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Abstract

In previous papers in the linear and anisotropic case, constitutive
relations, rate equations, temperature and energy equations were de-
rived by the authors to describe the mechanical, thermal and transport
properties of fluid-saturated crystals with porous channels defects, us-
ing a model developed by one of us (L. R.) in the framework of non-
equilibrium thermodynamics. A structural permeability tensor à la
Kubik, rij , its gradient and its flux Vijk were introduced as internal
variables in the thermodynamic state vector. Here, we work out in the
isotropic and perfect isotropic linear cases the constitutive functions
for the stress tensor, the entropy density, the chemical potentials, and
also the rate equations for rij , Vijk, the fluid-concentration and the
heat fluxes, describing disturbances propagating with finite velocity
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and presenting a relaxation time. The porous defects modify the ther-
mal conductivity and when they have a density higher than a suitable
characteristic value the thermal conductivity decreases. Furthermore,
the closure of the system of equations, describing the media under con-
sideration and linearized around a thermodynamic equilibrium state is
obtained. The derived results may have great relevance in biology,
medical sciences and in several technological sectors, like seismic engi-
neering and nanotechnology (where high-frequency waves propagation
is present and the properties variation rate of the considered medium is
faster than the relaxation times of the fluxes towards their equilibrium
value).
MSC: 74A15, 74A20, 74F10.

keywords: Porous solids, Non-equilibrium thermodynamics with inter-
nal variables, Constitutive relations for porous isotropic media, Rate equa-
tions for porous isotropic media.

1 Introduction

The study of media with porous defects may have relevance in the descrip-
tion of phenomena accompanying flows of mass in porous structures and
find applications in applied sciences. Here, we use a thermodynamic the-
ory (see [1], [2] and also [3], [4]), developed in the framework of Extended
Irreversible Thermodynamics, [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], with internal variables. More precisely, in [1] and [2] for the
media under consideration the basic equations were established, the Liu’s
theorem [17] was applied and in a special case the constitutive theory and
the rate equations for the fluxes and the porosity field were constructed as
objective functions using Smith’s theorem [18]. In [3] and [4] constitutive
relations, rate equations and other resutls were derived for the same me-
dia in the anisotropic case. In this paper we investigate the behaviour of
isotropic and perfect isotropic porous structures filled by a fluid flow, hav-
ing a particular spatial symmetry properties, using a mathematical theory
for isotropic cartesian tensors [19], [20]. The influence of porous channels
on the other fields, occurring inside the considered medium, is described
by a stuctural permeability tensor à la Kubik [21], giving a macroscopic
characterization of the porous matrix. In [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32] and [33] models, with some applications, for media
with defects having the form of a network of very thin tubes, like porous
channels and dislocations, were formulated, using the same methods of non-
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equilibrium thermodynamics in the case for instance of piezoelectric, elastic,
semiconductor and superlattice structures. Also in [34], [35], [36], [37] and
[38] non-equilibrium temperatures and heat equation were studied in media
with internal variables and in the same thermodynamic framework of non-
equilibrium thermodynamics. A relatively high temperature gradient could
produce, for instance, a migration of defects inside the system. The results,
obtained in this paper have great interest in several technological sectors (
see [41]) like physics of soil, medical sciences, seismic engineering, in acoustic
pollution, to build barrier against it, in pharmaceutics and in nanotechnol-
ogy, where the rate of variation of the properties of the system is faster than
the time scale characterizing the relaxation times of the fluxes towards their
respective equilibrium value, there are situations of high-frequency waves
propagation and the volume element size L of these nanostructures along
some directions is so small that it becomes comparable (or smaller than)
the free mean path l of the heat carriers (L � l, i.e. the Knudsen number
Kn, Kn = l

L , is such that l
L � 1). The porous defects change the ther-

mal conductivity, and from experiments and theoretic studies it was seen
that the porous defects have a minor effect on the thermal conductivity
when their density is smaller than a characteristic value, which depends on
the material and the temperature, but when their density is higher than
this characteristic value, the thermal conductivity decreases. The paper is
organised as follows. In Section 2 the governing equations of the model, de-
scribing the mechanical, thermal and transport properties of solid structure
with porous channels, saturated by a fluid flow, derived in the framework of
extended thermodynamics with internal variable, are presented. The basic
balances and the rate equations for porosity field, its flux, the heat flux and
the fluid-concentration flux are introduced [1]. In the Section 3, the results
obtained in the linear anisotropic case for the constitutive relations and the
rate equations in [3] and for the temperature and energy equations [4] are
presented. Sections 4 and 5 deal with the study of porous media filled by
a fluid flow, when they are isotropic under orthogonal transformations and
the Cartesian components of the equations describing them do not depend
on all the Cartesian components of the independent variables of the chosen
thermodynamic state vector. The case where the symmetry properties of
the system under consideration are invariant with respect to all rotations of
axes frame (isotropic case) and the case where these symmetry properties are
invariant with respect to all rotations and inversions of axes frame (perfect
isotropic case) are treated in detail and the constitutive, rate, temperature
and energy equations are worked out in these two different cases. In partic-
ular, the generalized Maxwell-Cattaneo-Vernotte and Fick-Nonnenmacher
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rate equations for the heat and fluid-concentration fluxes and the rate equa-
tions for the porosity field and its flux are derived, showing the influence of
porous defects on the transport properties of the considered media. Finally,
the closure of the whole system of equations, describing the behaviour of
the isotropic and perfect isotropic porous structures under consideration,
is deduced. The Appendix is dedicated to the study of particular special
forms for third, fourth, fifth and sixth order isotropic tensors, having sym-
metry properties, coming from the symmetry of the strain tensor εij and
the structural permeability tensor rij , and also from the used model. The
expressions are cumbersome but are useful in computer programming for
physical phenomena simulations. The obtained results can be applied to
simpler real cases, where it is possible to neglect the influence of some fields
occurring inside the examined media. Other different approaches for porous
structures saturated by fluid flows are in [39], [40] and [41].

