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Abstract

In this paper we introduce a new class of mappings, obtained by
merging the concepts of almost contraction and convex contraction and
called almost convex contractions. This general class includes both the
almost contractions and convex contractions. Existence fixed point
theorems for almost convex contractions of order 2 and of order p are
established.
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1 Introduction

In a series of papers published in the period 1981-1983, Istrăţescu [37]-[39]
introduced and studied the concept of convex contraction. Except for a
few echoes ([36], [50]) this concept did not generate very much interest in
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the field but, recently, after more than 30 years from the date of its first
publication, it suddenly attracted several authors, see [3]-[9], [34], [35], [42],
[43], [44], [45], [60], to mention just a partial list.

On the other hand, the author introduced in 2004 [17] the class of weak
contractions, later called almost contractions, a kind of contractive mappings
that immediately attracted much interest amongst researchers in the filed
(there are more than 411 papers that cite [17], according to Google Scholar,
and more than 187 citing papers, according to Web of Science), see [1]- [2],
[5], [10], [18]-[25], [29], [30], [32], [33], [59]-[64] etc. For a recent survey on
this topic, we refer to the book chapter [27].

Having in view the fact that the two concepts mentioned above are es-
sentially different, the main aim of this note is to show that we could merge
them to obtain a new class of mappings, namely, the class of almost convex
contractions that includes both almost contractions and convex contractions
as particular cases.

Some fixed point theorems are presented for the class of almost convex
contractions.

2 Almost contractions

One of the most useful results in nonlinear analysis, which, together with
its local variants and generalisations, has many applications in solving non-
linear functional equations, optimization, variational inequalities etc., is the
Banach contraction mapping principle, which can be briefly stated as fol-
lows.

Theorem B. Let (X, d) be a complete metric space and T : X → X a
strict contraction, i.e., a map satisfying

d(Tx, Ty) ≤ a · d(x, y), ∀ x, y ∈ X, (1)

where 0 < a < 1 is a constant. Then T is a Picard operator (that is, T has
a unique fixed point in X, say x∗, and Picard iteration {Tnx0} converges to
x∗ for all x0 ∈ X).

It is easy to see that any contraction mapping satisfying (1) is continu-
ous. Kannan [40] in 1968 has proved a fixed point theorem which extends
Theorem B to mappings that need not be continuous on X (but are contin-
uous at their fixed point, see [54]), by considering instead of (1) the next
contractive condition: there exists a constant b ∈

[
0, 12

)
such that

d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)], for all x, y ∈ X . (2)
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Following the Kannan’s theorem, a lot of papers were devoted to ob-
taining fixed point or common fixed point theorems for various classes of
contractive type conditions that do not require the continuity of T , see, for
example, [55], [56], [18] and references therein.

One of them, actually a sort of dual of Kannan fixed point theorem,
due to Chatterjea [28], is based on a condition similar to (2): there exists a
constant c ∈

[
0, 12
)

such that

d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
, for all x, y ∈ X. (3)

On the other hand, in 1972, Zamfirescu [65] obtained a very interesting
fixed point theorem which gather together all three contractive conditions
mentioned above, i.e., condition (1) of Banach, condition (2) of Kannan and
condition (3) of Chatterjea, in a rather unexpected way: if T is such that, for
any pair x, y ∈ X, at least one of the conditions (1), (2) and (3) holds, then
T is a Picard operator. Note that considering conditions (1), (2) and (3) all
together is not trivial since, as shown later by Rhoades [53], the contractive
conditions (1), (2) and (3), are independent to each other.

A more general result has been obtained by Ćirić [31], who considered
the quasi-contraction condition:

d(Tx, Ty) ≤ λmax {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} , (4)

for all x, y ∈ K, where 0 < λ < 1.
Zamfirescu’s fixed point theorem [65] is a particular case of the next fixed

point theorem [17] established for almost contractions, see also the papers
[15], [16] and [18].

Theorem 1 ([17], Theorem 2.1) Let (X, d) be a complete metric space and
T : X → X an almost contraction, that is, a mapping for which there exist
a constant δ ∈ [0, 1) and some L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx) , for all x, y ∈ X. (5)

Then
1) Fix (T ) = {x ∈ X : Tx = x} 6= ∅;
2) For any x0 ∈ X, Picard iteration {xn}∞n=0, xn = Tnx0, converges to

some x∗ ∈ Fix (T );
3) The following estimate holds

d(xn+i−1, x
∗) ≤ δi

1− δ
d(xn, xn−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . . (6)
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Let us recall, see [56], that a mapping T possessing properties 1) and 2)
above is called a weakly Picard operator.

Notice also that while any quasi-contraction is a Picard operator (that
is, it has a unique fixed point), an almost contraction is a weakly Picard
operator, i.e., it does not have a unique fixed point, in general, as shown by
the next Example.

Example 1 Let X = [0, 1] be the unit interval with the usual norm and
let T : [0, 1] → [0, 1] be given by Tx = 1

2 for x ∈ [0, 2/3) and Tx = 1, for
x ∈ [2/3, 1].

