variables, the model coefficients
are transformed and the following time constants can be introduced for each
of the two conduits (i = 1, 2):

- the water starting time constant Twi := Li
H0
· 1
g ·

Q̄
Fi

;

- the fill up time constant Ti := LiFi

Q̄
;

- the wave propagation time constant Tpi := Li
ai

.

For the surge tank there is introduced the fill up time constant Ts and for
the hydraulic turbine the time constant of the turning masses Ta as follows

Ts :=
FsH0

Q̄
, Ta :=

JΩ2
c

N̄a

With these new parameters - time constants - thus introduced, we can now
introduce the p.u. time variable by rating t to the largest of the time con-
stants defined above - the fill up time constant T1 of the tunnel - τ = t/T1.
After all aforementioned transformations we make the additional notations

Tpi/Twi = δi , Twi/T1 = θwi , Ts/T1 = θs , Tpi/T1 = θpi

Ti/T1 = θi(θ1 = 1) , Twi/Ti = γi , λ
′
s = λs/T1

to introduce the following working model
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1
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2
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dz
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2
2(0, τ)

q2(1, τ) = fθ(τ)(kϕ+ (1− k)F(h2(1, τ)))

θa
dϕ

dτ
= q2(1, τ)h2(1, τ)− νg

(2)



Water Hammer Stability 387

where the function F(X) introduced in (2) by

F(X) =

{
0 , X ≤ 0
√
X , X ≥ 0

takes into account that “there is no flow from a lower piezometric head to a
bigger one” (“water does not flow from downstream to upstream”).

3 Model properties

In what follows we shall consider equations (2). These equations define
a nonlinear boundary value problem for nonlinear partial differential equa-
tions. In the absence of the terms describing the distributed Darcy Weisbach
losses the equations are hyperbolic conservation laws.

3.1 Several time scales

We shall use the numerical data of two hydroelectric plants of Romania
- “Bicaz” and “Someş-Mărişelu” [1] to obtain the following values for the
coefficients and the time constants

1o For “Bicaz” hydroelectric plant:

θw1 = Tw1/T1 = 0.0146 , δ1 = Tp1/Tw1 = 0.26 , δ2
1θw1 ≈ 10−4

θs = Ts/T1 = 0.5 , γ2 = Tw2/T2 = 8.64× 10−3 ,

θw2 = Tw2/T1 = 3.8× 10−4 , δ2 = Tp2/Tw2 = 0.374 ,

δ2
2θw2 = 0.53× 10−4 , θa = Ta/T1 ≈ 8× 10−3

2o For “Someş-Mărişelu” hydroelectric plant:

θw1 = 0.022 , δ1 = 1.15 , δ2
1θw1 ≈ 0.03

θs = 1.011 , γ2 = 6.5× 10−3 , θw2 = 3.4× 10−4

δ2 = 0.74 , δ2
2θw2 = 2× 10−4 , θa = 0.038

To point out the time scales, we have to compare the coefficients multi-
plying the time derivatives in (2). It appears that in both cases mentioned
above, the largest time scales are of the surge tank dynamics, followed by the
time scales of the tunnels. These facts explain the engineering approaches
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for hydroelectric plant dynamics. The dynamics of frequency/megawatt con-
trol integrates the turbine dynamics and the penstock dynamics; moreover,
the penstock dynamics is assimilated to a lumped parameter one. The dy-
namics of the water hammer integrates the slow dynamics of the tunnel and
of the surge tank; due to the interconnection of the two conduits through
the boundary conditions, the faster dynamics of the penstock is also taken
into account either with distributed parameters or with lumped parameters.
Combining various situations can send to a “bunch” of models; here we shall
discuss some of them.

3.2 Basic theory for the overall model

By basic theory it is understood existence, uniqueness and “good” data (pa-
rameters and initial conditions) dependence i.e. what is called well posedness
in the sense of Hadamard. In our case we deal with quasilinear partial dif-
ferential equations having nonstandard nonlinear boundary conditions. We
call the boundary conditions nonstandard since they contain ordinary dif-
ferential equations coupled to the standard boundary conditions, be they of
Dirichlet or Neumann type.

