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Abstract

The paper deals with semivectorial bilevel optimization problems. The
upper level is a scalar optimization problem to be solved by the leader,
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The opposite is the “pessimistic problem”, when there is no cooper-
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potheses, to transform a semivectorial bilevel problem into an ordinary
bilevel optimization. Some applications are given.
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1 Introduction

A bilevel optimization problem consists in two scalar optimization problems
where one problem (called lower-level problem, or the follower problem) is
embedded in the other (called upper-level problem, or the leader problem).
There are two kinds of variables referred as upper-level variables and lower
level-variables. The origin of bilevel optimization problems can be found in
the area of game theory in the work of H.F. von Stackeleberg from 1934
[49]. A bilevel optimization problem is a hierarchical optimization, and it is
not a bi-criteria optimization, where both objective functions are considered
jointly and a solution is some sort of best compromise between the objectives.

Multiobjective (or multicriteria) optimization origin goes back in 19th

century with the economic works of Edgeworth [32] and Pareto [46], but
mathematical approaches began in 1951 with the famous paper of Kuhn and
Tucker [40]. There are many applications of multiobjective optimization in
real life problems which led to intensive researches during the last 60 years.
Dealing with several conflicting objectives, a Pareto solution (called also
efficient) is such that none of the objective values can be improved further
without deteriorating another.

A semivectorial bilevel optimization problem is a bilevel optimization
problem where the upper level is a scalar optimization problem, and the
lower level is a multiobjective optimization problem.

The lower level of the semivectorial bilevel optimization problem is a
parametric multiobjective (vector) optimization problem, and may be con-
sidered as a single follower having to optimize several objectives, or as several
followers each of them having to optimize one (scalar) objective. The last
situation corresponds to the so called greatest coalition multiplayers game.
The parameter in the lower level problem is the (vector) variable chosen by
the leader, and, for each choice of the leader’s variable, the followers choose
a Pareto solution.

In a semivectorial bilevel optimization problem the upper level is a scalar
optimization problem to be solved by the leader. The leader objective de-
pends on two (vector) variables, one chosen by the leader, and the second
one represents the response of the followers.

If for each choice of the leader the followers choose among their best
responses (Pareto solutions) one which is the best for the leader, so when
the followers cooperate with the leader, we deal with the so-called optimistic
problem.

In the case when there is no cooperation between the leader and the
followers, the leader may consider the worst scenario, i.e. the situation
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when, for each choice of the leader, the followers choose among their best
responses one which is the most unfavorables for the leader, leading to the
so-called pessimistic problem.

The study of semivectorial bilevel optimization problems in Euclidean
or Hilbert spaces was initiated in [16, 10], and continued by several authors
[2, 21, 31, 33, 50, 48, 28]. The case of semivectorial bilevel optimal control
problems was considered in [17, 18], and a study on Riemannian manifolds
has been done in [19].

The semivectorial bilevel optimization problem includes as particular
cases the following problems which have been intensively studied in the last
decades so we will give essentially a few earlier references,

• Optimizing a scalar function over the Pareto set (introduced in [47] and
investigated in [3, 4, 6, 7, 8, 9, 1, 11, 12, 13, 14, 15, 25, 26, 27, 34, 37, 38]
and [51] for a survey);

• Bilevel optimization problems where the upper level and the lower
level are scalar optimization problems (e.g. [45, 43, 42, 29, 24] and
[30] for an extensive bibliography).

In this paper we present a general method based on scalarization of the
lower level problem to reduce the semivectorial bilevel optimization problem
to an ordinary bilevel optimization problem. Scalarization applies when the
lower level is convex using the weighted sum approach, or when the lower
level admits a utopia point using some weighted Chebyshev norm.

2 Basics results in vector optimization

2.1 Multiobjective optimization problems

Throughout the paper X and Y are real Banach spaces and C ⊂ Rr is a
convex pointed cone (i.e. R+C ⊂ C, C+C ⊂ C, C∩(−C) = {0}). Moreover
we assume that C is a closed set in Rr, and int (C) 6= ∅, where int (A) stands
for the the topological interior of any subset A ⊂ Rr.

For any z, z′ ∈ Rr we consider three preference relations (the outcome z
is preferred to the outcome z′)

z 4 z′ ⇔ z′− z ∈ C; z ≺ z′ ⇔ iz′− z ∈ int (C); z � z′ ⇔ z′− z ∈ C \ {0}.

