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Abstract

This paper presents a new approach to formulating exponential
behaviors like stability/instability for the linear time-varying systems
and for the adjoint one. The classical concept of uniform exponential
stability is generalized. Using this generalized concepts, some results
extending existing uniform exponential stability conditions for linear
time-varying systems are derived. As special cases for these results,
some conditions are derived for the adjoint system. A characteriza-
tion of the generalized concepts in terms of Lyapunov sequences is also
given. Also, an example is included to further illustrate the connection
with the classical concept of uniform exponential stability.
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1 Introduction

The notion of (uniform) exponential stability is well-known for linear time-
varying (LTV) discrete-time systems (see, e.g., [11]) and its applications
are widely developed. We refer here to the monographs of Agarwal [1],
Elaydi [7], Lakshmikantham, Trigiante [8] and Gil [10] for details and further
references.

In the area of LTV discrete-time systems, the attempt to extend the clas-
sical notion of exponential stability has been pursued along two approaches.
One that provides various nonuniform concepts, where some exponential
loss of hyperbolicity along the trajectories is allowed, and second general-
ized concepts that represent a kind of uniform hyperbolicity. Regarding the
second direction, where this paper is situated, we can point out the first
attempt done by James Muldowney [16] for the case of ODE’s. More recent
results in continuous case can be found in [3], [12], [13] and [22]. On the
other hand, from the point of view of the discrete-time systems we may
refer the reader to [2], [12], [20] and [21] for details. All these papers deal
only with the generalized exponential dichotomy, respectively generalized
exponential trichotomy concepts. It is important to point out that all above
earlier results (both for continuous and discrete ones) consider only systems
defined on the entire axis. Thus, it arrives naturally to consider the case
when the system is defined only on the semi-axes, the so-called one-side
systems.

Having this in mind, in this paper, we will make an attempt to investigate
the notion of exponential stability in a more general setting, a generalized
one for LTV discrete-time systems defined only on the semi-axes. The idea
to consider this notion is motivated by the research reached in this direction
in the above articles. But, considering the generalized concept from the
above references mutatis mutandis for one-side systems in fact we recover
the classical concept of uniform exponential stability (see, e.g., [18]), and
from this point of view we required some adjustments. To the best of our
knowledge, this is the first time that this concept is reported in the literature.
Also, it is natural to view what’s happening with the dual system. Thus,
starting with this new concept of stability, we obtain that the dual system
became in fact instable.
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Using this extended concept, in this paper we give a simple and con-
crete example illustrating the relationship between the considered concept
and the classical one of uniform exponential stability. Also, generalized
exponential stability analysis of a LTV system is carried out in terms of
Lyapunov sequences. The application of such a sequence to the dual system
is also established. This paper is a companion of our earlier work [17] where
some preliminary results have been presented.

We proceed as follows: In Section 2 we present some preliminaries regar-
ding the uniform exponential stability for the LTV discrete-time systems and
the dual one. Then, in Section 3 we first formulate the generalized behaviors
approaches, we build connections between the original system and its dual,
and we give an example to illustrate the considered concept. Subsection 3.1
is devoted to necessary and sufficient conditions, carry out an asymptotic
analysis for the LTV discrete-time system, and establish its link to the dual
one. In Subsection 3.2, we introduce the notion of Lyapunov sequence and we
show how generalized behaviors can be characterized in terms of Lyapunov
sequences. Finally, Section 4 draw conclusions and discuss several future
directions.

Notation: The notations used in this paper are generally standard. We
recall some of them for the readers’ convenience. X denotes a real or complex
Banach space, X∗ topological dual space of X, θ∗ the null element of X∗,
B(X) denotes the Banach algebra of all bounded linear operators from X
into itself. The norms of both these spaces will be denoted by ‖ · ‖ . I is
the identity operator on X. N indicates the set of all nonnegative integers,
∆ the set of all pairs (m,n) of integers satisfying the inequality m ≥ n.