The basic theory for such boundary value problems for hyperbolic partial
differential equations started to be constructed since the papers of A. D.
Myshkis and his co-workers [24, 25, 26, 27]; simultaneously K. L. Cooke
published a similar research [28, 29] but his proofs were not complete; the
fully proven result is to be found in [30]. On the other hand, as already
mentioned, the partial differential equations of (2) arise from conservation
laws; for them the basic theory displays additional difficulties. Results are
known mainly for classical solutions [31, 32], sometimes for generalized ones
e.g. [33]. Fortunately, in the case of water flow control, the classical solutions
are the more adequate ones.

In this paper we shall follow the approach of [29, 30], already applied
in [12, 13], by neglecting the dynamic head and the Darcy Weisbach losses,
followed by the association of a system of neutral functional differential equa-
tions to the modified equations (2) (through the aforementioned neglecting).

Neglecting of the dynamic head (1/2)γiq
2
i is based on experimental data

showing that its space variation (with respect to ξi) is negligible in compar-
ison to the same variation of the piezometric head hi (some numerical data,
gathered from several hundreds of hydroelectric plants in former USSR, can
be found in [11]). This assertion is made for absolute values, not for p.u.
but the fact that in (2), for the considered cases of Romania, the ratios γi
range from 0.02 to 10−4 can be also an argument.



Water Hammer Stability 389

Neglecting of the Darcy Weisbach losses terms is considered to be cov-
ering from the engineering point of view concerning stability: since stability
is improved by energy dissipation, additional losses can only improve the
stability properties obtained by neglecting them. Therefore the first two
lines of (2) will be modified and the whole boundary value problem becomes

θwi∂τqi + ∂ξihi = 0 , δ2
i θwi∂τhi + ∂ξiqi = 0

h1(0, τ) = 1 , h1(1, τ) = z(τ) + λ′s
dz

dτ
= h2(0, τ)

θs
dz

dτ
= q1(1, τ)− q2(0, τ) ; q2(1, τ) = fθ(τ)(kϕ+ (1− k)F(h2(1, τ)))

θa
dϕ

dτ
= q2(1, τ)h2(1, τ)− νg

(3)
These equations define a problem for the linear lossless wave equation

with nonstandard nonlinear boundary conditions. In order to apply the
method of [29, 30], we introduce first the Riemann invariants by

r±i (ξi, τ) = hi(ξi, τ)± 1

δi
qi(ξi, τ)

hi(ξi, τ) =
1

2
(r+
i (ξi, τ) + r−i (ξi, τ)) ;

qi(ξi, τ) =
1

2
δi(r

+
i (ξi, τ)− r−i (ξi, τ))

(4)

to obtain the boundary value problem (3) written in the Riemann invariants

θpi∂τr
±
i ± ∂ξir

±
i = 0 , t > 0 , 0 < ξi < 1 ; i = 1, 2

r+
1 (0, τ) + r−1 (0, τ) = 2

1

2
(r+

1 (1, τ) + r−1 (1, τ)) = z(τ) + λ′s
dz

dτ
=

1

2
(r+

2 (0, τ) + r−2 (0, τ))

θs
dz

dτ
=

1

2
δ1(r+

1 (1, τ)− r−1 (1, τ))− 1

2
δ2(r+

2 (0, τ)− r−2 (0, τ))

1

2
δ2(r+

2 (1, τ)− r−2 (1, τ)) = fθ(τ)

[
kϕ+

1− k√
2
F(r+

2 (1, τ) + r−2 (1, τ))

]
θa

dϕ

dτ
=

1

4
δ2(r+

2 (1, τ)− r−2 (1, τ))(r+
2 (1, τ) + r−2 (1, τ))− νg

(5)
with θpi already defined as Tpi/T1; observe that θpi = δiθwi.

