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Abstract

In previous papers in the linear and anisotropic case, constitutive
relations, rate equations, temperature and energy equations were de-
rived by the authors to describe the mechanical, thermal and transport
properties of fluid-saturated crystals with porous channels defects, us-
ing a model developed by one of us (L. R.) in the framework of non-
equilibrium thermodynamics. A structural permeability tensor a la
Kubik, r;;, its gradient and its flux V;;;, were introduced as internal
variables in the thermodynamic state vector. Here, we work out in the
isotropic and perfect isotropic linear cases the constitutive functions
for the stress tensor, the entropy density, the chemical potentials, and
also the rate equations for 7;;, V;;i, the fluid-concentration and the
heat fluxes, describing disturbances propagating with finite velocity
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and presenting a relaxation time. The porous defects modify the ther-
mal conductivity and when they have a density higher than a suitable
characteristic value the thermal conductivity decreases. Furthermore,
the closure of the system of equations, describing the media under con-
sideration and linearized around a thermodynamic equilibrium state is
obtained. The derived results may have great relevance in biology,
medical sciences and in several technological sectors, like seismic engi-
neering and nanotechnology (where high-frequency waves propagation
is present and the properties variation rate of the considered medium is
faster than the relaxation times of the fluxes towards their equilibrium
value).

MSC: 74A15, 74A20, 74F10.

keywords: Porous solids, Non-equilibrium thermodynamics with inter-
nal variables, Constitutive relations for porous isotropic media, Rate equa-
tions for porous isotropic media.

1 Introduction

The study of media with porous defects may have relevance in the descrip-
tion of phenomena accompanying flows of mass in porous structures and
find applications in applied sciences. Here, we use a thermodynamic the-
ory (see [1], [2] and also [3], [4]), developed in the framework of Extended
Irreversible Thermodynamics, [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], with internal variables. More precisely, in [1] and [2] for the
media under consideration the basic equations were established, the Liu’s
theorem [17] was applied and in a special case the constitutive theory and
the rate equations for the fluxes and the porosity field were constructed as
objective functions using Smith’s theorem [18]. In [3] and [4] constitutive
relations, rate equations and other resutls were derived for the same me-
dia in the anisotropic case. In this paper we investigate the behaviour of
isotropic and perfect isotropic porous structures filled by a fluid flow, hav-
ing a particular spatial symmetry properties, using a mathematical theory
for isotropic cartesian tensors [19], [20]. The influence of porous channels
on the other fields, occurring inside the considered medium, is described
by a stuctural permeability tensor a la Kubik [21], giving a macroscopic
characterization of the porous matrix. In [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32] and [33] models, with some applications, for media
with defects having the form of a network of very thin tubes, like porous
channels and dislocations, were formulated, using the same methods of non-
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equilibrium thermodynamics in the case for instance of piezoelectric, elastic,
semiconductor and superlattice structures. Also in [34], [35], [36], [37] and
[38] non-equilibrium temperatures and heat equation were studied in media
with internal variables and in the same thermodynamic framework of non-
equilibrium thermodynamics. A relatively high temperature gradient could
produce, for instance, a migration of defects inside the system. The results,
obtained in this paper have great interest in several technological sectors (
see [41]) like physics of soil, medical sciences, seismic engineering, in acoustic
pollution, to build barrier against it, in pharmaceutics and in nanotechnol-
ogy, where the rate of variation of the properties of the system is faster than
the time scale characterizing the relaxation times of the fluxes towards their
respective equilibrium value, there are situations of high-frequency waves
propagation and the volume element size L of these nanostructures along
some directions is so small that it becomes comparable (or smaller than)
the free mean path [ of the heat carriers (L < [, i.e. the Knudsen number
Kn, Kn = %, is such that % > 1). The porous defects change the ther-
mal conductivity, and from experiments and theoretic studies it was seen
that the porous defects have a minor effect on the thermal conductivity
when their density is smaller than a characteristic value, which depends on
the material and the temperature, but when their density is higher than
this characteristic value, the thermal conductivity decreases. The paper is
organised as follows. In Section 2 the governing equations of the model, de-
scribing the mechanical, thermal and transport properties of solid structure
with porous channels, saturated by a fluid flow, derived in the framework of
extended thermodynamics with internal variable, are presented. The basic
balances and the rate equations for porosity field, its flux, the heat flux and
the fluid-concentration flux are introduced [1]. In the Section 3, the results
obtained in the linear anisotropic case for the constitutive relations and the
rate equations in [3] and for the temperature and energy equations [4] are
presented. Sections 4 and 5 deal with the study of porous media filled by
a fluid flow, when they are isotropic under orthogonal transformations and
the Cartesian components of the equations describing them do not depend
on all the Cartesian components of the independent variables of the chosen
thermodynamic state vector. The case where the symmetry properties of
the system under consideration are invariant with respect to all rotations of
axes frame (isotropic case) and the case where these symmetry properties are
invariant with respect to all rotations and inversions of axes frame (perfect
isotropic case) are treated in detail and the constitutive, rate, temperature
and energy equations are worked out in these two different cases. In partic-
ular, the generalized Maxwell-Cattaneo-Vernotte and Fick-Nonnenmacher
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rate equations for the heat and fluid-concentration fluxes and the rate equa-
tions for the porosity field and its flux are derived, showing the influence of
porous defects on the transport properties of the considered media. Finally,
the closure of the whole system of equations, describing the behaviour of
the isotropic and perfect isotropic porous structures under consideration,
is deduced. The Appendix is dedicated to the study of particular special
forms for third, fourth, fifth and sixth order isotropic tensors, having sym-
metry properties, coming from the symmetry of the strain tensor &;; and
the structural permeability tensor r;;, and also from the used model. The
expressions are cumbersome but are useful in computer programming for
physical phenomena simulations. The obtained results can be applied to
simpler real cases, where it is possible to neglect the influence of some fields
occurring inside the examined media. Other different approaches for porous
structures saturated by fluid flows are in [39], [40] and [41].