2 Governing Equations

The aim of this paper is to study structures with defects of porous chan-
nels saturated by a fluid flow. To describe as the defects field evolves, we
introduce in the thermodynamic state vector the symmetric structural per-
meability field rij à la Kubik [21], its gradient rij,k and its flux Vijk. Here,
we present a model for fluid-satured porous nanocrystals, developed in [1],
[2] and also in [3] and [4], in the framework of extended irreversible ther-
modynamics with internal variables. In [21] a representative elementary
sphere volume Ω of a porous skeleton filled by a fluid flow is considered,
large enough to give a representation of its statistical properties in order
to use average statical procedures to define this porosity tensor from the
macroscopic point of view. We assume that the mass of the fluid filling the
porous channels inside the solid matrix and this same matrix constitute a
two-components mixture. Indicating by ρ1 the mass of the fluid transported
through the elastic porous crystal of density ρ2, we describe this fluid flow
by two variables: the concentration of the fluid c = ρ1

ρ and the flux of this
fluid jci (see (3)), in such way that

ρ = ρ1 + ρ2. (1)

The following continuity equations are valid for the mixture of continua as
a whole and also for each its constituent

ρ̇+ ρvi,i = 0,
∂ρ1
∂t

+ (ρ1v1i),i = 0,
∂ρ2
∂t

+ (ρ2v2i),i = 0, (2)
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where a superimposed dot denotes the material derivative, d
dt = ∂

∂t + v · ∇,
v1i and v2i are the velocities of the fluid particles and the particles of the
elastic body, respectively and we suppose that there are not source terms.
The barycentric velocity vi of the mixture and the fluid flux jci are defined
as follows

ρvi = ρ1v1i + ρ2v2i, jci = ρ1(v1i − vi). (3)

The thermal field is described by the absolute temperature T , its gradient T,i
and the heat flux qi. The mechanical field is described by the symmetric total
stress tensor τij , referred to the whole system considered as a mixture, and
by the small strain tensor εij , εij = 1

2(ui,j + uj,i), with u the displacement
vector.

We choose the following thermodynamic state vector

C = {εij , c, T, rij , jci , qi,Vijk, c,i, T,i, rij,k}, (4)

where, we have taken into consideration the gradients c,i, T,i and rij,k, and
have ignored the viscous effects, that we have studied in [41].
We consider two groups of laws. The first group concerns the classical
balance equations [9]:
the balance of mass having the form

ρċ+ jci,i = 0; (5)

the momentum balance
ρv̇i − τji,j − fi = 0, (6)

where fi denotes a body force, that in the following will be disregarded for
the sake of simplicity;
the internal energy balance

ρė− τjivi,j + qi,i − ρh = 0, (7)

where e is the internal energy density, h is the energy source density (also
neglected in the following) and vi,j is the gradient of the velocity of the
body;

the second group of laws deals with the rate equations for the struc-
tural permeability field rij , its flux Vijk, the heat flux qi and the fluid-
concentration flux jci , constructed in such a way that they obey the objec-
tivity and frame-indifference principles (see [42], [43] and [44]).

We choose for these evolution equations the following form

∗
rij + Vijk,k −Rij(C) = 0, (8)
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∗
V ijk − Vijk(C) = 0, (9)
∗
qi −Qi(C) = 0, (10)

∗
jci − Jci (C) = 0, (11)

where the symbol (∗) denotes the Zaremba-Jaumann derivative, defined for
the vectors, the second rank tensor and the third rank tensor present in
(8)-(9) as follows

∗
jci = j̇ci − wikjck,

∗
qi = q̇i − wikqk,

∗
rij = ṙij − wikrkj − wjkrik , (12)

∗
V ijk = V̇ijk − wipVpjk − wjpVipk − wkpVijp, (13)

with wij = vi,j − dεij
dt , being wij = 1

2(vi,j − vj,i) and
dεij
dt = 1

2(vi,j + vj,i)
the antisymmetric and the symmetric part of vi,j , respectively. In (8)-(11)
Rij(C) is the source term describing the creation or annihilation of porous
channels, Vijk(C), Qi(C) and Jci (C) are the sources of the porosity field
flux, the heat flux and the fluid-concentration flux. They are constitutive
functions of the independent variables of the thermodynamic state vector
space (4). In the rate equations (8)-(11) we do not consider the flux terms of
rij , Vijk, qi and jci , in such a way that we can close the system of equations
governing the behaviour of the media taken into account. Furthermore, in
(8)-(11) we use for wij the expression wij = vi,j − ∂εij

∂t , to obtain relations
in linear approximation.

3 Constitutive relations, rate equations, temper-
ature and energy equations in the anisotropic
case

In order that the physical processes occurring in the considered porous struc-
ture filled by a fluid flow are real, all the admissible solutions of the proposed
governing equations should be restricted by the following entropy inequality

ρṠ + φi,i −
ρh

T
= σ(s) ≥ 0, (14)

where S is the entropy density,
ρh

T
is the external entropy production source

(neglected in the following), σ(s) is the internal entropy production and φi
is the entropy flux. In [1] Liu’s theorem [17], that considers all balance
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and evolution equations as mathematical constraints for the general validity
of the inequality (14), was applied, assuming that the density mass ρ of
the considered defective nanocrystals is constant, and the state laws, the
generalized affinities, the entropy inequality and the following functional
form of the free energy F

F = F (εij , c, T, rij , j
c
i , qi,Vijk) (15)

were obtained.
In [2] the set of constitutive functions (dependent functions on the set

(4) of independent variables)

W = {τij , e,Rij , Jci , Qi, Vijk, S, φi,Πc,Πr
ij} (16)

(with Πc the chemical potential of the fluid concentration field and Πr
ij a

potential related to the structural permeability field), having the general form

W = W̃ (C), (17)

were constructed in a special case as objective polynomial constitutive func-
tions using Smith’s theorem [18]. In (17) both C and W are evaluated at
the same point and time.