As T has two fixed points, that is, Fix (T ) =
{
1
2 , 1

}
, it does not satisfy

neither Ćirić’s condition (4), nor Banach, Kannan, Chatterjea, Zamfirescu
or Ćirić [31] contractive conditions, but T satisfies the contraction condition
(5).

Indeed, for x, y ∈ [0, 2/3) or x, y ∈ [2/3, 1], (5) is obvious. For x ∈ [0, 2/3)
and y ∈ [2/3, 1] or y ∈ [0, 2/3) and x ∈ [2/3, 1] we have d(Tx, Ty) = 1/2 and
d(y, Tx) = |y − 1/2| ∈ [1/6, 1/2], in the first case, and d(y, Tx) = |y − 1| ∈
[1/3, 1], in the second case, which show that it suffices to take L = 3 in order
to ensure that (5) holds for 0 < δ < 1 arbitrary and all x, y ∈ X.

There exist many recent developments on almost contractions (also called
weak contractions or Berinde operators), see [1]- [2], [18]-[27], [32], [33],
[59]-[64], to mention just a few papers devoted to this topic.

3 Convex contractions

Definition 1 ([37]) Let (X, d) be a metric space. A self map T : X → X is
called a convex contraction if

d(T 2x, T 2y) ≤ a · d(Tx, Ty) + b · d(x, y),∀x, y ∈ X, (7)

where a, b are constants satisfying 0 < a, b < 1 and a+ b < 1.

Example 2 If b = 0, then by the convex contraction condition (8) we obtain
the Banach contraction condition 1:

d(Tx, Ty) ≤ a · d(x, y), ∀x, y ∈ X,

subject to a change of notation.
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If a = 0, then by the convex contraction condition (8), we obtain the well
known ”asymptotic” contraction condition:

d(T 2x, T 2y) ≤ b · d(x, y),

that ensures the existence of a fixed point (even in the case when 2 is replaced
by a given integer n).

Example 3 ([37])
Let X = [0, 1] with the usual metric and let T : [0, 1] → [0, 1] be defined

by

Tx =
x2 + 1/2

2
, x ∈ [0, 1].

Then T is not a Banach contraction, although Fix (T ) = {0}.
But T is a convex contraction, as we have∣∣f2(x)− f2(y)

∣∣ ≤ 1

2
|f(x)− f(y)|+ 1

4
|x− y| , x, y ∈ [0, 1],

with a = 1
2 and b = 1

4 .

The first main result in [37] is the following fixed point theorem.

Theorem 2 ([37]) Let (X, d) be a complete metric space and T : X → X a
continuous (a, b)-convex contraction, i.e., a mapping satisfying

d(T 2x, T 2y) ≤ a · d(Tx, Ty) + b · d(x, y), ∀x, y ∈ X,

where 0 < a, b < 1 and a+ b < 1. Then
1) Fix (T ) = {x ∈ X : Tx = x} = {x∗};
2) For any x0 ∈ X, the Picard iteration {xn}∞n=0 given by xn+1 =

Txn, n = 0, 1, 2, ..., converges to x∗.

The corresponding version for p-convex contractions is stated as follows.

Theorem 3 ([37]) Let (X, d) be a complete metric space and T : X → X
be a continuous convex contraction of order p, i.e., a mapping satisfying

d(T px, T py) ≤
p−1∑
i=0

aid(T ix, T iy), x, y ∈ X.

where
∑p−1

i=0 ai < 1, and a0, a1, , · · · ≥ 0. Then
1) Fix (T ) = {x ∈ X : Tx = x} = {x∗};
2) For any x0 ∈ X, the Picard iteration {xn}∞n=0 given by xn+1 =

Txn, n = 0, 1, 2, ..., converges to x∗.

For many other results related to convex contractions, we refer to [37], [38],
[39], [3]-[9], [43], [45], [60].
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4 Almost convex contractions

In this section we aim to unify the concepts of convex contraction and almost
contraction.

Definition 2 Let (X, d) be a metric space. A self map T : X → X is called
a almost convex contraction if

d(T 2x, T 2y) ≤ a0d(x, y)+a1d(Tx, Ty)+b0d(y, Tx)+b1d(Ty, T 2x), x, y ∈ X,
(8)

where a0, b0, a1, b1 are constants satisfying a0 + a1 < 1 and a0, b0, a1, b1 ≥ 0.

Remark 1
1) In the particular case b0 = b1 = 0, from Definition 2 we get the convex

contractions of order 2 introduced by Istrăţescu [37].
2) In the particular case a0 = b0 = 0, from Definition 2 we get the

concept of almost contraction, introduced in [17].

Similarly, we can define the almost convex contractions of order p.

Definition 3 Let (X, d) be a metric space. A self map T : X → X is called
a almost convex contraction of order p if

d(T px, T py) ≤
p−1∑
i=0

aid(T ix, T iy) +

p−1∑
i=0

bid(T i+1x, T iy), x, y ∈ X. (9)

where
∑p−1

i=0 ai < 1, and a0, b0, a1, b1, · · · ≥ 0.