2 Governing Equations

The aim of this paper is to study structures with defects of porous chan-
nels saturated by a fluid flow. To describe as the defects field evolves, we
introduce in the thermodynamic state vector the symmetric structural per-
meability field r;; a la Kubik [21], its gradient 7;;; and its flux V. Here,
we present a model for fluid-satured porous nanocrystals, developed in [1],
[2] and also in [3] and [4], in the framework of extended irreversible ther-
modynamics with internal variables. In [21] a representative elementary
sphere volume ) of a porous skeleton filled by a fluid flow is considered,
large enough to give a representation of its statistical properties in order
to use average statical procedures to define this porosity tensor from the
macroscopic point of view. We assume that the mass of the fluid filling the
porous channels inside the solid matrix and this same matrix constitute a
two-components mixture. Indicating by p; the mass of the fluid transported
through the elastic porous crystal of density p2, we describe this fluid flow
by two variables: the concentration of the fluid ¢ = %1 and the flux of this
fluid j¢ (see (3)), in such way that

p = p1+p2. (1)

The following continuity equations are valid for the mixture of continua as
a whole and also for each its constituent

9p1 9p2

p+ pui; =0, o + (p1v1i),i =0, T + (p2v2i),i =0, (2)
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where a superimposed dot denotes the material derivative, % = % +v-V,
v1; and wvg; are the velocities of the fluid particles and the particles of the
elastic body, respectively and we suppose that there are not source terms.
The barycentric velocity v; of the mixture and the fluid flux j{ are defined
as follows

pUi = p1v1; + p2vei,  Ji = p1(vii — vi). (3)
The thermal field is described by the absolute temperature T', its gradient T;
and the heat flur ;. The mechanical field is described by the symmetric total
stress tensor 7;;, referred to the whole system considered as a mixture, and
by the small strain tensor ¢;;, €;; = %(uw + u;,;), with w the displacement
vector.

We choose the following thermodynamic state vector

C ={eij. e, T,7i5, 55 5 Gis Vigh» Cis Tis Tij e )+ (4)

where, we have taken into consideration the gradients c;,T; and 7;; %, and
have ignored the viscous effects, that we have studied in [41].

We consider two groups of laws. The first group concerns the classical
balance equations [9]:

the balance of mass having the form

pé+ji; = 0; (5)

the momentum balance
pvi — Tjij — fi =0, (6)
where f; denotes a body force, that in the following will be disregarded for

the sake of simplicity;
the internal energy balance

pe — Tjivij + Gii — ph =0, (7)

where e is the internal energy density, h is the energy source density (also
neglected in the following) and v;; is the gradient of the velocity of the
body;

the second group of laws deals with the rate equations for the struc-
tural permeability field r;;, its flux Vi, the heat flux ¢; and the fluid-
concentration flux jf, constructed in such a way that they obey the objec-
tivity and frame-indifference principles (see [42], [43] and [44]).

We choose for these evolution equations the following form

rij + Vigi — Rij(C) =0, (8)
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*

Vijk — Vijr(C) =0, 9)
q; — Qi(C) =0, (10)
je— JE(C) =0, (11)

where the symbol (*) denotes the Zaremba-Jaumann derivative, defined for
the vectors, the second rank tensor and the third rank tensor present in
(8)-(9) as follows

*

J5 =0 —Wikdn, @ = G — WikQk, Tij = Tij — WikThj — WikTik ,  (12)
* .
Viji = Vijk — WipVpjk = WipVipk — WkpVijp, (13)
ith Wi — v+ — %i boi R N d % 1y N
WIth Wi = V45 — —z~, DeINg w;; = E(Uw — vj;) an el Q(Uw + vji)

the antisymmetric and the symmetric part of v; j, respectively. In (8)-(11)
Ri;(C) is the source term describing the creation or annihilation of porous
channels, V;;(C), Q;(C) and JZ(C) are the sources of the porosity field
flux, the heat flux and the fluid-concentration flux. They are constitutive
functions of the independent variables of the thermodynamic state vector
space (4). In the rate equations (8)-(11) we do not consider the flux terms of
Tij, Vijk, ¢ and ji, in such a way that we can close the system of equations
governing the behaviour of the media taken into account. Furthermore, in
(8)-(11) we use for w;; the expression w;; = v;j — agzj , to obtain relations
in linear approximation.

3 Constitutive relations, rate equations, temper-
ature and energy equations in the anisotropic
case

In order that the physical processes occurring in the considered porous struc-

ture filled by a fluid flow are real, all the admissible solutions of the proposed

governing equations should be restricted by the following entropy inequality
ph

pS+6ii = 7 = >0, (14)

h
where S is the entropy density, % is the external entropy production source

(neglected in the following), o) is the internal entropy production and ¢;
is the entropy flur. In [1] Liu’s theorem [17], that considers all balance
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and evolution equations as mathematical constraints for the general validity
of the inequality (14), was applied, assuming that the density mass p of
the considered defective nanocrystals is constant, and the state laws, the
generalized affinities, the entropy inequality and the following functional
form of the free energy F'

F = F(eij, ¢, T,rij, ji @, Vijk) (15)

were obtained.
In [2] the set of constitutive functions (dependent functions on the set
(4) of independent variables)

W = {TijyevnijvjicaQiaV;jk7sv qbl?HCvH;j} (16)

(with II¢ the chemical potential of the fluid concentration field and 07, a
potential related to the structural permeability field), having the general form