The characteristic lines of (5) are given by

τ±i (σ; ξi, τ) = τ ± θpi(σ − ξi) , i = 1, 2 (6)
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defining for each wave equation (i = 1, 2) the two characteristic lines crossing
some point (ξi, τ) ∈ [0, 1]×R+. The Riemann invariants are constant along
the characteristic lines: r+

i (·; ξi, τ) along τ+
i and r−i (·; ξi, τ) along τ−i . From

here we obtain the representation formulae

r+
i (ξi, τ) = r+

i (1, τ + θpi(1− ξi))

r−i (ξi, τ) = r−i (0, τ + θpiξi) , i = 1, 2
(7)

expressing the Riemann invariants by their values at the boundaries. If
(ξi, τ) are such that the characteristic lines can be extended to the left up
to ξi = 0 (the τ+

i one) and to the right up to ξi = 1 (the τ−i one) without
crossing firstly the line τ = 0 in the strip (0, 1) × R+, then we can write
down

r+
i (0, τ) = r+

i (1, τ + θpi) , r
−
i (1, τ) = r−i (0, τ + θpi) (8)

Defining the functions

y+
i (τ) := r+

i (1, τ) , y−i (τ) := r−i (0, τ) (9)

and taking into account (8), we substitute them in the boundary conditions
of (5) to obtain the following system

y+
1 (τ + θp1) + y−1 (τ) = 2

1

2
(y+

1 (τ) + y−1 (τ + θp1)) = z(τ) + λ′s
dz

dτ
=

1

2
(y+

2 (τ + θp2) + y−2 (τ))

θs
dz

dτ
=

1

2
δ1(y+

1 (τ)− y−1 (τ + θp1))− 1

2
δ2(y+

2 (τ + θp2)− y−2 (τ))

1

2
δ2(y+

2 (τ)− y−2 (τ + θp2)) = fθ(τ)

[
kϕ+

1− k√
2
F(y+

2 (τ) + y−2 (τ + θp2))

]
θa

dϕ

dτ
=

1

4
δ2(y+

2 (τ)− y−2 (τ + θp2))(y+
2 (τ) + y−2 (τ + θp2))− νg

(10)
The next step of the development will be to give system (10) a form

allowing the construction by steps of the solution. This step will require
some tedious manipulation. We denote w±i (τ) := y±i (τ + θpi) and re-write
the difference subsystem as follows

w+
1 (τ) + w−1 (τ − θp1) = 2

w−1 (τ) + w+
1 (τ − θp1) = 2z(τ) + 2λ′s

dz

dτ
= w+

2 (τ) + w−2 (τ − θp2)

1

2
δ2(w+

2 (τ − θp2)− w−2 (τ)) = fθ(τ)

[
kϕ+

1− k√
2
F(w−2 (τ) + w+

2 (τ − θp2))

]
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where F(·) has been already defined. The first three equations above are
linear and can be given the form allowing the construction by steps. We
need however for this to consider the first (linear) differential equation

2θs
dz

dτ
= −(δ1w

−
1 (τ) + δ2w

+
2 (τ)) + (δ1w

+
1 (τ − θp1) + δ2w

−
2 (τ − θp2))

and substitute dz/dτ in the difference system to obtain, after the inversion
of a 2× 2 matrix

w+
1 (τ) = 2− w−1 (τ − θp1)

w−1 (τ) =
1

1 + (δ1 + δ2)λ′s/θs
[2z(τ)− (1 + (δ2 − δ1)λ′s/θs)w

+
1 (τ − θp1)+

+2δ2(λ′s/θs)w
−
2 (τ − θp2)]

w+
2 (τ) =

1

1 + (δ1 + δ2)λ′s/θs
[2z(τ) + 2δ1(λ′s/θs)w

+
1 (τ − θp1)−

−(1 + (δ1 − δ2)λ′s/θs)w
−
2 (τ − θp2)]

The last, nonlinear difference equation, can be given the form

1

2
δ2(w−2 (τ) + w+

2 (τ − θp2)) +
1− k√

2
F(w−2 (τ) + w+

2 (τ − θp2)) =

= −kfθ(τ)ϕ(τ) + δ2w
+
2 (τ − θp2)

Let τ be fixed and consider the function (1/2)δ2X + ((1− k)/
√

2)F(X)
which is strictly increasing for all X ∈ R hence invertible. Observe that
the sign of the left hand side of the nonlinear difference equation under its
new form is tested by the right hand side. If this last sign is negative then
F(X) = 0 and the difference equation results

w−2 (τ) = w+
2 (τ − θp2)− 2k

δ2
ϕ(τ)