Furthermore, in [3] the free energy (15) was expanded up the second-
order approximation around a reference state, representing a thermody-
namic equilibrium state, indicated by the subscript “0”, where it was sup-
posed that

(εij)0 = 0, (τij)0 = 0, (ui)0 = u0i, (vi)0 = v0i, (18)

and the deviations of some variables from this reference state were indicated
by

θ = T − T0,
∣∣∣∣ θT0
∣∣∣∣� 1, ẽ = e− e0,

∣∣∣∣ ẽe0
∣∣∣∣� 1, C = c− c0,

∣∣∣∣ Cc0
∣∣∣∣� 1,

(19)

S = S − S0,
∣∣∣∣ SS0

∣∣∣∣� 1, Rij = rij − r0ij ,
∣∣∣∣Rijr0ij

∣∣∣∣� 1. (20)

In this thermodynamic state we have

(jci )0 = 0, (qi)0 = 0, (Vijk)0 = 0,
(
Πr
ij

)
0

= 0, (Πc)0 = 0,(
Πν
ijk

)
0

= 0, (Πq
i )0 = 0,

(
Πjc

i

)
0

= 0, (21)



Porous isotropic media 205

being Πν
ijk, Πq

i and Πjc

i the generalized affinities conjugated to the respec-
tive fluxes Vijk, qi and jci . The potentials and the generalized affinities were
obtained in [3] as partial derivative of F with respect to own conjugate vari-
able. In particular the following relations were obtained in the anisotropic
case in the linear approximation:
the constitutive relations

τij = cijlmεlm − λθεij θ + λrεijlmRlm − λcεij C, (22)

S = S0 +
λθεij
ρ
εij +

cv
T0
θ −

λrθij
ρ
Rij −

λθc

ρ
C, (23)

Πr
ij = λrεijlmεlm + λrθij θ + λrrijlmRlm + λrcij C, (24)

Πc = −
λcεij
ρ
εij +

λθc

ρ
θ +

λrcij
ρ
Rij +

λc

ρ
C, (25)

the generalized affinities

Πν
ijk = λννijklmnVlmn + λνqijklql + λνj

c

ijklj
c
l , (26)

Πq
i = λqνijklVjkl + λqqij qj + λqj

c

ij j
c
j , (27)

Πjc

i = λj
cν
ijklVjkl + λj

cq
ij qj + λj

cjc

ij jcj . (28)

The quantities like cijlm, λθεij , λrεijlm, which occur in (22)-(28), are called
phenomenological tensors. For instance, cijlm is the elastic tensor of order
four, λθεij is the thermoelastic tensor of order two, λrcij is a tensor of order two
connected with the influence of the fluid-concentration flow on the porosity
field, λrθij is a tensor of order two connected with the influence of the porosity
field on the temperature field. In (23) cv is the specific heat. Furthermore,
the constant phenomenological coefficients satisfy the following symmetric
relations, see [3] (being defined in terms of second derivatives of F and for
the symmetry of εij and rij)

cijlm = cjilm = cijml = cjiml = clmij = cmlij = cmlji = clmji,

λrεijlm = λrεjilm = λrεijml = λrεjiml = λrεlmji = λrεlmij = λrεmlji = λrεmlij ,

λrrijlm = λrrijml = λrrjilm = λrrjiml = λrrlmij = λrrlmji = λrrmlij = λrrmlji,

λθεij = λθεji , λqqij = λqqji , λrcij = λrcji , λcεij = λcεji , λrθij = λrθji ,

λννijklmn = λννlmnijk, λνqijkl = λνqlijk, λj
cjc

ij = λj
cjc

ji , λj
cq
ij = λj

cq
ji , λνj

c

ij = λνj
c

ji .

In [3], in the case where it is possible to replace Zaremba-Jaumann
derivative by the material derivative, the following rate equations were ob-
tained, supposing that the source terms Rij , Vijk, Jci , Qi can be expressed
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as linear objective polynomials having constant coefficients, in terms of the
independent variables:

ṙij + Vijk,k = β1ijklεkl + β2ijklrkl + β3ijkj
c
k + β4ijkqk + β5ijklmVklm + β6ijkc,k

+ β7ijkT,k + β8ijklmrkl,m, (29)

where

βsijkl = βsjikl = βsijlk = βsjilk, (s = 1, 2), β8ijklm = β8jiklm = β8ijlkm = β8jilkm,

(30)

βrijk = βrjik, (r = 3, 4, 6, 7), β5ijklm = β5jiklm, Vijk,k = Vjik,k, (31)

because the phenomenological tensors βs (s = 1, 2, . . . , 8) are symmetric in
the indexes {i, j}, by virtue of the symmetry of rij , β

s (s = 1, 2, 8) are also
symmetric in the indexes {k, l}, because they are dummy with the indexes
of the symmetric tensors εkl, rkl and rkl,m, respectively, and Vijk,k = Vjik,k
is symmetric in the indexes {i, j}, by virtue of the symmetry of rij ;

V̇ijk = γ1ijklj
c
l + γ2ijklql + γ3ijklmnVlmn + γ4ijklc,l + γ5ijklT,l + γ6ijklmnrlm,n, (32)

where
γ6ijklmn = γ6ijkmln, (33)

because of the symmetry rlm,n;

τ q q̇i = χ1
ijj

c
j − qi + χ3

ijklVjkl + χ4
ijc,j − χ5

ijT,j + χ6
ijklrjk,l, (34)

where χ1
ij is the thermodiffusive kinetic tensor, χ4

ij is the thermodiffusive

tensor, χ5
ij is the heat conductivity tensor and

χ6
ijkl = χ6

ikjl, (35)

by virtue of the symmetry of the tensor rjk,l;

τ j
c
j̇ci = −jci + ξ2ijqj + ξ3ijklVjkl − ξ4ijc,j + ξ5ijT,j + ξ6ijklrjk,l, (36)

where ξ4ik and ξ5ik are the diffusion tensor and the thermodiffusive tensor,
respectively, and

ξ6ijkl = ξ6ikjl, (37)

because of the symmetry of rjk,l.
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The rate equation (34) generalizes Maxwell-Vernotte-Cattaneo relation
(obtained when the only influence of the temperature gradient field is taken
into consideration)

τ q q̇i = −qi − χ5
ijT,j .

This equation presents a relaxation time for the heat flux and describes
thermal disturbances having finite velocity of propagation (see [45] and [46]).
When the relaxation time τ q goes to zero it reduces to anisotropic Fourier
equation

qi = −χ5
ijT,j ,

leading to infinite speeds propagation of thermal signals.
The rate equation (36) for the mass flux generalizes the Fick-Nonnenmacher
law

τ j
c
j̇ci = −jci − ξ4ijc,j ,

describing propagation of disturbances with finite velocity and presenting a
relaxation time for the fluid-concentration flux.