W =Ww(C), (17)

were constructed in a special case as objective polynomial constitutive func-
tions using Smith’s theorem [18]. In (17) both C' and W are evaluated at
the same point and time.
Furthermore, in [3] the free energy (15) was expanded up the second-
order approximation around a reference state, representing a thermody-
(132

namic equilibrium state, indicated by the subscript “y”, where it was sup-
posed that

(€ij)o =0, (7Tij)g =0, (ui)g =1uo0s, (vi)o = vo, (18)

and the deviations of some variables from this reference state were indicated
by

9 -
O=T Ty, || <1, e¢=c—ep || <1, C=c—cop |=|<1,
T 0 co
(19)
S=8-"50, |o| <1, Rij=riy—roij || <1 (20)
So T0ij
In this thermodynamic state we have
(]zc)o =0, (Qi)o =0, (Vijk)() =0, ( gj)o =0, (HC)O =0,
(IFj5,) g = 0, (I)g = 0, (I1) =0, (21)
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being Hwk, II7 and ch the generalized affinities conjugated to the respec-
tive fluxes V;ji, ¢; and ji. The potentials and the generalized affinities were
obtained in [3] as partial derivative of F' with respect to own conjugate vari-
able. In particular the following relations were obtained in the anisotropic
case in the linear approximation:

the constitutive relations

Tij = CijimEim — M50 + A5 Rim — AS5C, (22)
95 )\7“9 )\Gc
S=Sy+ ey + i”e ~ SR -2, (23)
p p p
I = NjimEim + Ajj 9 + N Bim + A5C, (24)
ce 96 Are C
n°= Yo+ 20+ 2Ry + C (25)
o p p
the generalized affinities
zl'jjk = Aijkimn Vimn + )‘UMQZ + )‘”kﬂl ) (26)
T = AL Vik + Ma; + 2855, (27)
= )‘fgkzvykl + Aijqu )‘gj] Jj- (28)

The quantities like c;jim, /\f’j, t5ims which occur in (22)-(28), are called
phenomenological tensors. For instance, c¢;ji, is the elastic tensor of order
four, )\ij is the thermoelastic tensor of order two, A;f is a tensor of order two
connected with the influence of the fluid-concentration flow on the porosity
field, )\f]e is a tensor of order two connected with the influence of the porosity
field on the temperature field. In (23) ¢, is the specific heat. Furthermore,
the constant phenomenological coefficients satisfy the following symmetric
relations, see [3] (being defined in terms of second derivatives of F' and for
the symmetry of £;; and ;)

Cijlm = Cjilm = Cijml = Cjiml = Clmij = Cmlij = Cmiji = Clmji,

= Niitm = Aij, )\jlml = )‘lmjz = Alm'Lj Amtgi = Am

Z]Zm Jilm — Ngml — mlji — “‘mlijs

Z]lm - )‘Uml )‘jzlm )‘jzml )‘lmz] - Almjz - )‘mlz] Aml]z’

AF =00, A =T N =N NS =G, A = A,
zl'/]?/klmn = Almnijk’ )‘ijkl = )\ng’ )\gj] = )\gzj )‘J 4= )\gzq’ )\;’]J - )\JVZJC

In [3], in the case where it is possible to replace Zaremba-Jaumann
derivative by the material derivative, the following rate equations were ob-
tained, supposing that the source terms R;j;, Viji, Ji, Q; can be expressed
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as linear objective polynomials having constant coefficients, in terms of the
independent variables:

. 1 2 3 4 5 6
Fij + Vijkk = Bijri€kt + Bkl + Bijndi + Bijedh + Bijrim Veim + BijeCk

+ BijT,k + ﬁ?jklmTkl,ma (29)
where
B = B, = B3, = B3 (s=1,2), B =85 =B, =55
ijkl Jikl ijlk Jilk> s <) ijklm Jiklm ijlkm Jilkm>
(30)

Ijk = B;ﬂca (7” = 37 47 67 7)’ 515jklm = ﬁ?iklm? Vijk,k = Vjik,k> (31)

because the phenomenological tensors 3° (s = 1,2,...,8) are symmetric in
the indexes {i,j}, by virtue of the symmetry of r;;, 3° (s =1,2,8) are also
symmetric in the indexes {k, [}, because they are dummy with the indexes
of the symmetric tensors e, 7 and 74y, respectively, and Vijrx = Vjikk
is symmetric in the indexes {7, j}, by virtue of the symmetry of r;;;

Vijk = Yigaidt + Ykt + Vijkimn Vimn + YigeiC + VT + VoiptmnTimm, (32)
where
6 = (33
Pyijklmn - ’Yijkmlnv )
because of the symmetry 7, »;
T4 = lejqu — ¢+ X?jklvjkl + X?jc,j - X?jT,j + X?jklrjk,lv (34)

where Xilj is the thermodiffusive kinetic tensor, X?j is the thermodiffusive
tensor, X?j is the heat conductivity tensor and

6 6
Xijkt = Xikjl> (35)

by virtue of the symmetry of the tensor 7 ;
T3¢ = —je 4 €2 + &y Vim — Ekcj + T + €51 36
T J; Ji fquJ fz]kl Jkl gljcvj §U »J fz]klrjk’h ( )

where 5;'11@ and f?k are the diffusion tensor and the thermodiffusive tensor,
respectively, and

Eimt = Ejis (37)

because of the symmetry of rj ;.
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The rate equation (34) generalizes Maxwell-Vernotte-Cattaneo relation
(obtained when the only influence of the temperature gradient field is taken
into consideration)

T4 = —qi — x5, Tj-
This equation presents a relaxation time for the heat flux and describes
thermal disturbances having finite velocity of propagation (see [45] and [46]).
When the relaxation time 79 goes to zero it reduces to anisotropic Fourier
equation

@ = —x57T;,

leading to infinite speeds propagation of thermal signals.
The rate equation (36) for the mass flux generalizes the Fick-Nonnenmacher
law

T8 = =i = &heys
describing propagation of disturbances with finite velocity and presenting a
relaxation time for the fluid-concentration flux.