2 Preliminaries

In this work we deal with LTV discrete-time systems (also called one-side
system), described by

xn+1 = A(n)xn, (A)

where A : N −→ B(X) is a sequence of invertible operators in B(X). Every
solution x = (xn)n∈N of the LTV system (A) is given by xm = A(m,n)xn
for all (m,n) ∈ ∆, where A : ∆ −→ B(X), the so-called Cauchy evolution
map is given by

A(m,n) =

{
A(m− 1) · · ·A(n), m > n,

I, m = n.
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As it is well known, this verifies the propagator property

A(m,n)A(n, p) = A(m, p)

for all (m,n) and (n, p) ∈ ∆. Let y = (y∗n)n∈N be a sequence in X∗. The
LTV dual discrete-time system associated to (A) is given by

yn+1 = B(n)yn (B)

where
B(n) = (A−1)∗(n) = (A∗)−1(n),

for all n ∈ N. This shows that

B(m,n) = (A−1)∗(m,n) = (A∗)−1(m,n),

for all (m,n) ∈ ∆. Further, one can see that

B(m,n)B(n, p) = B(m, p),

for all (m,n), (n, p) ∈ ∆. In order to be self contain we first recall the notions
of uniform exponential stability respectively instability.

Definition 1. The LTV system (A) is said to be:

(a) (see, e.g., [18]) uniformly exponentially stable on N if there are some
constants N ≥ 1 and α > 0 such that

‖A(m,n)x‖ ≤ Ne−α(m−n)‖x‖, (1)

(b) (see, e.g., [19]) uniformly exponentially instable if there are some con-
stants N ≥ 1 and α > 0 such that

‖x‖eα(m−n) ≤ N‖A(m,n)x‖, (2)

for all (m,n) ∈ ∆ and x ∈ X.

3 Proposed approach

Further on, we shall consider a strictly positive sequence (an)n∈N satisfying
the property

q∑
j=p

aj → +∞ as q → +∞ for fixed p ∈ N. (3)

We set sn = a0 + a1 + · · ·+ an for all n ∈ N.
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Definition 2. The LTV system (A) is said to be:

(a) generalized exponentially stable on N if there exists a constant K ≥ 1
and a strictly positive sequence (an)n∈N satisfying (3) such that

‖A(m,n)x‖ ≤ Ke−(sm−sn)‖x‖, (4)

for all (m,n) ∈ ∆ and x ∈ X.

(b) generalized exponentially instable on N if there exists a constant K ≥ 1
and a strictly positive sequence (an)n∈N satisfying (3) such that

‖x‖esm−sn ≤ K‖A(m,n)x‖, (5)

for all (m,n) ∈ ∆ and x ∈ X.

Note that: For aj = α > 0, in Definition 2 (a), for any j ∈ N, we
obtain the classical notion of uniform exponential stability. Further, we will
show that for a LTV system (A) the concepts of generalized exponential
stability and uniform exponential stability are distinct. This phenomenon
is illustrated by the following example.

Example 1. Let X = R2 with the norm ‖x‖ = ‖(x1, x2)‖ = |x1|+ |x2| and

let the sequences (bn)n∈N be defined by bn =
n+ 1

n+ 2
, for all n ∈ N. Further,

we consider the linear equation An : R2 → R2 with the diagonal matrix of
coefficients

An =

[
bn 0
0 bn

]
defined for n ∈ N. One may show that (An)n∈N does not admit a uniform
exponential stability, but the generalized exponential stability is satisfied.
Clearly, for every (m,n) ∈ ∆ we have

A(m,n) =

[
bm−1bm−2 · · · bn 0

0 bm−1bm−2 · · · bn

]

=

 n+ 1

m+ 1
0

0
n+ 1

m+ 1

 .
Then

‖A(m,n)x‖ =
n+ 1

m+ 1
‖x‖.
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Now let (an)n∈N be defined by

an = ln
n+ 2

n+ 1
= ln

(
1 +

1

n+ 1

)
.

We deduce that

sn = a0 + a1 + · · ·+ an = ln 2 + ln
3

2
+ · · ·+ ln

n+ 2

n+ 1

= ln

(
2 · 3

2
· · · n+ 1

n
· n+ 2

n+ 1

)
= ln(n+ 2)

and

sm − sn = ln
m+ 2

n+ 2
,

for all (m,n) ∈ ∆. Indeed,

ap + ap+1 + · · ·+ aq = ln
q + 2

p+ 1
−→ +∞

for q −→ +∞ and for all p ∈ N. It follows that

‖A(m,n)x‖ ≤ Ke−(sm−sn)‖x‖

or, equivalently
n+ 1

m+ 1
≤ K n+ 2

m+ 2
.