Furthermore, we obtained in [4] the generalized telegraph temperature
equation linearized around the thermodynamic equilibrium state defined by
(18)-(21)

τ qT̈ + Ṫ = −γij(τ q ε̈ij + ε̇ij) + ϕ(τ q c̈+ ċ) + ηij(τ
q r̈ij + ṙij)

+ kijT,ji − ν1ijjcj,i − ν3ijklVjkl,i − ν4ijc,ji − ν6ijklrjk,li, (38)

where

γij =
T0
cvρ

λθεij , ϕ =
T0
cv
λθc, ηij =

T0
cvρ

λrθij , kij =
χ5
ij

cvρ
, (39)

ν1ij =
χ1
ij

cvρ
, ν3ijkl =

χ3
ijkl

cvρ
, ν4ij =

χ4
ij

cvρ
, ν6ijkl =

χ6
ijkl

cvρ
, (40)

the superimposed dot “ ˙ ” indicates the linearized time derivative d
dt =

∂
∂t + v0 · grad and the deviations of the fields from the thermodynamic
equilibrium state are indicated by the same symbols of the fields themselves.
The evolution equations (29), (32), (34), (36) and (38) allow finite speeds
for the field disturbances and describe fast phenomena whose relaxation
times are comparable or higher than the relaxation times of the media under
consideration. In (29), (32), (34) and (36) the last three terms (in equation
(38) the last four terms) describe non-local effects, because they relate the
rate equations to the inhomogeneities of the system.

Also, in [3], we have obtained a linear form for the first law of Thermo-
dynamics

ρė = T0λ
θε
ij ε̇ij + ρcvṪ − T0λrθij ṙij − T0λθcċ. (41)
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4 Isotropic porous media with respect to all rota-
tions of axes frame

The existence of spatial symmetry properties in a porous structure may
simplify the form of the constitutive equations, the generalized affinities and
the rate equations, in such a way that the Cartesian components of these
equations do not depend on all the Cartesian components of the independent
variables of the thermodynamic state vector C (4). This statement is called
Curie symmetry principle [9].

In the following two Subsections we will study the form of the balance
equations, the constitutive relations, the rate equations, the temperature
equation and the closure of equations system describing the behaviour of
the media under consideration having symmetry properties invariant with
respect to all rotations of axes frame.

First, we examine the form of isotropic tensors of rank up to six.

The tensors of rank up to three take the form [19]

Li = 0, Lij = Lδij , Lijk = L ∈ijk, (42)

where ∈ijk is the Levi-Civita tensor and L is a scalar.

Tensors of order four Lijkl must have the form [19]

Lijkl = L1δijδkl + L2δikδjl + L3δilδjk, (43)

with Li (i = 1, 2, 3) scalars.

Tensors of order five Lijklm and of order six Lijklmn must have the form,
respectively, (see [20])

Lijklm = L1 ∈ijk δlm + L2 ∈ijl δkm + L3 ∈ijm δkl + L4 ∈ikl δjm
+ L5 ∈ikm δlj + L6 ∈ilm δjk, (44)

Lijklmn = L1δijδklδmn + L2δijδkmδln + L3δijδknδlm + L4δikδjlδmn

+ L5δikδjmδln + L6δikδjnδlm + L7δilδjkδmn + L8δilδjmδkn

+ L9δilδjnδkm + L10δimδjkδln + L11δimδjlδkn + L12δimδjnδkl

+ L13δinδjkδlm + L14δinδjlδkm + L15δinδjmδkl, (45)

with Li (i = 1, 2, . . . , 15) scalars.
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4.1 Constitutive relations, generalized affinities and rate equa-
tions in the isotropic case

Taking into account (42)-(45), in the case of an isotropic medium with re-
spect to all rotations of axes frame the isotropic constitutive relations for
τij , Πr

ij , S and Πc, derived from (22)-(25) with λθεij , λcεij , λrθij and λrcij having
the form (42)2 and cijlm, λrεijlm and λrrijlm taking the form (83) of Appendix
A, because of their particular symmetries, are:
for the stress tensor

τij = λδijεkk + 2µεij − λθεδijθ + λrε1 δijRkk + λrε2 Rij − λcεδijC, (46)

where λ and µ are the well known Lamé constants, that represent the two
significant independent components of cijlm, and λrε1 and λrε2 are the two
significant independent components of λrεijlm;
for the entropy density

S = S0 +
λθε

ρ
εii +

cv
T0
θ − λrθ

ρ
Rii −

λθc

ρ
C; (47)

for the potential of porosity field

Πr
ij = λrε1 δijεkk + λrε2 εij + λrθδijθ + λrr1 δijRkk + λrr2 Rij − λrcδijC, (48)

where λrr1 and λrr2 are the two significant independent components of λrrijlm;
for the chemical potential of the fluid-concentration

Πc = −λ
cε

ρ
εii +

λθc

ρ
θ +

λrc

ρ
Rii +

λc

ρ
C. (49)

Also, by virtue of (42)-(45), from (26)-(28), we deduce the expressions for
the isotropic generalized affinities, Πν

ijk, Πq
i and Πjc

i , where the tensors λqqij ,

λqj
c

ij and λj
cjc

ij have the form (42)2, λ
νq
ijkl and λνj

c

ijkl keep the form (89) and the
tensor λννijklmn of order six assumes the form (97) of Appendix A, because of
its particular symmetry. In particular, we have:
the generalized affinity conjugated to the flux Vijk

Πν
ijk = [λνν1 (δijδklδmn + δinδjkδlm) + λνν2 (δijδkmδln + δikδjnδlm)

+ λνν3 δijδknδlm + λνν4 (δikδjlδmn + δimδjkδnl) + λνν5 δikδjmδln

+ λνν6 δilδjkδmn + λνν7 δilδjmδkn + λνν8 δilδjnδkm

+ λνν9 δimδjlδkn + λνν10 (δimδjnδkl + δinδjlδkm) + λνν11δinδjmδkl]Vlmn
+ [λνq1 δikδjl + λνq2 (δijδkl + δilδjk)]ql

+ [λνj
c

1 δikδjl + λνj
c

2 (δijδkl + δilδjk)]j
c
l , (50)
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where λννs (s = 1, . . . 11) are the 11 significant independent components of
λννijklmn, λνq1 , λνq2 the two significant independent components of λνqijlm and