Furthermore, we obtained in [4] the generalized telegraph temperature

equation linearized around the thermodynamic equilibrium state defined by
(18)-(21)

TIT + T = =i (7935 + €ij) + @(T9E + &) + 0 (77755 + 745)

1 3 4 6
+ kij T ji — VijJ5: — Vil Vikli — VigCji — VijkiTjk.lis (38)
where
5
To To To Xii
——\ = 0 )\0c R VS - 39
Yij cop 7 ¥ c s Mg cop 17 ij cop’ (39)
1 3 4 6
1 Xij 3 Xijkl 4 Xij 6 Xijkl
Viig = — Vijlu = v Vi = Vi = ; (40)
Cup Cyp Cup Cop
the superimposed dot “ 7 indicates the linearized time derivative % =

% + vg - grad and the deviations of the fields from the thermodynamic
equilibrium state are indicated by the same symbols of the fields themselves.
The evolution equations (29), (32), (34), (36) and (38) allow finite speeds
for the field disturbances and describe fast phenomena whose relaxation
times are comparable or higher than the relaxation times of the media under
consideration. In (29), (32), (34) and (36) the last three terms (in equation
(38) the last four terms) describe non-local effects, because they relate the
rate equations to the inhomogeneities of the system.
Also, in [3], we have obtained a linear form for the first law of Thermo-
dynamics
pé = ToN%es; + pe,T — oA i — ToA"c. (41)
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4 Isotropic porous media with respect to all rota-
tions of axes frame

The existence of spatial symmetry properties in a porous structure may
simplify the form of the constitutive equations, the generalized affinities and
the rate equations, in such a way that the Cartesian components of these
equations do not depend on all the Cartesian components of the independent
variables of the thermodynamic state vector C' (4). This statement is called
Curie symmetry principle [9].

In the following two Subsections we will study the form of the balance
equations, the constitutive relations, the rate equations, the temperature
equation and the closure of equations system describing the behaviour of
the media under consideration having symmetry properties tnvariant with
respect to all rotations of axes frame.

First, we examine the form of isotropic tensors of rank up to six.

The tensors of rank up to three take the form [19]

L; =0, Ly =Ldj, Lijk=1L €k, (42)

where €, is the Levi-Civita tensor and L is a scalar.
Tensors of order four Lij, must have the form [19]

Lijry = L1001 + L2065 + L3601, (43)

with L; (i = 1,2, 3) scalars.
Tensors of order five L;jpm, and of order six L;jpmy, must have the form,
respectively, (see [20])

Lijkim = L1 €45k Oim + L2 €ij1 Okm + L3 €ijm Op1 + La €1 Ojm
+ L5 €ikm 01 + Lo Citm Ojks (44)

Lijkimn = L10i50k10mn + L20;j0km0in + L30:j0kn0tm + L46ik0510mn
+ L5010 jmOin + L6010 01m + L70:1010mn + L8610 jmOkn
+ L9010 jn0km + L100im9jk0tm + L110im0i10kn + L120im 070k
+ L136in0k01m + L140in610km + L150i00jm 0k, (45)

with L; (1 = 1,2,...,15) scalars.
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4.1 Constitutive relations, generalized affinities and rate equa-
tions in the isotropic case

Taking into account (42)-(45), in the case of an isotropic medium with re-
spect to all rotations of axes frame the isotropic constitutive relations for
7ij, 1j;, S and TI°, derived from (22)-(25) with A%%, A%, A% and Aj¢ having
the form (42)2 and cjjim, A3, and A7), taking the form (83) of Appendix
A, because of their particular symmetries, are:

for the stress tensor

Tij = A(Sijekk + 2#87;]' — )\9552']'0 + )\{E(SUR]C]C + )\gsRij — )\C€5ijc, (46)

where A\ and g are the well known Lamé constants, that represent the two
significant independent components of c¢;j;m,, and A® and A5° are the two
significant independent components of A;jalm;
for the entropy density

A@e » )\r@ )\00
S = S() + —€i + C—H — 7R7;7; — 76; (47)
p To p P

for the potential of porosity field

I}, = N%0ijenk + Ao“gij + N00i60 + AT"6ij Rk + Ny Rij — A “6,;C,  (48)

rr

where AT and \y" are the two significant independent components of A Tim

for the chemical potential of the fluid-concentration

A€ AQC ¢ P
‘= ——-e¢; + —0+ —R; + —C. (49)
p p p p

Also, by virtue of (42)-(45), from (26)-(28), we deduce the expressions for

the isotropic generalized affinities, Hiij H? and ch, where the tensors Agj,
)\gjj “and )\g;j * have the form (42)s, Aiji and )‘Z‘]}:l keep the form (89) and the

tensor A7, of order six assumes the form (97) of Appendix A, because of

its particular symmetry. In particular, we have:
the generalized affinity conjugated to the flux Vi
7 = [AY"(6ij0ki0mn + GindjkOim) + A5” (8ijOkmOin + Gikdjndim)