This is true for K = 1 because

(n+ 1)(m+ 2) ≤ (n+ 2)(m+ 1)⇐⇒ n ≤ m,

is always satisfied for all (m,n) ∈ ∆. This shows that (An)n∈N admits a
generalized exponential stability. Moreover, (An)n∈N does not satisfy the
inequality

n+ 1

m+ 1
≤ Ke−α(m−n)

for all (m,n) ∈ ∆. Indeed, for n ∈ N∗ and m = 2n we have

n+ 1

2n+ 1
≤ Ke−αn

which for n −→∞ gives a contradiction. Hence, (An)n∈N does not admit a
uniform exponential stability.
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In view of Definition 2 for the LTV system (A), we introduce now the
concepts of generalized exponential stability/instability for the dual system
(B), concluding this section with a result showing the relation between these
concepts. Also, we refer the reader Chapter 5 from [1] for relations between
the dual systems in the context of finite dimensional settings.

Definition 3. The LTV system (B) is said to be

(a) generalized exponentially stable on N if there exists a constant K ≥ 1
and a strictly positive sequence (an)n∈N satisfying (3) such that

‖B(m,n)y∗‖ ≤ Ke−(sm−sn)‖y∗‖, (6)

for all (m,n) ∈ ∆ and y∗ ∈ X∗.

(b) generalized exponentially instable on N if there exists a constant K ≥ 1
and a strictly positive sequence (an)n∈N satisfying (3) such that

‖y∗‖esm−sn ≤ K‖B(m,n)y∗‖, (7)

for all (m,n) ∈ ∆ and y∗ ∈ X∗.

Theorem 1. (a) If the LTV discrete-time system (A) is generalized expo-
nentially stable, then its dual (B) is generalized exponentially instable.

(b) If the LTV discrete-time system (A) is generalized exponentially insta-
ble, then its dual (B) is generalized exponentially stable.

Proof. (a) Let y∗ ∈ X∗ and z ∈ X. Then, there exists a unique x ∈ X such
that z = A−1(m,n)x. Hence we obtain

|y∗(z)| = |y∗(A−1(m,n)x)| = |(A−1)∗(m,n)y∗(x)| = |B(m,n)y∗(x)|
≤ ‖B(m,n)y∗‖ · ‖x‖ = ‖B(m,n)y∗‖ · ‖A(m,n)z‖
≤ ‖B(m,n)y∗‖Ne−(sm−sn)‖z‖.

Taking the supremum with ‖z‖ = 1 we get

‖y∗‖e(sm−sn) ≤ N‖B(m,n)y∗‖,

hence the conclusion.
(b) Let y∗ ∈ X∗ and z ∈ X. Then

|B(m,n)y∗(z)| = |(A−1)∗(m,n)y∗(z)| = |y∗(A−1(m,n))z|
≤ ‖y∗‖ · ‖A−1(m,n)z‖
≤ ‖y∗‖Ke−(sm−sn)‖A(m,n)A−1(m,n)z‖
= ‖y∗‖Ke−(sm−sn)‖z‖.
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Taking the supremum with ‖z‖ = 1 we obtain

‖B(m,n)y∗‖ ≤ Ke−(sm−sn)‖y∗‖.

Hence the system (B) is generalized exponentially stable.

3.1 Convergence and generalized behavior results.

Further, we present characterizations of LTV systems for the generalized
exponential stability case.

Proposition 1. For every LTV system (A) the following assertions are
equivalent:

(a) the system (A) admits a generalized exponential stability;

(b) there exists a constant K ≥ 1 and a sequence (an)n∈N satisfying (3)
such that

‖A(m, p)x‖ ≤ Ke−(sm−sn)‖A(n, p)x‖,

for all (m,n), (n, p) ∈ ∆ and x ∈ X;

(c) there exist some constants K ≥ 1, r ∈ (0, 1) and a sequence (an)n∈N
satisfying (3) such that

‖A(m, p)x‖ ≤ Kr(sm−sn)‖A(n, p)x‖,

for all (m,n), (n, p) ∈ ∆ and x ∈ X;

(d) there exist some constants K ≥ 1, r ∈ (0, 1) and a sequence (an)n∈N
satisfying (3) such that

‖A(m,n)x‖ ≤ Kr(sm−sn)‖x‖,

for all (m,n) ∈ ∆ and x ∈ X;

(e) there exists a constant K ≥ 1 and a strictly decreasing sequence (hn)n∈N
from (0, 1) with lim

n→∞
hn = 0 such that

‖A(m, p)x‖ ≤ Khm
hn
‖A(n, p)x‖,

for all (m,n), (n, p) ∈ ∆ and x ∈ X;
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(f) there exists a constant K ≥ 1 and a strictly decreasing sequence (hn)n∈N
from (0, 1) with lim

n→∞
hn = 0 such that

‖A(m,n)x‖ ≤ Khm
hn
‖x‖,

for all (m,n) ∈ ∆ and x ∈ X.