It is obvious that

z ≺ z′ =⇒ z � z′ =⇒ z 4 z′.
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Notice that 4 is a partial order relation on Rr, i.e. a reflexive, antisym-
metric and transitive binary relation. Also ≺ and � are transitive relations.

Consider a vector function G = (G1, . . . , Gr) : Y → Rr, a subset S of Y
(called the feasible set), and the multiobjective optimization problem

(MOP) MINCG(y) s.t. y ∈ S.

For (MOP) the point a ∈ S is called:

• Pareto solution if there is no y ∈ S such that G(y) � G(a), ;

• weakly Pareto solution if there is no y ∈ S such that G(y) ≺ G(a);

• properly Pareto solution if a is a Pareto solution, and if there exists
a pointed convex cone K such that C \ {0} ⊂ int (K) and a is a
Pareto solution for the problem MINKG(y) s.t. y ∈ S, in other words
G(S) ∩ (G(a)−K) = {G(a)}.

In the particular case C = Rr+ := {λ = (λ1, . . . , λr) ∈ Rr| λi ≥ 0, i =
1, . . . , r} (the Pareto cone), the previous definitions can be stated as follows.

• Pareto solution if there is no y ∈ Y such that, for all i ∈ {1, . . . , r},
Gi(y) ≤ Gi(a), and G(y) 6= G(a);

• weakly Pareto solution if there is no y ∈ Y such that, for all i ∈
{1, . . . , r}, Gi(y) < Gi(a);

• properly Pareto solution in the sense of Geoffrion(i) if a is a Pareto
solution, and there is a real number µ > 0 such that for each i ∈
{1, . . . , r} and every y ∈ Y with Gi(y) < Gi(a) at least one j ∈
{1, . . . , r} exists with Gj(y) > Gj(a) and

Gi(a)−Gi(y)

Gj(y)−Gj(a)
≤ µ.

We denote the set of all Pareto (resp. weakly Pareto and properly
Pareto) solutions by ARGMINCG(y)

y∈S
(resp. w-ARGMINCG(y)

y∈S
and

p-ARGMINCG(y)
y∈S

). In the sequel, in order to simplify the notations, we will

(i)If G(Y ) + Rr+ is convex this definition is equivalent to the general one given above
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Figure 1: The figure visualizes the different sets of Pareto solutions. With
some non-empty set S ∈ R2, let G : R2 → R2 be defined by G(y) = y, and
consider C = R2

+. In red, the figures highlight (left) the (image) set of all
Pareto points; (middle) the set of all weakly Pareto points; and (right)
the set of all properly Pareto points.

use the symbol σ ∈ {w, p} for weak (if σ = w) or proper (if σ = p), i.e. we
write σ-ARGMINCG(y)

y∈S
for the weakly or properly Pareto solutions set.

Obviously

p-ARGMINCG(y)
y∈S

⊂ ARGMINCG(y)
y∈S

⊂ w-ARGMINCG(y)
y∈S

(1)

The vector valued function G = (G1, . . . , Gr) : Y → Rr is called C-convex
if for any two points a and b in Y , we have

∀t ∈]0, 1[ G
(

(1−t)a+tb
)
4 (1−t)G(a)+tG(b),

(2)

In the case C = Rr+ it is easy to see that

G is Rr+-convex if, and only if, Gi is convex for all i = 1, . . . , r.

Definition 1. The problem (MOP) is called convex if G is C-convex and
the set S is convex.

Throughout the paper Rr is considered with its usual euclidean structure
and identified to its dual space, and we denote by 〈·, ·〉 its usual inner product
(which coincides with the duality product with our identification) and by
‖ · ‖ the induced norm.
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The dual cone of C (or positive polar cone) is the set

C∗ := {λ ∈ Rr| 〈λ, y〉 ≥ 0 ∀y ∈ C},

and its quasi-interior is given by

C∗] := {λ ∈ Rr| 〈λ, y〉 > 0 ∀y ∈ C \ {0}}.

Notice that (Rr+)∗ = Rr+, and (Rr+)∗] = int (Rr+) = {λ ∈ Rr|λi > 0 i =
1, . . . , r}.

Let us denote

Λσ =


{λ ∈ C∗| ‖λ‖1 = 1} if σ = w

C∗] if σ = p.
(3)

Proposition 1. [19] A. The dual cone C∗ is a closed set in Rr.