+ A3Y0:i0knOtm + Ay (0ik010mn + 0imOjkoni) + A5" 0ik0jmin
+ 2670310 jk0mn + A77 6510 jm0kn + A8 0410 jnOkm
+ X5 0im0510kn + AT6 (0im0jndks + 0indj10km) + N1 0in0im0kt) Vimn
+ N 90i651 + X5 (8i50k1 + 0udji )@
+ [)\lfjc5ik5jz + )\gjc(5ij(5kl + 046%)] 7 s (50)
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where A\Y¥ (s = 1,...11) are the 11 significant independent components of
DA A% A7 the two significant independent components of )\;};]lm 'and

vj©

AV ° Ay ° the two significant independent components of the tensor Aiim-

Equation (50) gives
ik = A7 (0 Vi + 06 Vii) + A5Y (03 Vikr + 6k Vi) + A5"0ij Vi
+ ALY (O Viu + 051 Vi) + As” 0 Viji + Mg 0 Viu + No" Vi
+ NS Viks + N Vjir + A Veig + Viki) + N5 Vi (51)
+ N 0inqy + AT (Oijan + Ojrai) + ijc@kjf + N (0idf + 0kl ;
the generalized affinity conjugated to the heat fluz g;
7 = A Wgir + A5? (Vikk + Vira) + A% + A7 (52)
the generalized affinity conjugated to the fluid-concentration flux jf
I = N7 Vit + A7 (Vi + Vi) + X 9g; + N ¢ (53)

The isotropic rate equations for the fluxes and the internal variable are de-
rived from (29), (32), (34) and (36).
In particular, for the structural permeability tensor r;;, because of the tensors
ik (s =3,4,6,7) of order three vanish (see Subsection A.1 of Appendix A),
the fourth order tensor ﬁilj i and ﬁ?jkl have the form (83) of the Appendix A
and the fifth order tensors ﬁfj ki and ijklm assume the form (77) and (80),
respectively, of the Appendix A, we work out
Fij + Vijkk = 81040k + B3 (001 + 061 |er
+ 8640k + B3 (5ix051 + 0udjn)|raa
+ [BY(Eikt Ojm+ €kt im) + B3 (Eikm O1j+ Ejkm O1i)
+ B3 (Citm ikt Ejim Sik)Viim
+ B%(€ikm O1j+ €jkm it itm Ojk+ €jim Sik)hims  (54)
in which 81, 83 and 3%, 53, are the two significant independent components
of B}jkl and ﬂfjkl, respectively, 32 (s = 1,2, 3) are the three significant inde-
pendent components of Bf’jklm

component of 5z‘8jklmv due to its particular symmetry.

Equation (54) gives

Fij + Vijkk = Bi0ijenk + Bacij + Bioijrie + Bari; + By (€irt Virj+ €k Vi)
+ B3(€irt Viji+ it Vi) + B3 (€ak Vit €k Vik)
+ /Bs(eikm Tkj,m"i_ ejkm Tki,m_‘_ Ejlm ril,m); (55)

and 3% is the only one significant independent
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for the fluz V;ji of the structural permeability tensor r;;, taking into account
that the fourth order tensors /3, (r=1,2,4,5) and the sixth order tensor

'Y?jkzmn have the form (43) and (100), respectively, of the Appendix A, we
have:
Vijk = (M0i0k + 130ik0j1 + 1300051) 37 + (V1 0i56k1 + V305050 + 730165k )
+ (Y165 0k16mn + V3 0i50kmOim + ¥30ij0knOtm + V30ik0j10mn
+ Y2610 jmOin + Ve0ikOnOim + V2 0i10jkOmn + Va0idmkn + Yo 0i1djnOkm
+ Y300im0k0m + Vi16im0i10kn + Via0imjn ki
+ Y1300 0k0tm + V140in0j10km + Vi50in0mOkt) Vimn
+ (V10556 + V30051 + v30udin) ey + (V0010 + V3001 + V5016 ) T
+ [V (OktGmn + Skm01n)dij + ¥50i50knOtm + V3 (8510mn + 6mOn)Sik
+ 7966 jn0tm + V5 (3itmn + Gim0in)dik + V6 (0it6jm + Gimj1)0kn  (56)
+ Y8 (8318km + GimOk)Sjn + ¥50in6 k0t + Yo (310km + 8jmOk)Sin]Tim s
in which 4% (s = 1,...9) are the 9 significant independent components of
%ijzmn'
Equation (56) can be written as follows
Viji = Y105 + V205 + V30035 + Vi0iian + V305 + V30550 + Vi 0i Veu
+ Y86Vt + 305 Vuk + Va0 Viu + Va0 Vit + vebuVug + V201 Vi
+ 8 Vijk + 76 Viks + 1005k Vit + V1 Viik + 12 Veis + 13056 Vit
+ 911 Vjki + 95 Veji + 11056k + 1205 + V38i¢, + 1165
+ 956 T + V50T + V0SijTrig + VS0iru s + V50Tt
+ Y80ikTi; + VS0ikTiLL + VO ik + VoTikg + V80T + Yok (BT)
for the heat flur g;, because the fourth order tensors X?jkl and X?jkl have the
form (43) and (92) of the Appendix A, we obtain the following expression

TG = X" 5§ — @i+ X3 Vikk + X3 Vkik + X3 Veki + X i = X°Ti + XS Tik ke + X5k
(58)
with x§ and x§ the two significant independent components of X?jkl'

In the case where the coefficients x!, x3 (s = 1,2,3), x*, x¥, and x§
are negligible, equation (58) becomes the well-known Maxwell-Cattaneo-
Vernotte equation 79¢; + ¢; = —XST,ia allowing finite speeds of thermal
propagation and giving Fourier equation ¢; = —x°T;, describing thermal
disturbances with infinite velocity of propagation, when the relaxation time
79 goes to zero;
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for the fluid-concentration flux ji, taking into consideration that the fourth
order tensors fg’jkl and ffjkl have the form (43) and (92), respectively, of the
Appendix A, we obtain