If the sign is positive, then F(X) =
√
X and, with Y :=

√
X, the following

quadratic equation is obtained

1

2
δ2Y

2 +
1− k√

2
fθY − (δ2w

+
2 (τ − θp2)− kfθϕ) = 0
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Let Y + be the positive root of this equation, X := (Y +)2 and the cor-
responding recurrence is obtained. Unifying the two cases, we obtain the
following nonlinear recurrence

w−2 (τ) = w+
2 (τ − θp2)− 2k

δ2
ϕ(τ) +

(
1− k
δ2

)2

fθG(δ2w
+
2 (τ − θp2)− kfθϕ)

where

G(X) =


fθ −

√
f2
θ +

4δ2

(1− k)2
X , X ≥ 0

0 , X ≤ 0

is continuous at X = 0.
We can now turn to the differential equations of (10) where we substitute

y±i by w±i and take into account the newly obtained difference equations
written as recurrences. Summarizing, we have associated to system (3), via
(4), (10), the following nonlinear system of coupled delay differential and
difference equations

(θs + (δ1 + δ2)λ′s)
dz

dτ
= −(δ1 + δ2)z(τ) + δ1w

+
1 (τ − θp1) + δ2w

−
2 (τ − θp1)

θa
dϕ

dτ
=

[
kfθϕ−

(1− k)2

2δ2
G(δ2w

+
2 (τ − θp2)− kfθϕ)

]
×

×

[
w+

2 (τ − θp2)− k

δ2
fθϕ+

1

2

(
1− k
δ2

)2

G(δ2w
+
2 (τ − θp2)− kfθϕ)

]
− νg

w+
1 (τ) = 2− w−1 (τ − θp1)

w−1 (τ) =
1

1 + (δ1 + δ2)λ′s/θs
[2z(τ)− (1 + (δ2 − δ1)λ′s/θs)w

+
1 (τ − θp1)+

+2δ2(λ′s/θs)w
−
2 (τ − θp2)]

w+
2 (τ) =

1

1 + (δ1 + δ2)λ′s/θs
[2z(τ) + 2δ1(λ′s/θs)w

+
1 (τ − θp1)−

−(1 + (δ1 − δ2)λ′s/θs)w
−
2 (τ − θp2)]

w−2 (τ) = w+
2 (τ − θp2)− 2k

δ2
fθϕ+

(
1− k
δ2

)2

G(δ2w
+
2 (τ − θp2)− kfθϕ)

(11)



Water Hammer Stability 393

The solution of this system can be constructed by steps as follows: if
w±i (·) are given on the initial intervals [−θpi, 0), then the solutions of the
two differential equations of (11) can be constructed on (0, θpi) provided
fθ(τ) is known and the initial conditions z(0), ϕ(0) are given. Since z(τ)
and ϕ(τ) are now known on (0, θpi), w

±
i (τ) can be obtained from the differ-

ence equations on the aforementioned intervals. The process is then iterated
on the next intervals. The resulting solution appears to be continuous and
piecewise differentiable (the variables z, ϕ) while the variables w±i have the
smoothness of their initial conditions and, in general, have finite discontinu-
ities (“jumps”) in τ = m1θp1 +m2θp2, where mi are integers. It is also clear
that the solution of (11) can be constructed also backwards.

The only “missing link” of (11) with (3) is given by the initial conditions.
Clearly (z(0), ϕ(0) “migrate” from (3) to (11), therefore we can focus on the
initial conditions for w±i (·) on (−θpi, 0). Starting from the initial conditions
of (3) namely (qo

i (ξi), h
o
i (ξi)) given on 0 ≤ ξi ≤ 1, we use (4) to obtain r±io(ξi)

on 0 ≤ ξi ≤ 1. Next we use again the representation formulae as follows.
Consider those points (ξi, τ) which are such that the characteristics

τ+
i (σ; ξi, τ) = τ + θpi(σ − ξi) cannot be extended “to the left” up to ξi = 0

but only to the point where τ + θpi(σ − ξi) i.e. up to σ = ξi − τ/θpi. It
follows that

r+
i (ξi − τ/θpi, 0) = r+

i (1, τ + θpi(1− ξi)) = w+
i (τ − θpiξi)