B. The set C∗] (the quasi-interior of C∗) is a nonempty open set,(ii) and
it is in fact the topological interior of C∗.

C. The set Λw is compact.

2.2 Scalarization

Next some scalarization theorems will be presented. Such results allow to
replace a vector optimization problem with a family of scalar optimization
problems. Their proofs and more details can be found in the monographs
[33, 39, 41, 44, 52].

Theorem 1. (Weighted sum approach) For each σ ∈ {w, p} problem
(MOP) satisfies(iii)⋃

λ∈Λσ

arg min
S
〈λ,G〉 ⊂ σ-ARGMINCG(y)

y∈S
. (4)

Moreover, if (MOP) is convex, then the previous inclusion becomes an
equality, i.e.

σ-ARGMINCG(y)
y∈S

=
⋃
λ∈Λσ

arg min
S
〈λ,G〉. (5)

(ii)This fact it is not true in general, i.e. when C is a cone in a topological vector space,
but in our setting we take advantage of the finite dimension of Rr.
(iii)〈λ,G(y)〉 stands for

∑r
i=1 λiGi(y), and arg min

S
〈λ,G〉 denotes the set of all minimizers

of the real valued function y 7→ 〈λ,G(y)〉 over the set S.
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Remark 1. From (1) it is obvious that a convex (MOP) satisfies⋃
λ∈Λp

arg min
S
〈λ,G〉 ⊂ ARGMINCG(y)

y∈S
⊂
⋃
λ∈Λw

arg min
S
〈λ,G〉 (6)

Now we will present a scalarization result for non convex (MOP).

Lemma 1. (see [36, 39]) Let λ ∈ int (C), and denote

[−λ, λ] := {z ∈ Rr| − λ 4 z 4 λ},

in other words [−λ, λ] = (λ− C) ∩ (−λ+ C).

Then the Minkowski functional

z 7→ ‖z‖λ := inf{α > 0| 1

α
z ∈ [−λ, λ] } (7)

is a norm on Rr.
Moreover its closed unit ball coincides with [−λ, λ], i.e.

{z ∈ Rr| ‖z‖λ ≤ 1} = [−λ, λ].

In the particular case C = Rr+, we have

‖z‖λ = max
1≤i≤r

|zi|
λi

(8)

which becomes the Chebyshev norm for λ = (1, . . . , 1).

Definition 2. We say that G is bounded from below over S if there exists
ẑ ∈ Rr such that, for each y ∈ S,

ẑ 4 G(y).

In other words, G(S) ⊂ ẑ + C.

Since the cone C is convex with nonempty interior it is easy to see that
C + int (C) = int (C). Therefore, in the definition above, take an arbitrary
e ∈ int (C) and consider z̃ = ẑ − e. We have

ẑ + C = z̃ + e+ C ⊂ z̃ + int (C).

So, we can state the following.
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Remark 2. If G is bounded from below over S we can choose ẑ ∈ Rr such
that

G(S) ⊂ ẑ + int (C).

The following scalarization result holds.

Theorem 2. [39] Suppose that G is C-bounded from below over S, and let
ẑ ∈ Rr verifying

G(S) ⊂ ẑ + int (C).

Then

w-ARGMINCG(y)
y∈S

=
⋃

λ∈int (C)

arg min
y∈S

‖G(y)− ẑ‖λ. (9)

In the particular case of the Pareto cone we have therefore the following.

Corollary 1. Let C = Rr+, and assume that G is bounded from below on S,
i.e. there exists a point ẑ = (ẑ1, . . . , ẑr) ∈ Rr verifying for each i ∈ {1, . . . , r}

ẑi < inf{Gi(y)| y ∈ S}.

Then

w-ARGMINRr+G(y)
y∈S

=
⋃

λ∈int (Rr+)

arg min
y∈S

max
1≤i≤r

λ−1
i (Gi(y)− ẑi) (10)

Since there exists some others methods of scalarization (see [33]), which
will not be considered in this paper, we prefer to give a general definition
useful for the next section.