λνj
c

1 , λνj
c

2 the two significant independent components of the tensor λνj
c

ijlm.
Equation (50) gives

Πν
ijk = λνν1 (δijVkll + δjkVlli) + λνν2 (δijVlkl + δikVllj) + λνν3 δijVllk

+ λνν4 (δikVjll + δjkVlil) + λνν5 δikVljl + λνν6 δjkVill + λνν7 Vijk
+ λνν8 Vikj + λνν9 Vjik + λνν10 (Vkij + Vjki) + λνν11Vkji (51)

+ λνq1 δikqj + λνq2 (δijqk + δjkqi) + λνj
c

1 δikj
c
j + λνj

c

2 (δijj
c
k + δjkj

c
i ) ;

the generalized affinity conjugated to the heat flux qi

Πq
i = λνq1 Vkik + λνq2 (Vikk + Vkki) + λqqqi + λqj

c
jci ; (52)

the generalized affinity conjugated to the fluid-concentration flux jci

Πjc

i = λνj
c

1 Vkik + λνj
c

2 (Vikk + Vkki) + λj
cqqi + λj

cjcjci . (53)

The isotropic rate equations for the fluxes and the internal variable are de-
rived from (29), (32), (34) and (36).
In particular, for the structural permeability tensor rij , because of the tensors
βsijk (s = 3, 4, 6, 7) of order three vanish (see Subsection A.1 of Appendix A),

the fourth order tensor β1ijkl and β2ijkl have the form (83) of the Appendix A

and the fifth order tensors β5ijklm and β8ijklm assume the form (77) and (80),
respectively, of the Appendix A, we work out

ṙij + Vijk,k = [β11δijδkl + β12(δikδjl + δilδjk)]εkl

+ [β21δijδkl + β22(δikδjl + δilδjk)]rkl

+ [β51(∈ikl δjm+ ∈jkl δim) + β52(∈ikm δlj+ ∈jkm δli)

+ β53(∈ilm δjk+ ∈jlm δik)]Vklm
+ β8(∈ikm δlj+ ∈jkm δli+ ∈ilm δjk+ ∈jlm δik)rkl,m, (54)

in which β11 , β12 and β21 , β22 , are the two significant independent components
of β1ijkl and β2ijkl, respectively, β5s (s = 1, 2, 3) are the three significant inde-

pendent components of β5ijklm and β8 is the only one significant independent

component of β8ijklm, due to its particular symmetry.
Equation (54) gives

ṙij + Vijk,k = β11δijεkk + β12εij + β21δijrkk + β22rij + β51(∈ikl Vklj+ ∈jkl Vkli)
+ β52(∈ikl Vkjl+ ∈jkl Vkil) + β53(∈ilk Vjlk+ ∈jlk Vilk)
+ β8(∈ikm rkj,m+ ∈jkm rki,m+ ∈jlm ril,m); (55)
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for the flux Vijk of the structural permeability tensor rij , taking into account
that the fourth order tensors γrijkl (r = 1, 2, 4, 5) and the sixth order tensor

γ6ijklmn have the form (43) and (100), respectively, of the Appendix A, we
have:

V̇ijk = (γ11δijδkl + γ12δikδjl + γ13δilδjk)j
c
l + (γ21δijδkl + γ22δikδjl + γ23δilδjk)ql

+ (γ31δijδklδmn + γ32δijδkmδln + γ33δijδknδlm + γ34δikδjlδmn

+ γ35δikδjmδln + γ36δikδjnδlm + γ37δilδjkδmn + γ38δilδjmδkn + γ39δilδjnδkm

+ γ310δimδjkδln + γ311δimδjlδkn + γ312δimδjnδkl

+ γ313δinδjkδlm + γ314δinδjlδkm + γ315δinδjmδkl)Vlmn
+ (γ41δijδkl + γ42δikδjl + γ43δilδjk)c,l + (γ51δijδkl + γ52δikδjl + γ53δilδjk)T,l

+ [γ61(δklδmn + δkmδln)δij + γ62δijδknδlm + γ63(δjlδmn + δjmδln)δik

+ γ64δikδjnδlm + γ65(δilδmn + δimδln)δjk + γ66(δilδjm + δimδjl)δkn (56)

+ γ67(δilδkm + δimδkl)δjn + γ68δinδjkδlm + γ69(δjlδkm + δjmδkl)δin]rlm,n,

in which γ6s (s = 1, . . . 9) are the 9 significant independent components of
γ6ijklmn.
Equation (56) can be written as follows

V̇ijk = γ11δijj
c
k + γ12δikj

c
j + γ13δjkj

c
i + γ21δijqk + γ22δikqj + γ23δjkqi + γ31δijVkll

+ γ32δijVlkl + γ33δijVllk + γ34δikVjll + γ35δikVljl + γ36δikVllj + γ37δjkVill
+ γ38Vijk + γ39Vikj + γ310δjkVlil + γ311Vjik + γ312Vkij + γ313δjkVlli
+ γ314Vjki + γ315Vkji + γ41δijc,k + γ42δikc,j + γ43δjkc,i + γ51δijT,k

+ γ52δikT,j + γ53δjkT,i + γ61δijrkl,l + γ62δijrll,k + γ63δikrjl,l

+ γ64δikrll,j + γ65δjkril,l + γ66rij,k + γ67rik,j + γ68δjkrll,i + γ69rjk,i; (57)

for the heat flux qi, because the fourth order tensors χ3
ijkl and χ6

ijkl have the
form (43) and (92) of the Appendix A, we obtain the following expression

τ q q̇i = χ1jci − qi+χ3
1Vikk +χ3

2Vkik +χ3
3Vkki+χ4c,i−χ5T,i+χ6

1rik,k +χ6
2rkk,i,

(58)
with χ6

1 and χ6
2 the two significant independent components of χ6

ijkl.

In the case where the coefficients χ1, χ3
s (s = 1, 2, 3), χ4, χ6

1, and χ6
2

are negligible, equation (58) becomes the well-known Maxwell-Cattaneo-
Vernotte equation τ q q̇i + qi = −χ5T,i, allowing finite speeds of thermal
propagation and giving Fourier equation qi = −χ5T,i, describing thermal
disturbances with infinite velocity of propagation, when the relaxation time
τ q goes to zero;
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for the fluid-concentration flux jci , taking into consideration that the fourth
order tensors ξ3ijkl and ξ6ijkl have the form (43) and (92), respectively, of the
Appendix A, we obtain

τ j
c
j̇ci = −jci + ξ2qi+ ξ31Vikk + ξ32Vkik + ξ33Vkki+ ξ4c,i+ ξ5T,i+ ξ61rik,k + ξ62rkk,i,

(59)
in which ξ61 and ξ62 are the two significant independent components of ξ6ijkl.