Since 0 ≤ ξi − τ/θpi ≤ 1, it follows that w+
io(θ) = r+

io(−θ/θpi) for −θpi ≤ θ0.
In the same way, using those characteristic lines τ−i (σ; ξi, τ) which cannot
be extended to σ = 1 but only to the point where τ − θpi(σ− ξi) = 0 i.e. to
σ = ξi + θ/θpi, the following initial condition is obtained

r−i (ξi + τ/θpi, 0) = r−i (0, τ + θpiξi) = w−i (τ + θpi(ξi − 1))

hence w−io(θ) = r−i (1 + θ/θpi) for −θpi ≤ θ0.
Consider now the converse: let {z(0), ϕ(0), w±io(θ),−θpi ≤ θ0} be a set

of initial conditions for (11). Define

r+
i (ξi, τ) = w+

i (τ − θpiξi) , r−i (ξi, τ) = w−i (τ + θpi(ξi − 1))

hi(ξi, τ) =
1

2
[r+
i (ξi, τ) + r−i (ξi, τ)] =

=
1

2
[w+
i (τ − θpiξi) + w−i (τ + θpi(ξi − 1))]

qi(ξi, τ) =
1

2
δi[r

+
i (ξi, τ)− r−i (ξi, τ)] =

=
1

2
δi[w

+
i (τ − θpiξi)− w−i (τ + θpi(ξi − 1))]

(12)
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Then, if w±io(θ) are sufficiently smooth, the set of functions {z(τ), ϕ(τ);
hi(ξi, τ), qi(ξi, τ)} is a (possibly discontinuous) classical solution of (3) with
the initial conditions {{z(0), ϕ(0);hi(ξi, 0), qi(ξi, 0)}. Summarizing, we have
obtained and proven the following result

Theorem 1. Consider the boundary value problem defined by (3) and a
set of initial conditions {z(0), ϕ(0);hio(ξi), qio(ξi), 0 ≤ ξi ≤ 1, i = 1, 2}
with {hio, qio} to define a classical solution for (3). Let r±i (ξi, τ) defined
by (4) be the corresponding Riemann invariants of this solution. Let y±i (τ)
be defined by (9) and w±i (τ) := y±i (τ + θpi). Then {z(τ), ϕ(τ);w±i (τ)} is
a solution of (11) constructed by steps, starting from the initial conditions
{z(0), ϕ(0);wio(τ),−θpi ≤ τ ≤ 0} where

w+
io(τ) = r+

io(−τ/θpi) = hio(−τ/θpi) + qio(−τ/θpi)/δi

w−io(τ) = r−io(1 + τ/θpi) = hio(1 + τ/θpi) + qio(1 + τ/θpi)/δi
(13)

Conversely, let {z(τ), ϕ(τ);w±i (τ)} be a solution of (11) defined by the initial
conditions {z(0), ϕ(0);wio(τ),−θpi ≤ τ ≤ 0} with wio(·) sufficiently smooth
e.g. continuously differentiable. Then the set of functions {z(τ), ϕ(τ);
hi(ξi, τ), qi(ξi, τ)} with {hi(ξi, τ), qi(ξi, τ)} defined by (12) is a (possibly dis-
continuous) solution of (3) with the initial conditions resulting by taking
τ = 0 in the aforementioned set of functions.

In the following we shall discuss briefly the significance of Theorem 1. Its
main result - in the spirit of [25, 29, 30] - establishes a one-to-one correspon-
dence between the solutions of two mathematical objects - the boundary
value problem for hyperbolic partial differential equations defined by (3)
with a set of initial conditions and the initial value problem for system (11)
- a system of coupled delay differential and difference equations.

This one-to-one correspondence is indeed far going since any property
obtained for one mathematical object is automatically projected back on the
other one. For instance, the basic theory (existence, uniqueness and data
dependence) for the coupled delay differential and difference equations is well
studied since it was established that this system is with deviated argument
of neutral type [34, 35, 36]. In this way the basic theory is projected back on
a boundary value problem with nonlinear and non standard (i.e. containing
ordinary differential equations) which is less studied by the usual approaches
in the field of partial differential equations.

The stability properties as established via Lyapunov functionals can be
better tackled using the energy identity which is well defined for systems de-
scribed by partial differential equations with various boundary conditions.



Water Hammer Stability 395

However, as known from the pioneers of the Lyapunov method [37, 38], the
energy Lyapunov function(al) is a “weak” one i.e. is only non-increasing
along system’s solutions. Therefore asymptotic stability follows by apply-
ing the Barbashin Krasovskii LaSalle invariance principle which is proven
for equations with deviated argument of delayed and neutral type but is
not considered for partial differential equations unless we discuss special
cases [39].