Definition 3. A function ξ : Rr×Rr → R will be called a complete scalar-
izing function for problem (MOP) if there exists a scalarizing set Λ ⊂ Rr
such that

w-ARGMINCG(y)
y∈S

=
⋃
λ∈Λ

arg min
y∈S

ξ(λ,G(y)), (11)

or

p-ARGMINCG(y)
y∈S

=
⋃
λ∈Λ

arg min
y∈S

ξ(λ,G(y)). (12)
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3 The semivectorial bilevel problem

3.1 Statement of the problem

Let us call the Banach space X the leader decision variables space and the
Banach space Y the followers decision variables space. Let also f : X×Y →
R be the leader objective function, and let F = (F1, . . . , Fr) : X × Y → Rr
be the followers multiobjective function. Let us consider a set valued map
T : X ⇒ Y (whose graph(iv) is the leader feasible set), and a set valued
function S : X ⇒ Y (for each x ∈ dom (S)(v), S(x) stands for the feasible
follower set). We suppose that

∅ 6= dom (T ) ⊂ dom (S).

Notice that the projection onto X of Gr (S) is dom (S), i.e.

PrX(Gr (S)) = dom (S).

Also

PrY (Gr (S)) = Range(S) :=
⋃
x∈X

S(x).

For each choice x ∈ dom (T ) the follower solves the multiobjective prob-
lem

(MOP)x MINCF (x, y) s.t. y ∈ S(x)∩T (x).

For all x ∈ dom (T ), we denote by ψ(x) the weakly or properly Pareto
solution set of the follower multiobjective optimization problem, i.e.

ψ(x) := σ-ARGMINCF (x, y)
y∈S(x)∩T (x)

.

Thus ψ : X ⇒ Y is a set valued function, and we suppose that dom (T ) ⊂
dom (ψ), i.e., problem (MOP)x admits solutions for all x ∈ dom (T ). We

(iv)The graph of T is the set

Gr (T ) := {(x, y) ∈ X × Y | y ∈ T (x)} ⊂ X × Y.

(v)

dom (S) := {x ∈ X|S(x) 6= ∅}
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deal with two semivectorial bilevel problems(vi).

• The “optimistic semivectorial bilevel problem”

(OSB) min
x∈dom (T )

min
y∈ψ(x)

f(x, y).

In this case the follower cooperates with the leader, i.e., for each x ∈
T , the follower chooses amongst all its σ-Pareto solutions (his best
responses) one which is the best for the leader.

• The “pessimistic semivectorial bilevel problem”

(PSB) min
x∈dom (T )

max
y∈ψ(x)

f(x, y).

In this case there is no cooperation between the leader and the fol-
lower, and the leader expects the worst scenario, i.e., for each x ∈ T ,
the follower may choose amongst all its σ-Pareto solutions (his best
responses) one which is unfavourable for the leader.

Remark 3. Let us consider the particular case T constant, Then (OSB)
represent a strong Stackelberg game, and (PSB) a weak Stackelberg game
(see [22]). If, for all x ∈ dom (T ), there is a unique choice y(x) ∈ ψ(x)
of the followers among their best solutions, then we deal with a Stackelberg
game (see [49])

min
x∈dom (T )

f(x, y(x)).

Remark 4. Let us consider the particular case X = {0}, with dom (T ) =
{0}, and denote f̃(·) = f(0, ·), F̃ (·) = F (0, ·), S̃ = S(0), ψ̃ = ψ(0). Then
the (OSB) becomes the problem of minimizing over the Pareto set :

min
y∈ψ̃

f̃(y),

and (PSB) becomes the problem of maximizing over the Pareto set :

max
y∈ψ̃

f̃(y),

(vi)To simplify presentation and point out the main ideas we suppose that everywhere we
use the symbols “min” or “max” the associated problems admit solutions, in other words
the associated argmin or argmax sets are non empty. Of course this happens under some
continuity and compactness (or coercivity) hypotheses.
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where ψ̃ is the σ-Pareto set associated to the multiobjective optimization
problem

MIN y∈S̃F̃ (y).

Thus, semivectorial bilevel optimization encompasses the so-called post
Pareto optimization problems.