The isotropic generalized telegraph temperature equation is deduced
from (38), when the second order tensors kij , γij , ηij , ν

1
ij and ν2ij have the

form (42)2 and the fourth order tensors ν3ijkl and ν6ijkl assume, respectively,
the form (43) and (92) of Appendix A:

τ qT̈ + Ṫ = kT,ii − γ(τ q ε̈ii + ε̇ii) + ϕ (τ q c̈+ ċ) + η (τ q r̈ii + ṙii)− ν1jci,i (60)

− ν4c,ii −
(
ν31Vijj,i + ν32Vjij,i + ν33Vjji,i

)
−
(
ν61rij,ji + ν62rjj,ii

)
,

in which ν61 and ν62 are the two significant independent components of ν6ijkl.

The evolution equations (55), (57), (58), (59) and (60) describe disturbances
with finite velocity and fast phenomena having relaxation times comparable
or higher than the relaxation times of the materials taken into account.
Also, in these equations there are terms taking into consideration non-local
effects and relating these rate equations to the inhomogeneities present in
the system.

The isotropic linearized internal energy balance is worked out from
(41), when the second order tensors λθεij and λrθij have the form (42)2:

ρė = T0λ
θεu̇i,i + ρcvṪ − T0λrθṙii − T0λθcċ. (61)

4.2 Closure of the governing system of equations in the iso-
tropic case

In this Subsection, to close the system of equations describing linear isotropic
porous media filled by a fluid flow, we linearize the balance equations (5), (6)
and the rate equations (55), (57), (58) and (59) around the equilibrium state
(18)-(21). Taking into account the constitutive relations (46) and (47), the
linearized temperature equation (60) and internal energy balance equation
(61), the definitions εij = 1

2(ui,j+uj,i) and vi = u̇i, indicating the deviations
of the fields from the thermodynamic equilibrium state by the same symbols
of the fields themselves, and considering the case where we may replace the
material derivative by the partial time derivative, we obtain the following
closed system of 45 equations for 45 unknowns: 1 for c, 3 for ui, 6 for rij ,
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27 for Vijk, 3 for qi, 3 for jci , 1 for T and 1 for e

ρ
∂c

∂t
= −jci,i, (62)

ρ
∂2ui
∂t2

= (λ+ µ)uk,ki + µui,kk − λθεT,i + λrε1 rkk,i + λrε2 rik,k − λcεc,i, (63)

∂rij
∂t

= −Vijk,k + β11δijuk,k +
1

2
β12(ui,j + uj,i) + β21δijrkk + β22rij (64)

+ β51(∈ikl Vklj+ ∈jkl Vkli) + β52(∈ikl Vkjl+ ∈jkl Vkil)
+ β53(∈ilk Vjlk+ ∈jlk Vilk) + β8(∈ikm rkj,m+ ∈jkm rki,m+ ∈jlm ril,m),

∂Vijk
∂t

= γ11δijj
c
k + γ12δikj

c
j + γ13δjkj

c
i + γ21δijqk + γ22δikqj + γ23δjkqi

+ γ31δijVkll + γ32δijVlkl + γ33δijVllk + γ34δikVjll + γ35δikVljl + γ36δikVllj
+ γ37δjkVill + γ38Vijk + γ39Vikj + γ310δjkVlil + γ311Vjik + γ312Vkij
+ γ313δjkVlli + γ314Vjki + γ315Vkji + γ41δijc,k + γ42δikc,j + γ43δjkc,i

+ γ51δijT,k + γ52δikT,j + γ53δjkT,i + γ61δijrkl,l + γ62δijrll,k + γ63δikrjl,l

+ γ64δikrll,j + γ65δjkril,l + γ66rij,k + γ67rik,j + γ68δjkrll,i + γ69rjk,i, (65)

τ q
∂qi
∂t

= χ1jci − qi + χ3
1Vikk + χ3

2Vkik + χ3
3Vkki + χ4c,i

− χ5T,i + χ6
1rik,k + χ6

2rkk,i, (66)

τ j
c ∂jci
∂t

= −jci + ξ2qi + ξ31Vikk + ξ32Vkik + ξ33Vkki + ξ4c,i

+ ξ5T,i + ξ61rik,k + ξ62rkk,i, (67)

τ q
∂2T

∂t2
+
∂T

∂t
= kT,ii − γ

(
τ q
∂2ui,i
∂t2

+
∂ui,i
∂t

)
+ ϕ

(
τ q
∂2c

∂t2
+
∂c

∂t

)
+ η

(
τ q
∂2rii
∂t2

+
∂rii
∂t

)
− ν1jci,i − ν4c,ii

−
(
ν31Vijj,i + ν32Vjij,i + ν33Vjji,i

)
−
(
ν61rij,ji + ν62rjj,ii

)
, (68)

ρ
∂e

∂t
= T0λ

θε∂ui,i
∂t

+ ρcv
∂T

∂t
− T0λrθ

∂rii
∂t
− T0λθc

∂c

∂t
. (69)

Notice that also in the case where we do not take into consideration equation
(69) for the internal energy, the system of equations (62)-(68) is still closed.
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5 Isotropic porous media with respect to all ro-
tations and inversions of axes frame (perfect
isotropic case)

In this Section we consider perfect isotropic porous media having symmetry
properties invariant with respect to all rotations and to inversions of the
frame of axes.
In this case the tensors of odd order vanish [19], i.e.

Li = 0, Lijk = 0, Lijklm = 0, (70)

the tensors of even order are given by (42)2, (43) and (45) and take equal
forms to those valid in the isotropic case, coming from special symmetry
properties (see Subsections A.3 and A.4 of the Appendix A).