Proof. The equivalences between (a) ⇔ (b), (c) ⇔ (d) and (e) ⇔ (f) are
obvious. Further, for r = 1/e we have that (b)⇒ (c) and (a)⇒ (d).

Clearly, (sn)n∈N is a strictly increasing sequence with lim
n→∞

sn =∞. Since

r ∈ (0, 1) we conclude that (hn)n∈N defined for all n ∈ N by hn = rsn satisfies
the hypothesis from (e) and (f). Thus (c)⇒ (e) and (d)⇒ (f).

Using the properties of (hn)n∈N we define (an)n∈N by

an =


ln

1

h0
, n = 0,

ln
hn−1
hn

, n > 0.

For each (m,n) ∈ ∆ we obtain

sm − sn = an+1 + an+2 + · · ·+ am

= ln
hn
hn+1

+ ln
hn+1

hn+2
+ · · ·+ ln

hm−1
hm

= ln
hn
hm

and thus
hn
hm

= esm−sn

or, equivalently
hm
hn

= e−(sm−sn).

Therefore, (e)⇒ (b) and (f)⇒ (a). This completes the proof.

We note the following immediate remark.

Remark 1. For the case of uniform exponential stability, i.e., aj = α > 0
for all j ∈ N we have that sn = (n+1)α, for all n ∈ N. Obviously, sm−sn =
α(m− n), for all (m,n) ∈ ∆. In this case the sequence (hn)n∈N defined by

hn = rsn = rα(n+1) = tn+1,
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where t = rα, satisfies the property

hm
hn

=
tm+1

tn+1
= tm−n = hm−n−1,

for all (m,n) ∈ ∆.

According to the previous proposition we can obtain necessary and suf-
ficient criteria for the dual system (B). The proof follows the same line as
the previous proposition and therefore is omitted.

Proposition 2. For the dual (B) of the LTV (A), the following assertions
are equivalent:

(a) the system (B) admits a generalized exponential instability;

(b) there exists a constant K ≥ 1 and a sequence (an)n∈N satisfying (3)
such that

‖B(n, p)y∗‖esm−sn ≤ K‖B(m, p)y∗‖,

for all (m,n), (n, p) ∈ ∆ and y∗ ∈ X∗;

(c) there exist some constants K ≥ 1, r ∈ (1,∞) and a sequence (an)n∈N
satisfying (3) such that

‖y∗‖r(sm−sn) ≤ K‖ ≤ K‖B(m,n)y∗‖,

for all (m,n) ∈ ∆ and y∗ ∈ X∗;

(d) there exist some constants K ≥ 1, r ∈ (1,∞) and a sequence (an)n∈N
satisfying (3) such that

‖B(n, p)y∗‖rsm−sn ≤ K‖B(m, p)y∗‖,

for all (m,n), (n, p) ∈ ∆ and y∗ ∈ X∗;

(e) there exists a constant K ≥ 1 and a strictly increasing sequence (hn)n∈N
from (1,∞) with lim

n→∞
hn =∞ such that

‖B(n, p)y∗‖hm
hn
≤ K‖B(m, p)y∗‖,

for all (m,n), (n, p) ∈ ∆ and y∗ ∈ X∗;
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(f) there exists a constant K ≥ 1 and a strictly increasing sequence (hn)n∈N
from (1,∞) with lim

n→∞
hn =∞ such that

‖y∗‖hm
hn
≤ K‖B(m,n)y∗‖,

for all (m,n) ∈ ∆ and y∗ ∈ X∗.

Proposition 3. If there exists a sequence (bj)j∈N satisfying (3) such that

+∞∑
m=n+1

e

m∑
j=n+1

bj
‖A(m,n)x‖ ≤ D‖x‖, (8)

for all n ≥ 0, x ∈ X then LTV system (A) admits a generalized exponential
stability.