3.2 A useful equivalent form

Theorem 3. Let, for each x ∈ dom (T ), ξx be a complete scalarizing func-
tion for problem (MOP)x, and let Λx be the associated scalarizing set. Then
problem (OSB) is equivalent to the following scalar bilevel optimization prob-
lem

min
x∈dom (T )

(
min
λ∈Λx

(
min

y∈argminS(x)∩T (x)ξx(λ,F (x,·))
f(x, y)

))
(13)

On the other hand, problem (PSB) is equivalent to the following scalar
min-max problem

min
x∈dom (T )

(
max
λ∈Λx

(
max

y∈argminS(x)∩T (x)ξx(λ,F (x,·))
f(x, y)

))
(14)

The equivalence is understood in the sense that for each optimal solution
(x∗, y∗) ∈ Gr (T ) of (OSB) (resp. (PSB)) there exists λ∗ ∈ Λx∗ such
that (x∗, λ∗, y∗) is an optimal solution of (13) (resp. (14)). Conversely, if
(x∗, λ∗, y∗) is an optimal solution of (13) (resp. (14)), then (x∗, y∗) ∈ Gr (T )
is an optimal solution of (OSB) (resp. (PSB)).

Proof. Let the function ϕ : {(x, λ) ∈ X × Rp|x ∈ dom (T ), λ ∈ Λx} → R
be given by

ϕ(x, λ) = min
y∈argminS(x)∩T (x)ξx(λ,F (x,·))

f(x, y). (15)

Obviously

the problem min
x∈dom (T )

min
λ∈Λx

ϕ(x, λ) and problem (13) have

the same optimal value. (16)

On the other hand, for each x ∈ dom (T ) the function ξx verifies Defini-
tion 3, therefore
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∀x ∈ T min
λ∈Λx

ϕ(x, λ) = min
y∈ψ(x)

f(x, y). (17)

Thus

problem (OSB) and the problem min
x∈dom (T )

min
λ∈Λx

ϕ(x, λ) have the same

optimal value. (18)

Hence

problem (OSB) and problem (13) have the same optimal value. (19)

Now, let (x∗, y∗) ∈ dom (T )× S(x∗) be an optimal solution of (OSB).
By the hypothesis about ξx∗ there exists some λ∗ ∈ Λx∗ such that

y∗ ∈ argminS(x∗)∩T (x∗)ξx∗(λ
∗, F (x∗, ·)).

The definition of ϕ and the fact that y∗ ∈ argminS(x∗)∩T (x∗)ξx∗(λ
∗, F (x∗, ·))

imply ϕ(x∗;λ∗) ≤ f(x∗, y∗). By (18) we get ϕ(x∗;λ∗) ≥ f(x∗, y∗). Hence
ϕ(x∗;λ∗) = f(x∗, y∗), which implies immediately that (x∗, λ∗, y∗) is an op-
timal solution for problem (13).

Conversely, let (x̂, λ̂, ŷ) be an optimal solution of problem (13).
By (15) we obtain that ϕ(x̂, λ̂) is the optimal value of problem (13) and

ϕ(x̂, λ̂) = f(x̂, ŷ).
Then, by (18) we get that (x̂, ŷ) is an optimal solution of problem (OSB).

Hence problems (OSB) and (13) are equivalent.

Now, in order to prove the equivalence between problem (PSB) and (14),
we may consider the function η : {(x, λ) ∈ X×Rp|x ∈ dom (Tt, λ ∈ Λx} →
R given by

η(x, λ) = max
y∈argminS(x)∩T (x)ξx(λ,F (x,·))

f(x, y). (20)

Obviously

the problem min
x∈dom (T )

max
λ∈Λx

η(x, λ) and problem (14) have the same

optimal value. (21)

Using similar arguments as for (17) we get

∀x ∈ dom (T ) max
λ∈Λx

η(x, λ) = max
y∈ψ(x)

f(x, y), (22)
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hence

problem (PSB) and the problem min
x∈dom (T )

max
λ∈Λx

ϕ(x, λ) have the same

optimal value. (23)

Thus

problem (PSB) and problem (14) have the same optimal value. (24)

Then, using similar arguments as for equivalence between problems (OSB)
and (13) we obtain easily the conclusion.

Next obvious Proposition presents an important particular case.

Proposition 2. Suppose that, for each x ∈ dom (T ), λ ∈ Λx, the set
argminS(x)∩T (x)ξx(λ, F (x, ·)) is a singleton denoted y(x, λ).

Then, problems (OSB) and (PSB) respectively become

(ÕSB) min
x∈dom (T )

min
λ∈Λx

f(x, y(x, λ))

and

(P̃SB) min
x∈dom (T )

max
λ∈Λx

f(x, y(x, λ))

Remark 5. Consider the following (ordinary) bilevel optimization problem.
The leader has the same objective f , feasible set T and decision variables x
as defined in this section.