Remark 2 1) In the particular case b0 = b1 = · · · = bp−1 = 0, from Def-
inition 3 we get the convex contractions of order p introduced by Istrăţescu
[37].

In order to prove our main result, we need the next Lemma.

Lemma 1 [47] If {∆n}n≥0 is a sequence of non negative real numbers sat-
isfying

∆n+1 ≤ α1∆n + α2∆n−1, n ≥ 1, (10)

where α1, α2 ∈ (0, 1) are such that α1 + α2 ≤ 1, then
a) There exist L > 0 and θ ∈ (0, 1] such that

∆n ≤ L · θn, for all n ≥ 1. (11)

b) If α1 + α2 < 1 then θ ∈ (0, 1).
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The next theorem is the main result of this paper.

Theorem 4 Let (X, d) be a complete metric space and T : X → X a con-
tinuous almost convex contraction. Then

1) Fix (T ) 6= ∅;
2) For any x0 ∈ X, the Picard iteration {xn}∞n=0 given by xn+1 =

Txn, n = 0, 1, 2, ..., converges to x∗ ∈ Fix (T ).

Proof
We shall prove that T has at least a fixed point in X. To this end, let

x0 ∈ X be arbitrary and {xn}∞n=0 be the Picard iteration corresponding to
T and the starting point x0.

Take x := xn−1, y := xn in 8 to obtain

d(T 2xn−1, T
2xn) ≤ a0d(xn−1, xn) + a1d(Txn−1, Txn) ,

which shows that

d(xn+1, xn+2) ≤ a0d(xn−1, xn) + a1d(xn, xn+1) . (12)

Now, by denoting ∆n = d(xn−1, xn) and applying Lemma 1, we obtain in a
standard way that {xn}∞n=0 is a Cauchy sequence, hence convergent. Denote

x∗ = lim
n→∞

xn.

By the continuity of T we then deduce that x∗ is a fixed point of T .

Remark 3 1) In the particular case b0 = b1 = 0, by Theorem 4 we get
Theorem 2 for convex contractions [37];

2) In the particular case a0 = b0 = 0, by Theorem 4 we get Theorem 1
for almost contractions [17], when the assumption that T is continuous is
superfluous;

3) For other fixed point theorems that consider hybrid contractive condi-
tions involving the convex contraction condition, we refer to [7]-[9], where
various combinations of classical contraction conditions (Kannan, Maia, Re-
ich, Ćirić etc.) and convex contraction condition are considered.

4) Note that a sequence satisfying 12 is usually called subconvex, see
[12]-[14] and [6]-[9], which shows the the term ”convex contraction” coined
by Istrăţescu ([37], [38], [39]), is quite well motivated.

A similar result, corresponding to the case of almost convex contractions
of order p can be obtained by means of a more general auxiliary result, see
Lemma 2 in [26].
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Lemma 2 Let k be a positive integer and {an}∞n=0, {bn}∞n=0 two sequences
of nonnegative real numbers satisfying the inequality

an+1 ≤ α1an + α2an−1 + · · ·+ αkan−k+1 + bn, n ≥ k − 1, (13)

where α1, . . . , αk ∈ [0, 1) and α1 + · · · + αk < 1. If lim
n→∞

bn = 0, then

lim
n→∞

an = 0.

Theorem 5 Let (X, d) be a complete metric space and T : X → X a con-
tinuous almost convex contractions of order p. Then

1) Fix (T ) 6= ∅;
2) For any x0 ∈ X, the Picard iteration {xn}∞n=0 given by xn+1 =

Txn, n = 0, 1, 2, ..., converges to x∗ ∈ Fix (T ).

5 Conclusions

We introduced a new class of mappings, obtained by merging the concepts
of almost contraction and convex contraction and called them almost convex
contractions. As it has been shown by the particular cases indicated above,
this general class of mappings includes, amongst many other contractive
type mappings, both the almost contractions and convex contractions.

We established two fixed point theorems, the first one for almost convex
contractions of order 2 and then for almost convex contractions of order p.

The proof of Theorem 4 is based on the assumption that T is continu-
ous, which has been used to prove that the limit x∗ of the Picard sequence
{xn}∞n=0 is a fixed point of T .

However, almost contractions are essentially discontinuous mappings, see
Example 1 (but are continuous at their fixed points, see [25]).

On the other hand, in the case of Theorem 2, that is, for convex con-
tractions of order 2, the continuity of T is not necessary to establish that x∗

is a fixed point of T , see [9].

So, the problem is to study if the continuity of T is also not necessary
in the more general case of almost convex contractions, too.
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tivalued mappings. Abstr. Appl. Anal. 2015, Art. ID 768238, 6 pp.
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[38] V. I. Istrăţescu. Some fixed point theorems for convex contraction map-
pings and mappings with convex diminishing diameters. I. Ann. Mat.
Pura Appl. 130: 89–104, 1982.
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