Proof. One can easily see that

tm − tn = bn+1 + · · ·+ bm

implies that

‖A(m,n)x‖ ≤ e−(tm−tn)D‖x‖,

for all (m,n) ∈ ∆, x ∈ X, with m > n.

We conclude this section with some remarks.

Remark 2. For the case of generalized exponential stability of LTV system
(A), if we consider the sequence (an)n∈N satisfying (3) with lim

n→∞
an = 0,

then there exists an n ∈ N such that

+∞∑
m=n+1

e−(sm−sn) = +∞.

Indeed, let ε > 0. Then there exists a k ∈ N∗ such that aj ∈ (0, ε) for all
j ∈ N with j ≥ k. Let n ∈ N with n ≥ k. Then, for all m ∈ N with m > n
we deduce that

sm − sn = an+1 + an+2 + . . .+ am < (m− n)ε

which implies that

−(sm − sn) ≥ −ε(m− n)
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or, equivalently
e−(sm−sn) ≥ e−ε(m−n).

Thus, we obtain

+∞∑
m=n+1

e−(sm−sn) ≥
+∞∑

m=n+1

e−ε(m−n) =
e−ε

1− e−ε
=

1

eε − 1
.

Now, taking the limit for ε↘ 0 yields

∞∑
m=n+1

e−(sm−sn) ≥ +∞.

Remark 3. Let (an)n∈N be a sequence satisfying (3) and (A) admitting a
generalized exponential stability.. If inf

n≥0
an = t > 0, then

+∞∑
m=n+1

‖A(m,n)x‖ < +∞.

Indeed,

+∞∑
m=n+1

‖A(m,n)x‖ ≤ K‖x‖
+∞∑

m=n+1

e−(sm−sn)

= K‖x‖
+∞∑

m=n+1

e−(an+1+an+2+...+am)

≤ K‖x‖
+∞∑

m=n+1

e−t(m−n)

= K‖x‖
(
e−t + e−2t + . . .+ e−jt + . . .

)
=
K‖x‖
et − 1

.

In this case, based on Theorem 2, point (iv) from [18] we conclude that LTV
system (A) is uniformly exponentially stable.

Remark 4. One can see that for the case of the generalized exponential
stability the previous condition is not valid anymore. More precisely, in
Example 1 we have that

inf
n≥0

an = inf
n≥0

ln

(
1 +

1

n+ 1

)
= ln 1 = 0
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respectively

+∞∑
m=n+1

‖A(m,n)x‖ = ‖x‖
+∞∑

m=n+1

n+ 1

m+ 1
= +∞.

Remark 5. If we consider the sequence (an)n∈N satisfying (3) with lim
n→∞

an =

0, then left open the question to find the sequence (bj)j∈N such that Propo-
sition 3 to be a necessary and sufficient condition.

3.2 Lyapunov sequences

A powerful method that allows us to assure the stability properties for the
LTV system (A) consists in the use of some auxiliary sequences. We now
introduce such a class of sequences.

Definition 4. We say that L : N×X → R+ is a Lyapunov sequence for the
system (A) if there exists a constant K > 1 such that

‖x‖ ≤ L(n, x) ≤ K‖x‖,

for all n ∈ N and x ∈ X.

Such Lyapunov sequences always exist. The trivial example of such
Lyapunov sequences, also called Lyapunov norm, is L(n, x) = ‖x‖. See, for
example [15] for the case of ODE’s, or Example 1.7.5 from [10] for the LTV
system case. Among further developments in this area let us note [14]. The
following theorem provides concrete information as to how the generalized
exponential stability can be characterized in terms of Lyapunov sequences.
Results for the classical concept of uniform exponential stability in terms
of Lyapunov sequences can be found in [9], see Proposition 3.2, respectively
Proposition 3.3 for the dual system.

Theorem 2. The LTV system (A) is generalized exponentially stable if and
only if there exists a Lyapunov sequence L : N×X → R+ for (A) such that

L(m,A(m,n)x) ≤ e−(sm−sn)L(n, x), (9)

for all n ∈ N and x ∈ X.

Proof. Necessity. Suppose that LTV system (A) is generalized exponentially
stable. We define L : N×X → R+ by

L(n, x) = sup
m≥n

esm−sn‖A(m,n)x‖,
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for all n ∈ N and x ∈ X. First, we observe that

L(n, x) ≥ esn−sn‖A(n, n)x‖ = ‖x‖.