Now, the follower objective is the scalar function g : {(x, y, λ)| (x, y) ∈
dom (T ), λ ∈ Λx} → R, given by

g(x, y, λ) = ξx(λ, F (x, y)).

The follower decision variables are (y, λ).
For each choice of x ∈ dom (T ) by the leader, the follower can choose

any λ ∈ Λx, and then he solves the problem

min
y∈S(x)∩T (x)

g(x, y, λ).

The follower best response set is⋃
λ∈Λx

argminy∈S(x)∩T (x)g(x, y, λ).

Then it is obvious that (ÕSB), (resp. (P̃SB)) is a usual bilevel opti-
mistic problem (resp. pessimistic problem).
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4 Some examples

4.1 An illustrative example

With the notations of the previous section, let X = R, Y a real Hilbert
space with the scalar product denoted 〈·, ·〉 and the associated norm ‖ · ‖.
Let T, S : R⇒ Y with dom (T ) = dom (S) =]0,+∞[, given for each x > 0
by T (x) = S(x) = Y .

The leader objective f : R×Y → R is given for all (x, y) ∈ dom (T )×Y
by

f(x, y) = x+
x

2
‖ y‖2.

The followers objectives (F1, F2) : R × Y → R2 are given for all (x, y) ∈
dom (S)× Y by

(F1(x, y), F2(x, y)) =
1

2
(‖xy − a‖2, ‖xy − b‖2),

where a ∈ Y \{0} (resp. b ∈ Y \{0}) are two orthogonal vectors representing
the wishes of follower #1 (resp. follower #2).

We consider the ordering cone C = R2
+ (the Pareto cone).

Since, for each fixed x > 0, F1(x, ·) and F2(x, ·) are convex functions,
by Theorem 1 we have that, for each fixed x > 0, the properly Pareto set
associated to the bi-objective problem

MINR2
+

(F1(x, ·), F2(x, ·))

is given by ⋃
λ1>0,λ2>0

argminy∈Y
1

2

(
λ1‖xy − a‖2 + λ2‖xy − b‖2

)
=

⋃
0<θ<1

argminy∈Y
1

2

(
θ‖xy − a‖2 + (1− θ)‖xy − b‖2

)
.

The last equality is obviously obtained by a division with λ1+λ2 and putting
θ = λ1

λ1+λ2
.

On the other hand, since the function y 7→ 1
2

(
θ‖xy− a‖2 + (1− θ)‖xy−

b‖2
)

is strictly convex for fixed θ ∈]0, 1[ and x > 0, its global minimizer is

given by its stationary point, hence

argminy∈Y
1

2

(
θ‖xy − a‖2 + (1− θ)‖xy − b‖2

)
=
{1

x
(θa+ (1− θ)b)

}
. (25)
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Denote y(x, θ) = 1
x(θa+ (1− θ)b), and by Proposition 2 the leader problem

in the optimistic case becomes

min
(x,θ)∈]0,+∞[×]0,1[

f(x, y(x, θ)) = min
(x,θ)∈]0,+∞[×]0,1[

(
x+

1

2x
(θ2‖a‖2+(1−θ)2‖b‖2)

)
.

Some simple computations shows that the hessian matrix of the function
(x, θ) 7→ x + 1

2x(θ2‖a‖2 + (1 − θ)2‖b‖2) is positive definite for each (x, θ) ∈
]0,+∞[×]0, 1[. Therefore this function is strictly convex, and the unique
global minimizer is its stationary point

(
x =

√
1

2
(θ2‖a‖2 + (1− θ)2‖b‖2), θ =

‖b‖2

‖a‖2 + ‖b‖2
)

=
( ‖a‖ · ‖b‖√

2‖a+ b‖
,
‖b‖2

‖a+ b‖2
)
.

4.2 An application in machine learning

We present an application of the optimization over the Pareto set problem
(see Remark 4) to the parameter tuning for the elastic net problem. Consider
three objectives (F1, F2, F3) : Rn → R3 given by(vii)

x 7→ (F1(x), F2(x), F3(x)) :=
(1

2
‖Ax− b‖22,

1

2
‖x‖22, ‖x‖1

)
,

where A ∈ Rp×n and b ∈ Rp are the training data. So, the lower level is the
three objectives minimization problem

MINR3
+

(F1(x), F2(x), F3(x)) s.t. x ∈ Rn. (26)

Consider also the scalar valued function f : Rn → R given by

x 7→ f(x) := ‖Ãx− b̃‖,

where Ã ∈ Rp×n and b̃ ∈ Rp are the validation data.