T8 = = J§ + €20 + & Vikk + EV ik + E Vi + £ ¢ + ET i+ E ik + €57 khsis
(59)

in which ¢ and &5 are the two significant independent components of fgkl.
The isotropic generalized telegraph temperature equation is deduced

from (38), when the second order tensors kij, vij, 7ij, I/ilj and l/% have the
form (42)9 and the fourth order tensors Vf’jkl and ijkl assume, respectively,

the form (43) and (92) of Appendix A:

T+ T = kT i — v(T%i + €i) + @ (T9¢ + ¢) + 0 (19 + 74) — v j; (60)

4 3 3 3 6 6
—vici — (M Vigja + 5 Vjija + V3Vijia) — (Wi gi + 1erjji)

in which ¢ and 1§ are the two significant independent components of V?jkl.
The evolution equations (55), (57), (58), (59) and (60) describe disturbances
with finite velocity and fast phenomena having relaxation times comparable
or higher than the relaxation times of the materials taken into account.
Also, in these equations there are terms taking into consideration non-local
effects and relating these rate equations to the inhomogeneities present in
the system.

The isotropic linearized internal energy balance is worked out from
(41), when the second order tensors )\?js and )\ff have the form (42)s:

pé = To)\eaﬂiyi + pCUT — To)\ref‘l’i — To)\ecé. (61)

4.2 Closure of the governing system of equations in the iso-
tropic case

In this Subsection, to close the system of equations describing linear isotropic
porous media filled by a fluid flow, we linearize the balance equations (5), (6)
and the rate equations (55), (57), (58) and (59) around the equilibrium state
(18)-(21). Taking into account the constitutive relations (46) and (47), the
linearized temperature equation (60) and internal energy balance equation
(61), the definitions €;; = %(u” +u;;) and v; = 4, indicating the deviations
of the fields from the thermodynamic equilibrium state by the same symbols
of the fields themselves, and considering the case where we may replace the
material derivative by the partial time derivative, we obtain the following
closed system of 45 equations for 45 unknowns: 1 for ¢, 3 for u;, 6 for r;;,
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27 for Vi, 3 for ¢;, 3 for ji, 1 for T and 1 for e

oc .
Par = —Jis (62)
82ui _ Oe re re ce
PoE — (A p)up ki + ptg e — N T + N Pppe + Ao ek — A ¢, (63)
ot ijk,k 196Uk, k 5172 Wi,j T Ujyi 1945 Tkk 274j
+ BY(€imt Viij+ €ji Vi) + B3 (€irt Viji+ g Viit)
+ B3 (€ak Vi+ i Vik) + B%(€itm Thjm~+ € jkom Thism+ Ejitm Titm)s
Vil _ 15,58 4 A oidC + Yh05078 + 1205506 + 120 a; + 1200
gt 19GJk T Y20k T V305k)i T 11045k T V20ikdj T Y30k
+ 726 Vit + V305 Vi + V30 Vik + Va0ikVju + Va0Vt + vedikVuj
+ 28,1 Vin + V8 Vijk + v Vikj + Viodik Vit + vir Viik + ViaViij
+ 3058 Vus + Vi Viki + VisVeji + V10ii¢ + Va0inc,j + V305kC,
+ 4065k + V50T j + V56,5 T i +A96i5mk11 + V30551 k + VS0ikT 1
+Y$0ikTj + VST + YTk + YTk + Y8k + Ve ks (65)
qa% _ 1. ) 3 3 3 4
Ty =X Ui T4 + X1 Vikk + X2 Vkik + X3Viki + X Cji
—X°Ti + XS7ik e + X5Tkk s (66)
040 o . 3 3 3 4
T 5 = Ui +&7G; + & Vikk + & Viik + E3Viks + &7 ¢
+&T; + ri ke + ESrin s, (67)
0*T OT Pu;;  Ouyy d%c e
q R q¥ Ui isi v YC
"o T ot & 7<T oz ot ) TP\ T o T a
827'“ 87”" 1- 4
= (¥WVigji + v3Viiga + v3Vijia) — (Wriggi + virjza) . (68)
Oe 0 au” oT 987"7;1; 0 dc
— =Ty\¢ ! — — T\ — To\’¢—. 69
Por =10 gy TPy —HoA s —HAT S (69)

Notice that also in the case where we do not take into consideration equation
(69) for the internal energy, the system of equations (62)-(68) is still closed.
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5 Isotropic porous media with respect to all ro-
tations and inversions of axes frame (perfect
isotropic case)

In this Section we consider perfect isotropic porous media having symmetry
properties invariant with respect to all rotations and to inversions of the
frame of axes.

In this case the tensors of odd order vanish [19], i.e.

L; =0, Li]’k =0, Lijk:lm =0, (70)

the tensors of even order are given by (42)2, (43) and (45) and take equal
forms to those wvalid in the isotropic case, coming from special symmetry
properties (see Subsections A.3 and A.4 of the Appendix A).

5.1 Constitutive relations, generalized affinities, rate, tem-
perature and energy equations in perfect isotropic case

Notice that all the tensors that appear in equations (22)-(28) and (32),
(34), (36) and (38) are of even order, so that the constitutive relations, the
generalized affinities, the rate equations for the porosity field flux, the heat
flux and the fluid-concentration flux, the temperature and energy equations
remain unchanged, with respect the isotropic case, and assume the form
(46)-(49), (51)-(53), (57)-(59) and (60), (61). Taking into account relations
(70), the only different equation in this case is the rate equation (29) for the
internal variable r;;, that takes the form

Fij = —Vijkk + B10ijekk + Baij + Bi0ijThn + Barij. (71)

5.2 Closure of the governing system of equations in the per-
fect isotropic case

Linearizing the balance equations (5), (6) and the rate equations (71) and
(57)-(59) around the equilibrium state (18)-(21), taking into account the
constitutive relations (46) and (47), the linearized temperature and energy
equations (60) and (61), equations (62), (63), (65)-(69) remain unchanged
and relation (71) takes the form

87’2-]-

ot
where we have considered the case in which the material derivative may
be replaced by the partial time derivative and the deviations of the fields

= —Vijkk + Bi0ijerk + Bacij + BLOijTrr + Barij, (72)
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from the thermodynamic equilibrium state have been indicated by the fields
themselves. Thus, in total we have a closed set of 45 equations for the 45
unknowns ¢, w;i, 75, Vijk, ¢i» Ji, 1T and e. The obtained results can be
applied to real situations. The derived system of equations is very complex
but in simpler cases it is possible to find analytical or numerical solutions. In
particular, in [22] we have studied coupled porosity and fluid-concentration
waves, calculating the dispersion relation and the propagation modes of
these complex waves.