On the other hand, we obtain

L(n, x) = sup
m≥n

esm−sn‖A(m,n)x‖

≤ sup
m≥n

esm−snKe−(sm−sn)‖x‖ = K‖x‖.

Moreover,

L(m,A(m,n)x) = sup
k≥m

esk−sm‖A(k,m)A(m,n)x‖

= sup
k≥m

esk−sm‖A(k, n)x‖ ≤ sup
k≥n

e−(sm−sn)esk−sn‖A(k, n)x‖

= e−(sm−sn) sup
k≥n

esk−sn‖A(k, n)x‖ = e−(sm−sn)L(n, x)

for all (m,n) ∈ ∆ and x ∈ X. This will conclude that (9) is verified.
Sufficiency. Let L : N ×X → R+ be a Lyapunov sequence that verifies

(9). Hence,

‖A(m,n)x‖ ≤ L(m,A(m,n)x‖
≤ e−(sm−sn)L(n, x) ≤ Ke−(sm−sn)‖x‖.

This shows generalized exponential stability of the LTV system (A) and
completes our proof.

Finally, we apply the derived results in terms of Lyapunov sequence for
the dual system.

Definition 5. We say that L∗ : N×X∗ → R+ is a Lyapunov sequence for
the system (B) if there exists a constant K > 1 such that

1

‖y∗‖
≤ L∗(n, y∗) ≤ K

‖y∗‖
,

for all n ∈ N and y∗ ∈ X∗, with y∗ 6= θ∗.

Theorem 3. The LTV system (B) is generalized exponentially instable if
and only if there exists a Lyapunov sequence L∗ : N × X∗ → R+ for (B)
such that

L∗(m,B(m,n)y∗) ≤ esn−smL∗(n, y∗), (10)

for all (m,n) ∈ ∆ and y∗ ∈ X∗.
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Proof. Suppose that LTV system (B) is generalized exponentially instable.
We define L∗ : N×X∗ → R+ by

L∗(n, y∗) =

 sup
m≥n

esm−sn

‖B(m,n)y∗‖
, if y∗ 6= θ∗,

0, if y∗ = θ∗.

for all n ∈ N and y∗ ∈ X∗. Without loss of generality we assume that
y∗ 6= θ∗. Thus

L∗(n, y∗) ≥ esn−sn

‖B(n, n)y∗‖
=

1

‖y∗‖
.

On the other hand from (7) it follows that

L∗(n, y∗) ≤ K

‖y∗‖
.

We also have

L∗(m,B(m,n)y∗) = sup
k≥m

esk−sm

‖B(k,m)B(m,n)y∗‖
= sup

k≥m

esk−sm

‖B(k, n)y∗‖

≤ sup
k≥n

esk−snesn−sm

‖B(k, n)y∗‖
= esn−smL∗(n, y∗).

This will conclude that (10) is verified.
Conversely, consider a Lyapunov sequences L∗ : N × X∗ → R+ that

verifies (10). Let y∗ ∈ X∗ with y∗ 6= θ∗. Then we have

1

‖B(m,n)y∗‖
≤ L∗(m,B(m,n)y∗)‖

≤ esn−smL∗(n, y∗) ≤ esn−sm K

‖y∗‖
.

This will conclude that system (B) is generalized exponentially instable.

4 Conclusions

Uniform exponential behaviors like stability/instability, which have been
proved so useful in characterizing LTV systems, have been extended here to
the so-called concepts of generalized exponential stability/instability. This
new concepts provide a better view regarding the grow rates from the clas-
sical ones. Furthermore, we have derived a set of generalized exponential



Generalized Exponential Stability 271

stability conditions, also Lyapunov sequences for the LTV discrete-time sys-
tem, and we have applied them to the adjoint one.

Several issues remain open for future research. First, one has to quanti-
tatively improve the result in Proposition 3.4 so as the open problems results
in [18] for the generalized exponential stability concept. Second, generalized
exponential dichotomy/trichotomy should be defined for one-side systems.
Third, one could consider the proposed approach to study the robustness
for LTV one-side systems. Finally, should be of interest the consideration of
the dual system in the absence of the invertibility property. In this case, the
anticausal exponential stability is of interest. Such systems occur naturally
in connection with the problem of the exponential stability in mean square
of linear systems perturbed by Markov processes with an infinite number of
states, see e.g. [4] and [5] for the discrete-time case and [6] for the continuous
time case.
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