In what is left of the paper we shall deal with some of these considera-
tions.

3.3 Equilibria - steady state constant solutions

It is known that usually the steady state solutions are solutions defined on
the whole real axis R and not by some initial conditions. The steady state
solutions can be constant or recurrent (periodic, quasi-periodic, almost pe-
riodic or other) and have a certain physical/engineering significance. In par-
ticular, the constant solutions (the equilibria) signify that certain technical
quantities have to be constant in order to ensure a proper and profitable
operation. In the following we shall discuss the equilibria of (2): being con-
stant (with respect to τ) solutions, they are obtained by letting the time
derivatives to 0 and solving the resulting system of algebraic and differential
equations. We shall have

q̄i(ξi) ≡ const ,
dh̄i
dξi

+
1

2
(λig)

Li
Di
γiq̄i|q̄i| = 0 , i = 1, 2

h̄1(0) = 1 ; h̄1(1) +
1

2
γ1q̄

2
1 = z̄ = h̄2(0) +

1

2
γ2q̄

2
2 ; q̄1 = q̄2 = q̄

q̄2 = f̄θ[kϕ̄+ (1− k)F(h̄2(1))] , q̄2h̄2(1) = νg

(14)

Since q̄1 = q̄2 = q̄, it follows that

h̄1(ξ1) = 1− 1

2
(λ1g)

L1

D1
γ1q̄|q̄|ξ1 , z̄ = 1− 1

2
(λ1g)

L1

D1
γ1q̄|q̄| −

1

2
γ1q̄

2

h̄2(0) = 1− 1

2
(λ1g)

L1

D1
γ1q̄|q̄| −

1

2
(γ1 + γ2)q̄2 ,

h̄2(ξ2) = h̄2(0)− 1

2
(λ2g)

L2

D2
γ2q̄|q̄|ξ2

h̄2(1) = 1− 1

2

[
(λ1g)

L1

D1
γ1 + (λ2g)

L2

D2
γ2

]
q̄|q̄| − 1

2
(γ1 + γ2)q̄2

(15)

But the flow and the piezometric head at the hydraulic turbine are imposed
by the frequency/megawatt Grid condition i.e. by νg, ϕ̄ in connection with
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the wicket gates position f̄θ. We have therefore to consider the steady state
conditions at the turbine

q̄ = f̄θ[kϕ̄+ (1− k)F(h̄2(1))] , q̄h̄2(1) = νg

and clearly q̄ > 0 requires h̄2(1) > 0. Consequently the necessary piezomet-
ric head h̄2(1) follows from

νg/f̄θ = h̄2(1)[kϕ̄+ (1− k)F(h̄2(1))]

and we have to consider the cubic equation

(1− k)Y 3 + (kϕ̄)Y 2 − νg/f̄θ = 0 (16)

This cubic equation has three real roots, among which a single one is strictly
positive. As (15) shows, this root has to be less than 1; this condition is
ensured by

νg/f̄θ < 1− k + kϕ̄ (17)

Let Y+ be the aforementioned positive root of (16) hence h̄2(1) = (Y+)2. We
turn now to the last expression for h̄2(1) in (15). Let

A0 =

[
(λ1g)

L1

D1
+ 1

]
γ1 +

[
(λ2g)

L2

D2
+ 1

]
γ2

Numerical data show that 0 < A0 < 2. With this notation

h̄2(1) = 1− 1

2
A0q̄

2 ⇒ q̄2 = 2
1− h̄2(1)

A0

and q̄ < 1 is also a necessary condition. This would require Y+ >
√

1−A0/2.
Considering again (16) and (17) the following requirement has to be fulfilled

(1− k)(1−A0/2)3/2 + (k(1−A0/2)ϕ̄) < νg/f̄θ < 1− k + kϕ̄ (18)

which holds for 0 < k < 1, 0 < A0 < 2, 0 < ϕ̄ < 1.