So the upper level problem is to solve

min f(x) s.t. x is a properly Pareto solution for problem (26). (27)

(vii)‖ · ‖p denotes the Lp norm, p ≥ 1.
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By Theorem 1 (with C = R3
+) we have that x is a properly Pareto

solution for problem (26) iff there exist λ1 > 0, λ2 > 0, λ3 > 0 such that x
is a minimizer for the scalar function λ1F1 + λ2F2 + λ3F3. Scaling the last
function by λ1 we can assert that

x is a properly Pareto solution for problem (26) iff there exist α > 0, β >
0 such that x minimizes the function x 7→ 1

2‖Ax− b‖
2
2 + α

2 ‖x‖
2
2 + β‖x‖1.

Since, for each fixed α > 0, β > 0, the last function is strictly convex
and coercive, it admits a unique global minimizer x(α, β) which is called
the solution of the elastic net problem. This problem is a good regression
model, the term with L2 norm produces regularity, and the term with L1

norm produces sparsity. A crucial problem is the choice of parameters α > 0
and β > 0 such that x(α, β) minimizes the error in the validation function,
i.e. we want to solve the problem

min
α>0, β>0

f(x(α, β)),

which is exactly problem (27). For more details we refer the reader to
the paper [20] where an exact algorithm to compute the optimal path β 7→
x(α, β) for each fixed α > 0 is proposed. Also it is given a formula to find β∗

which minimizes the function β 7→ f(α, β) (for fixed α), and finally problem
(27) is solved using a grid search. Moreover, some real world examples are
approached numerically in the paper [20].

Dedication

Dedicated to my friend Vasile Drăgan on his 70th birthday. I am very
pleased to remember that, long time ago, my first published paper was
written jointly with Vasile Drăgan (see [5]).
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[9] S. Bolintinéanu, M. El Maghri. Pénalisation dans l’optimisation sur
l’ensemble faiblement efficient. RAIRO Oper. Res. 31:295-310, 1997.

[10] H. Bonnel. Optimality Conditions for the Semivectorial Bilevel Opti-
mization Problem. Pacific Journal of Optimization, 2:447-468, 2006.

[11] H. Bonnel. Post-Pareto Analysis For Multiobjective Parabolic Control
Systems. Ann. Acad. Rom. Sci. Ser. Math. Appl. 5:13-34, 2013.

[12] H. Bonnel, J. Collonge. Stochastic Optimization over a Pareto Set
Associated with a Stochastic Multiobjective Optimization Problem. J.
Optim. Theory Appl. 162:405-427, 2014.

[13] H. Bonnel, J. Collonge. Optimization over the Pareto Outcome set as-
sociated with a Convex Bi-Objective Optimization Problem: Theoreti-
cal Results, Deterministic Algorithm and Application to the Stochastic
case. J. Global Optim. 62:481-505,2015.

[14] H. Bonnel, C.Y. Kaya. Optimization Over the Efficient Set in Multi-
objective Convex Optimal Control Problems. J. Optim. Theory Appl.
147:93-112, 2010.



Semivectorial Bilevel Optimization 361

[15] H. Bonnel, N.S.Pham. Nonsmooth optimization over the (weakly or
properly) Pareto set of a linear- quadratic multi-objective control prob-
lem: explicit optimality conditions. J. Ind. Manage. Optim. 7:789-809,
2011.

[16] H. Bonnel, J. Morgan. Semivectorial Bilevel Optimization Problem:
Penalty Approach. J. Optim. Theory Appl.131:365-382, 2006.

[17] H. Bonnel, J. Morgan. Semivectorial Bilevel Convex Optimal Con-
trol Problems: An Existence Result. SIAM J. on Control and Optim.
50:3224-3241, 2012.

[18] H. Bonnel, J. Morgan. Optimality Conditions for Semivectorial Bilevel
Convex Optimal Control Problems. In Computational and Analytical
Mathematics In Honor of Jonathan Borwein’s 60th Birthday. Springer,
2013.

[19] H. Bonnel, L. Todjihounde, C. Udrişte. Semivectorial Bilevel Optimiza-
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