5.1 Constitutive relations, generalized affinities, rate, tem-
perature and energy equations in perfect isotropic case

Notice that all the tensors that appear in equations (22)-(28) and (32),
(34), (36) and (38) are of even order, so that the constitutive relations, the
generalized affinities, the rate equations for the porosity field flux, the heat
flux and the fluid-concentration flux, the temperature and energy equations
remain unchanged, with respect the isotropic case, and assume the form
(46)-(49), (51)-(53), (57)-(59) and (60), (61). Taking into account relations
(70), the only different equation in this case is the rate equation (29) for the
internal variable rij , that takes the form

ṙij = −Vijk,k + β11δijεkk + β12εij + β21δijrkk + β22rij . (71)

5.2 Closure of the governing system of equations in the per-
fect isotropic case

Linearizing the balance equations (5), (6) and the rate equations (71) and
(57)-(59) around the equilibrium state (18)-(21), taking into account the
constitutive relations (46) and (47), the linearized temperature and energy
equations (60) and (61), equations (62), (63), (65)-(69) remain unchanged
and relation (71) takes the form

∂rij
∂t

= −Vijk,k + β11δijεkk + β12εij + β21δijrkk + β22rij , (72)

where we have considered the case in which the material derivative may
be replaced by the partial time derivative and the deviations of the fields
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from the thermodynamic equilibrium state have been indicated by the fields
themselves. Thus, in total we have a closed set of 45 equations for the 45
unknowns c, ui, rij , Vijk, qi, jci , T and e. The obtained results can be
applied to real situations. The derived system of equations is very complex
but in simpler cases it is possible to find analytical or numerical solutions. In
particular, in [22] we have studied coupled porosity and fluid-concentration
waves, calculating the dispersion relation and the propagation modes of
these complex waves.

Conclusions

In this paper we have obtained a description of isotropic and perfect isotropic
porous media filled by a fluid flow, in the framework of rational extended
irreversible thermodynamics with internal variables, where the structural
permeability tensor rij (with its gradient rij,k) and its flux Vijk are intro-
duced as internal variables, in the thermodynamic state vector. Here, the
results obtained in previous papers for anisotropic porous media, are special-
ized when the considered media have symmetry properties invariant under
orthogonal transformations of the axes frame. It was assumed that the mass
density is constant, the body force and heat source are negligible and the
constitutive equations, the generalized affinities, the rate equations for dis-
sipative fluxes, presenting a relaxation time, and the closure of system of
equations describing the behaviour of the considered media were worked out
in the isotropic and perfect isotropic cases. It was seen that porous channels
influence mechanical, thermal and transport properties of these media. In
particular, when the density of porous defects is higher than its character-
istic value the thermal conductivity decreases. The generalized Maxwell-
Vernotte-Cattaneo, Fick-Nonnenmacher and telegraph temperature equa-
tions were obtained as particular cases. The study of fluid-saturated porous
media has a great interest in applied sciences, like geology, hydrology, phar-
maceutics and nanotechnology, where there are situations of propagation of
high-frequency waves.

A Particular cases of isotropic and perfect isotropic
tensors with special properties

In the following Subsections we will consider isotropic tensors of odd order
(third and fifth), and isotropic and perfect isotropic tensors of even order
(fourth and sixth), having special symmetry properties. We emphasize that



216 A. Famà, L. Restuccia

the perfect isotropic tensors of odd order (first, third and fifth) are null (see
(70)). Also the isotropic tensors of first order are null (see (42)1). The
results related to the tensors of odd order are valid only in the isotropic
case, when these tensors are invariant in form with respect to all rotations
of axes frame (see Section 4), while the results related to the tensors of even
order are valid both in the isotropic case and in the perfect isotropic case,
when these tensors are invariant in form with respect to all rotations and
inversions of axes frame, (see Sections 4 and 5).

A.1 Special form for isotropic tensors of order three

In the case where a third order isotropic tensor Lijk has the symmetry

Lijk = Ljik, (73)

(valid for the third order tensors βsijk (s = 3, 4, 6, 7) in the rate equation
(29)), we have Lijk = 0.

In fact, from relation (42)3 we can write

Ljik = L ∈jik= −L ∈ijk, (74)

and equating this last relation with (42)3 we immediately deduce L = 0.

A.2 Special form for isotropic tensors of order five

In the following we study the form of isotropic tensors of order five having
special symmetries.

A.2.1 Case where a fifth order isotropic tensor Lijklm has one
particular symmetry

In the case when

Lijklm = Ljiklm, (75)

(valid for the tensor β5ijklm in equation (29)) we show that the number of the
significant independent components of this tensor reduces from 6 to 3.

In fact, from (44) we have

Ljiklm =− L1 ∈ijk δlm − L2 ∈ijl δkm − L3 ∈ijm δkl + L4 ∈jkl δim
+ L5 ∈jkm δli + L6 ∈jlm δik. (76)
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Equating (44) and (76) we obtain

Lijklm =A1(∈ikl δjm+ ∈jkl δim) +A2(∈ikm δlj+ ∈jkm δli)

+A3(∈ilm δjk+ ∈jlm δik), (77)

where A1 = L4, A2 = L5 and A3 = L6.

A.2.2 Case where a fifth order isotropic tensor Lijklm presents
two symmetries

In the case when

Lijklm = Ljiklm, Lijklm = Lijlkm, (78)

(valid for the tensor β8ijklm in equation (29)) we show that the significant
independent component of this tensor is only one.
In fact, from (77) we have

Lijlkm =−A1(∈ikl δjm+ ∈jkl δim) +A2(∈ilm δkj+ ∈jlm δki)

+A3(∈ikm δjl+ ∈jkm δil). (79)

Equating (77) and (79) we finally work out

Lijlkm = L(∈ikm δlj+ ∈jkm δli+ ∈ilm δjk+ ∈jlm δik), (80)

where L ≡ A2 = A3.

A.3 Special form for fourth order isotropic and perfect isotropic
tensors

In this Subsection we will treat special symmetry properties of a fourth order
tensor Lijkl and we will demonstrate that Lijkl can be expressed only by two
significant independent components that will be called A1 and A2.

A.3.1 Case where a fourth order isotropic tensor Lijkl has one
particular type of symmetry

In the case when
Lijkl = Ljikl, (81)

(valid for tensors β1ijkl and β2ijkl in equation (29)), from relation (43) we have

Ljikl = L1δjiδkl + L2δjkδil + L3δjlδik. (82)
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Adding equations (43) and (82), using Lijkl = Ljikl and multiplying by 1/2,
we obtain

Lijkl = A1δijδkl +A2(δikδjl + δilδjk), (83)

where A1 = L1 and A2 = (L2 + L3)/2.