Conclusions

In this paper we have obtained a description of isotropic and perfect isotropic
porous media filled by a fluid flow, in the framework of rational extended
irreversible thermodynamics with internal variables, where the structural
permeability tensor r;; (with its gradient r;; ;) and its flux V;j;, are intro-
duced as internal variables, in the thermodynamic state vector. Here, the
results obtained in previous papers for anisotropic porous media, are special-
ized when the considered media have symmetry properties invariant under
orthogonal transformations of the axes frame. It was assumed that the mass
density is constant, the body force and heat source are negligible and the
constitutive equations, the generalized affinities, the rate equations for dis-
sipative fluxes, presenting a relaxation time, and the closure of system of
equations describing the behaviour of the considered media were worked out
in the isotropic and perfect isotropic cases. It was seen that porous channels
influence mechanical, thermal and transport properties of these media. In
particular, when the density of porous defects is higher than its character-
istic value the thermal conductivity decreases. The generalized Maxwell-
Vernotte-Cattaneo, Fick-Nonnenmacher and telegraph temperature equa-
tions were obtained as particular cases. The study of fluid-saturated porous
media has a great interest in applied sciences, like geology, hydrology, phar-
maceutics and nanotechnology, where there are situations of propagation of
high-frequency waves.

A Particular cases of isotropic and perfect isotropic
tensors with special properties
In the following Subsections we will consider isotropic tensors of odd order

(third and fifth), and isotropic and perfect isotropic tensors of even order
(fourth and sixth), having special symmetry properties. We emphasize that
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the perfect isotropic tensors of odd order (first, third and fifth) are null (see
(70)). Also the isotropic tensors of first order are null (see (42);). The
results related to the tensors of odd order are valid only in the isotropic
case, when these tensors are invariant in form with respect to all rotations
of axes frame (see Section 4), while the results related to the tensors of even
order are valid both in the isotropic case and in the perfect isotropic case,
when these tensors are invariant in form with respect to all rotations and
inversions of axes frame, (see Sections 4 and 5).

A.1 Special form for isotropic tensors of order three

In the case where a third order isotropic tensor L;j; has the symmetry
Lijk = Ljik, (73)

(valid for the third order tensors Biik (s = 3,4,6,7) in the rate equation
(29)), we have L;j;, = 0.
In fact, from relation (42)3 we can write

Ljik = L €jik= —L €, (74)

and equating this last relation with (42)3 we immediately deduce L = 0.

A.2 Special form for isotropic tensors of order five

In the following we study the form of isotropic tensors of order five having
special symmetries.

A.2.1 Case where a fifth order isotropic tensor L;jr;m, has one
particular symmetry

In the case when
Lijkim = Ljikim, (75)

(valid for the tensor ijklm in equation (29)) we show that the number of the
significant independent components of this tensor reduces from 6 to 3.

In fact, from (44) we have

Ljikim = — L1 €45k Oim — L2 €451 Okxm — L3 €ijm Opt + La €kt Oim
+ L5 €jkm 01i + L6 €jim ik (76)
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Equating (44) and (76) we obtain
Lijkim =A1(€ikt Ojm+ €jkt Oim) + A2(€ikm 01j+ €jkm 013)
+ A3(€itm Ojk+ €jim i), (77)
where A1 = L4, AQ = L5 and A3 = L6.
A.2.2 Case where a fifth order isotropic tensor L;ji;,, presents
two symmetries

In the case when
Lijkim = Ljikims  Lijkim = Lijikm, (78)

(valid for the tensor ﬁfjklm in equation (29)) we show that the significant

independent component of this tensor is only one.
In fact, from (77) we have

Lijikm = — A1(€ikt Ojm~+ €kt Oim) + A2(€itm Okj+ €jim ki)
+ A3(€ikm 01+ €jkm 0ir)- (79)
Equating (77) and (79) we finally work out
Lijikm = L(€ikm 01j+ €jkm 0ti+ Citm Sjk+ Ejim Oik)s (80)
where L = Ay = As.
A.3 Special form for fourth order isotropic and perfect isotropic

tensors

In this Subsection we will treat special symmetry properties of a fourth order
tensor L;;i; and we will demonstrate that L;;x; can be expressed only by two
significant independent components that will be called A; and As.