We end here the general discussion concerning the equilibrium. Particu-
lar cases are obtained by taking k = 0 as it is customary in hydraulic turbine
dynamics and/or by neglecting the Darcy Weisbach losses. In this cases the
formulae for the steady state are more explicit.
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4 Stability problems

The aim of this section is twofold. Following [30] we consider the so called
model augmented validation which integrates standard validation i.e. well
posedness in the sense of Hadamard - see [40] - together with existence and
inherent stability of the steady states, as suggested by the Stability Postulate
of N. G. Četaev [41, 42]. On the other hand stability of the steady states -
viewed as operating points of a technical system - is a necessary condition
for a safe and profitable operation of the aforementioned technical system.

Consequently we shall consider in the following the stability problems
for system (3). In order to define them we remind here that two kinds of
operating regimes exists for hydroelectric power plants: the normal and the
abnormal. The normal regimes are concerned with the frequency/megawatt
control of the Electrical Grid. The system considered here contains the dy-
namics which is located downstream with respect to the surge tank: the
accepted contemporary models of the water turbines [6, 7, 8] normally inte-
grate the penstock dynamics (called water column dynamics) in the turbine
dynamics - see also [3, 9]. The turbine is considered together with the speed
controller; the controller normally receives only the rotating speed signal
and acts on the cross section area of the turbine’s wicket gates. There exist
various structures of the controller - which can be mechanical, hydraulic
or electrohydraulic - and a lot of recommendations for controller tuning.
However, the newest and rapidly establishing approach is now predictive
control [2], turned equally useful for steam turbines under the new advent
of the renewable energies.

The abnormal regimes are concerned mainly with the water hammer oc-
curring when the hydraulic turbine is shut down. In this case the involved
dynamics is the entire dynamics located upstream with respect to the tur-
bine. The analysis of this case was made e.g. in [19] (being reproduced
in [1]) and developed in [12, 13]; the development takes into account the
advances in the study of the difference operator of the neutral functional
differential equations as appear in [36].

In connection to water hammer analysis another problem occurs - the
inherent stability of the surge tank. The inherent stability of the surge tanks
is an old date problem see e.g. [11, 4, 5, 1] which is important as long as
one is concerned with nonlinear second order models of the surge tank. As
long as the overall model of the water hammer was concerned with a first
order system [19, 1, 12, 13], the problem was integrated in the water hammer
stability.
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4.1 The inherent stability of the surge tank

The inherent stability of the surge tank is discussed since the beginning of the
XXth century - the by now classical paper of Thoma. We let aside the history
of the problem, sending to such basic monographs as [11, 1, 43], but mention
only the framework. The initial framework had been suggested by the size of
the hydraulic plants of the time: the very short penstock (the surge tank was
built closely to the turbine building), small or medium power and relatively
short tunnels. In the contemporary settings these considerations amount
to several time scales. Starting from the basic model (1) and taking into
account the values of the time constants, the following can be stated.

1o The dynamics of the tunnel, corresponding to i = 1 in (2) is discussed
by assuming δ2

1θw1 ≈ 0 what implies q1(ξ1, τ) ≡ q1(τ); integrating the
first equation with respect to ξ1 from 0 to 1 and taking into account
the boundary conditions, the so called equation of the water column
dynamics is obtained

θw1
dq1

dτ
+ z − 1 +

1

2
(λ1g)

L1

D1
γ1q1|q1|+

λ′s
θs

(q1 − q2(0, τ)) = 0

When the surge tank has no throttling i.e. λ′s = 0, the equation above
looks like the standard one e.g. [1, 11, 22].

2o For the downstream dynamics - the penstock and the hydraulic turbine
- the entire dynamics and the Darcy Weisbach losses are neglected.
Therefore

h2(ξ2, τ) ≡ h2(τ) , q2(ξ2, τ) ≡ q2(τ)

From the boundary conditions we shall have

h2 =
νg
q2

, h2 = z +
λ′s
θs

(q1 − q2)

3o In the case without throttling, using the continuity equation for the
surge tank, the standard surge tank equations are obtained [1, 22]

θw1
dq1

dτ
+ z − 1 +

1

2
(λ1g)

L1

D1
γ1q1|q1| = 0

θs
dz

dτ
= q1 −

νg
z

(19)
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When λ′s 6= 0, combining the aforementioned boundary conditions will
lead to the quadratic equation