A.3.2 Case where a fourth order isotropic tensor Lijkl has three
symmetries

In the case when

Lijkl = Ljikl, Lijkl = Lijlk, Lijkl = Lklij , (84)

equivalent to the following chain of equalities

Lijlm = Ljilm = Lijml = Ljiml = Llmij = Lmlij = Lmlji = Llmji, (85)

(valid for the tensors cijkl, λ
rε
ijkl and λrrijkl present in equations (22) and

(24)), from (83) (that includes the symmetry (84)1) we can see that also the
symmetry (84)2 is true, as well as (84)3, because

Lklij = A1δklδij +A2(δkiδlj + δkjδil) = Lijkl. (86)

The other symmetries in (85) are also satisfied. Thus, we use for the tensors
cijkl, λ

rε
ijkl and λrrijkl expression (83) again.

A.3.3 Case where a fourth order isotropic tensor Lijkl has one
particular symmetry of another type

In the case when
Lijkl = Llijk, (87)

(valid for the coefficients λνqijkl and λνj
c

ijkl in equations (26)-(28)) from relation
(43) we deduce

Llijk = L1δliδjk + L2δljδik + L3δlkδij . (88)

Using the same procedure seen in Subsection A.3.2, we obtain

Lijkl = A1δikδjl +A2(δijδkl + δilδjk), (89)

where A1 = L2 and A2 = (L1 + L3)/2.
It is useful to emphasize that the same result (89) is obtained if the

symmetries Lijkl = Lilkj and/or Lijkl = Lkjil are valid. These results are
not used in this paper.
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A.3.4 Case where a fourth order isotropic tensor Lijkl has the
symmetry Lijkl = Likjl

In the case when

Lijkl = Likjl, (90)

(valid for the tensors χ6
ijkl in equation (34) and ξ6ijkl in equation (36)), from

relation (43) we have

Likjl = L1δikδjl + L2δijδkl + L3δilδkj . (91)

Using the same procedure seen in Subsection A.3.2, we obtain

Lijkl = A1δilδjk +A2(δijδkl + δikδjl), (92)

with A1 = L3 and A2 = (L1 + L2)/2.

A.3.5 Case where a fourth order isotropic tensor Lijkl has two
symmetries

In the case when

Lijkl = Likjl, Lijkl = Lljki, (93)

equivalent to the following chain of equalities

Lijkl = Likjl = Lljki = Llkji, (94)

(valid for the tensor ν6ijkl in the temperature equation (38)), from (92) (that
includes the symmetry (93)1) we can see that also the symmetry (93)2 is
satisfied, so that we use for the tensor ν6ijkl expression (92) again.

A.4 Special form for isotropic and perfect isotropic tensors
of order six

In this Subsection we will treat special symmetry properties of a sixth order
tensor Lijklmn and we will demonstrate that the number of its significant
independent components is reduced.

A.4.1 Case where a sixth order isotropic tensor Lijklmn has one
particular symmetry

In the case when

Lijklmn = Llmnijk, (95)
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(valid for the tensor λννijklmn in equation (26)) we show that the number of
the significant independent components of this tensor reduce from 15 to 11.

In fact, writing relation (45) in the case of Llmnijk (i.e. by exchanging
indexes {i, j, k} with indexes {l,m, n}), we obtain

Llmnijk =L1δlmδniδjk + L2δlmδnjδik + L3δlmδnkδij + L4δlnδmiδjk

+ L5δlnδmjδik + L6δlnδmkδij + L7δliδmnδjk + L8δliδmjδnk

+ L9δliδmkδnj + L10δljδmnδik + L11δljδmiδnk + L12δljδmkδni

+ L13δlkδmnδij + L14δlkδmiδnj + L15δlkδmjδni. (96)

Adding relation (96) to (45) and multiplying by 1/2, we work out

Lijklmn =A1(δijδklδmn + δinδjkδlm) +A2(δijδkmδln + δikδjnδlm)

+A3δijδknδlm +A4(δikδjlδmn + δimδjkδnl) +A5δikδjmδln

+A6δilδjkδmn +A7δilδjmδkn +A8δilδjnδkm +A9δimδjlδkn

+A10(δimδjnδkl + δinδjlδkm) +A11δinδjmδkl, (97)

with A1 = (L1 + L13)/2, A2 = (L2 + L6)/2, A3 = L3, A4 = (L4 + L10)/2,
A5 = L5, A6 = L7, A7 = L8, A8 = L9, A9 = L11, A10 = (L12 + L14)/2,
A11 = L15.

A.4.2 Case where a sixth order isotropic tensor Lijklmn has one
particular symmetry of another type

In the case when

Lijklmn = Lijkmln, (98)

(valid for the tensor γ6ijklmn in equation (32)) we show that the number of
the significant independent components of this tensor reduce from 15 to 9.

In fact, writing relation (45) in the case of Lijkmln (i.e. by exchanging index
l with index m), we have

Lijkmln =L1δijδkmδln + L2δijδklδmn + L3δijδknδml + L4δikδjmδln

+ L5δikδjlδmn + L6δikδjnδml + L7δimδjkδln + L8δimδjlδkn

+ L9δimδjnδkl + L10δilδjkδmn + L11δilδjmδkn + L12δilδjnδkm

+ L13δinδjkδml + L14δinδjmδkl + L15δinδjlδkm. (99)
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Adding this relation to (45), using (98) and multiplying by 1/2, we have

Lijklmn =A1(δklδmn + δkmδln)δij +A2δijδknδlm +A3(δjlδmn + δjmδln)δik

+A4δikδjnδlm +A5(δilδmn + δimδln)δjk +A6(δilδjm + δimδjl)δkn

+A7(δilδkm + δimδkl)δjn +A8δinδjkδlm +A9(δjlδkm + δjmδkl)δin,
(100)

where A1 = (L1 + L2)/2, A2 = L3, A3 = (L4 + L5)/2, A4 = L6, A5 =
(L7 + L10)/2, A6 = (L8 + L11)/2, A7 = (L9 + L12)/2, A8 = L13, A9 =
(L14 + L15)/2.
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atico e Fisico dell’Università di Modena, 3, pp. 83-101, 1948, DOI:
10.1007/978-3-642-11051-1 5.

[46] G. Fichera. Is the Fourier theory of heat propagation paradoxical?.
Rendiconti del Circolo Matematico di Palermo, 13, pp. 5-28, 1992, DOI:
10.1007/BF02844459.