A.3.1 Case where a fourth order isotropic tensor L;ji; has one
particular type of symmetry

In the case when
Lijri = Lji, (81)

(valid for tensors B}jkl and 6%“ in equation (29)), from relation (43) we have

Ljigy = L1600 + L2065 + L3610 (82)



218 A. Fama, L. Restuccia

Adding equations (43) and (82), using L;jx = Ljix and multiplying by 1/2,
we obtain

Lijin = A10ij0k1 + A2(6ikdj1 + k), (83)
where A1 = L1 and Ay = (Lg + L3)/2
A.3.2 Case where a fourth order isotropic tensor L;;i; has three
symmetries
In the case when
Lijti = Ljiri,  Liji = Lijik,  Lijk = Ly, (84)
equivalent to the following chain of equalities
Lijim = Ljitm = Lijmi = Ljimi = Limij = Lmiij = Lmiji = Limji,  (85)

(valid for the tensors c;ju, Afj,, and A[7, present in equations (22) and
(24)), from (83) (that includes the symmetry (84);1) we can see that also the
symmetry (84)y is true, as well as (84)3, because

Liij = A16110i5 + A2(0ki01j + 6xjda) = Lija- (86)
The other symmetries in (85) are also satisfied. Thus, we use for the tensors
Cijki, Afjp and ATT, expression (83) again.
A.3.3 Case where a fourth order isotropic tensor L;ji; has one
particular symmetry of another type

In the case when
Lijii = Liij, (87)

(valid for the coefficients A7}, and )\ZJZZ in equations (26)-(28)) from relation
(43) we deduce

Liiji, = L1010 + L2016 + L3045 (88)
Using the same procedure seen in Subsection A.3.2, we obtain
Lijig = A10ix6j1 + A2(8i50k1 + 0udj), (89)

where A; = Ly and Ay = (Ll + L3)/2.

It is useful to emphasize that the same result (89) is obtained if the
symmetries Ljjiy = Ljk; and/or Lij, = Ly are valid. These results are
not used in this paper.



Porous isotropic media 219

A.3.4 Case where a fourth order isotropic tensor L;;i; has the
symmetry Lijkl = Likjl

In the case when
Lijr = Likji, (90)

(valid for( th)e tensors ijkl in equation (34) and §i6jkl in equation (36)), from
relation (43) we have

Ligji = L16i051 + L20i0k1 + L30i0k;- (91)
Using the same procedure seen in Subsection A.3.2, we obtain

Lijii = A10ubji + A2(0i50k1 + 0irdj1), (92)
with A] = L3 and Ay = (Ll + LQ)/Q.
A.3.5 Case where a fourth order isotropic tensor L;j, has two

symmetries

In the case when
Lijki = Lirji, Lijr = Lijri, (93)

equivalent to the following chain of equalities
Lijii = Likji = Lijki = Likji, (94)

(valid for the tensor ngl in the temperature equation (38)), from (92) (that
includes the symmetry (93);) we can see that also the symmetry (93)2 is
satisfied, so that we use for the tensor Vijl expression (92) again.

A.4 Special form for isotropic and perfect isotropic tensors
of order six

In this Subsection we will treat special symmetry properties of a sixth order
tensor L;jrimn and we will demonstrate that the number of its significant
independent components is reduced.

A.4.1 Case where a sixth order isotropic tensor L;;kimn has one
particular symmetry

In the case when
Lijk:lmn = lem’jka (95)
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(valid for the tensor Aljkimn 11 €quation (26)) we show that the number of

the significant independent components of this tensor reduce from 15 to 11.

In fact, writing relation (45) in the case of Ljmpnijr (i.e. by exchanging
indexes {1, j, k} with indexes {l,m,n}), we obtain

Limnijk =L101m0nidjk + L2dim0njoir + L30imOnkdij + Ladindmidjk
+ L501n0mjdik + Le0in0miij + L701i0mnd i + Lgd1i0mj0nk
+ L901;0mk0nj + L10061j0mn0ik + L1101j0mi0nk + L12010mk0ni
+ L130150mn0ij + L140150mi0n; + L150150m;0n;- (96)

Adding relation (96) to (45) and multiplying by 1/2, we work out

Lijkimn =A1(0ij0ki10mn + 0in0;x01m) + A2(0:j0kmOin + 0ik0jndim,)
+ A30i§0kn0tm + A4(0ik0510mn + 0im0;k0n1) + As56ik0jmdim
+ A60i1050mn + A7010jm0kn + Ag0i16jnOkm + A90im0i0kn
+ A10(6imOjnOr + 6indji0km) + A110in im0k, (97)

with Al = (L1 + L13)/2, AQ = (Lg + LG)/27 Ag = L3, A4 = (L4 =+ LIO)/27
As = Ls, Ag = L7, A7 = Lg, Ag = L9, A9 = L11, Ao = (Li2 + L14)/2,
A1 = Lys.

A.4.2 Case where a sixth order isotropic tensor L;;jkimn has one
particular symmetry of another type

In the case when
Lijklmn = Lijkmlru (98)

(valid for the tensor ’yg.klmn in equation (32)) we show that the number of
the significant independent components of this tensor reduce from 15 to 9.

In fact, writing relation (45) in the case of Ljjgmi, (i.e. by exchanging index
[ with index m), we have

Lijkmin =L10ij0kmOin + L20ij0k10mn + L30ij0kn0mi + L40ik0jmin
+ L50i10510mn + L6010 0mi + L70imd;k01m + Lgdimdji0kn
+ L90im0ndki + L100:10k0mn + L110310jm0kn + L120:10j10km
+ L136in016mi + L146in0 im0kt + L156in0510km- (99)
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Adding this relation to (45), using (98) and multiplying by 1/2, we have

Lijkimn =A1(0k16mn + OkmOin)dij + A20i0kn01m + A3(0j10mn + djmdin)dik
+ A40i16jnOtm + As(0it0mn + 0im0in) 0k + A6 (0510 jm + 6imj1)0kn

+ A7(8i16km + 0imOk1)0jn + Ag0in0k01m + A9(8510km + djmOr1)din,
(100)

where A1 = (L1 =+ LQ)/2, A2 = L3, A3 = (L4 + L5)/2, A4 = LG, A5 =
(L7 + L10)/2, As = (Ls + L11)/2, A7 = (Lg + L12)/2, Ag = Li3, Ag =
(L1a + L15)/2.
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