λ′s
θs
q2

2 −
(
z +

λ′s
θs
q1

)
q2 + νg = 0

giving

q2 =
z + (λ′s/θs)q1 ±

√
(z + (λ′s/θs)q1)2 − 4(λ′s/θs)νg

2λ′s/θs

and only the root with the “minus” obeys the natural condition q1 −
q2 > 0. Another checking of this choice is to take limλ′s/θs→0 q2 to find
q2 → νg/z

Finally the following equations are obtained

2θw1
dq1

dτ
+ z − 2 + (λ′s/θs)q1 +

√
(z + (λ′s/θs)q1)2 − 4(λ′s/θs)νg+

+
1

2
(λ1g)

L1

D1
γ1q1|q1| = 0

2λ′s
dz

dτ
= (λ′s/θs)q1 − z +

√
(z + (λ′s/θs)q1)2 − 4(λ′s/θs)νg

(20)

For the nonlinear second order system (20) it is necessary to compute
the steady state, introduce the system in deviations and discuss at least
stability by the first approximation. With respect to this we shall adapt the
results of [1, 44] to our case of surge tank with throttling. Our first remark
is that the effect of the throttling does not apply to the steady state: in the
equation of q1 the throttling appears from the boundary condition

h1(1, τ) = z(τ) + λ′s
dz

dτ

and dz/dτ = 0 at the steady state hence the steady state equations are

z̄ − 1 +
1

2
(λ1g)

L1

D1
γ1q̄1|q̄1| = 0 ; q̄1 = q̄2 , q̄2 = νg/z̄ (21)

Let ζ(τ) := z(τ) − 1 be the deviation of the surge tank water level with
respect to the lake level (piezometric head which equals 1 when rated). We
deduce the equation for the steady state of the surge tank level - a cubic
equation

ζ(1 + ζ)2 +
1

2
(λ1g)

L1

D1
γ1ν

2
g = 0 (22)
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Its “discriminant” reads

∆ = −
(

8

9

)2

+
1

4

(
A0 −

2

27

)2

with A0 := (1/2)(L1/D1)γ1ν
2
g . In practical cases e.g the plants previously

discusses, ∆ > 0 hence equation (22) has two complex conjugate roots and a
real negative root located in the interval(−1/3, 0). Consequently z̄ is located
in the interval (2/3, 1).

In order to study the stability of the equilibrium of (20) we shall follow
the approach of [44], Section 2.4, pp. 35-38. We introduce as state variables
(in deviations) η := ζ − ζ̄, υ = dζ/dτ . Some straightforward manipulation
will give the following state equations

dη

dτ
= υ(

1− λ′s
νg/θs

(1 + ζ̄ + η + λ′sυ)2

)
θs

dυ

dτ
=

νg

(1 + ζ̄ + η + λ′sυ)2
−

− 1

θw1

[
1 + ζ̄ + η + λ′sυ + γ1

(
θsυ +

νg

1 + ζ̄ + η + λ′sυ

)2
] (23)

Equations (23) point out quite clearly the contribution of the throttling to
the surge tank dynamics. By letting λ′s = 0, equations (23) become very
much alike to the basic equations (2.44) of [44] but without local hydraulic
losses (R′ = 0 in the aforementioned equations). Even before taking the
Lyapunov function following the same reference, the state space restriction
suggested by (23) namely

λ′s
νg/θs

(1 + ζ̄ + η + λ′sυ)2
< 1 (24)

will introduce some restrictions on λ′s i.e. on the throttling and on its design.

4.2 Other stability development for surge tanks

We shall only sketch here some possible stability problems for surge tanks
with throttling. The first one has been already mentioned in the previous
subsection: tanks with throttling versus tanks without throttling. Follow-
ing [44] we mention here the case of a surge tank fed by several tunnels and
the case of several tunnels with intermediary intake shafts feeding the surge
tank. For these structures there is discussed only the case of the surge tank
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without throttling hence the case with throttling will be a new case analysis.
Suggestions for the associated Lyapunov functionals can be found in [44].
The way of connecting the surge tank to the tunnels can suggest the corre-
sponding boundary conditions in a possible generalization of the results of
[19]. Those results, dealing with “arithmetic properties”, deserve attention
in the context of the recent (more or less) results on the difference oper-
ators attached to neutral functional differential equations [36, 45]. There
exist also other possible developments motivated by hydraulic power plant
dynamics - still “accepted” in the search for clean and sustainable energy
sources.
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