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Abstract

In this paper, the author considered two specializations of the iden-
tity q-Chu Vandermonde and derived two recurrence relations for the
number of partitions of n into m parts with the smallest part greater
than or equal to k and the minimal difference d.
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1 Introduction

For |q| < 1, the Rogers-Ramanujan functions are defined by

G(q) =
∞∑
n=0

qn
2

(q; q)n
(1)

and

H(q) =

∞∑
n=0

qn
2+n

(q; q)n
, (2)

∗Accepted for publication on April 15, 2020
†mircea.merca@profinfo.edu.ro Academy of Romanian Scientists, Ilfov 3, Sector 5,

Bucharest

155

DOI    https://doi.org/10.56082/annalsarscimath.2020.1-2.155



156 M. Merca

where

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1)

is the q-shifted factorial with (a; q)0 = 1.

Because the infinite product

(a; q)∞ = lim
n→∞

(a; q)n

diverges when a 6= 0 and |q| > 1, whenever (a; q)∞ appears in a formula, we
shall assume that |q| < 1. For |q| < 1, the functions G(q) and H(q) satisfy
the famous Rogers-Ramanujan identities [6, 7]:

1. G(q) =
1

(q, q4; q5)∞
,

2. H(q) =
1

(q2, q3; q5)∞
,

where

(a1, a2 . . . , an; q)∞ = (a1; q)∞(a2; q)∞ · · · (an; q)∞.

The Rogers-Ramanujan identities are two of the most remarkable and
important results in the theory of q-series, having a remarkable applicabil-
ity in areas as enumerative combinatorics, number theory, representation
theory, group theory, statistical physics, probability and complex analysis
[1]. They were first discovered in 1894 by Rogers [7] and then rediscovered
by Ramanujan in 1913. It is a well-known fact that there is a list of forty
identities involving G(q) and H(q) that Ramanujan compiled. More details
about these identities can be found in the classical texts by Andrews and
Berndt [3].

Due to MacMahon [5], we have the following combinatorial version of
the Rogers-Ramanujan identities:

1. The number of partitions of n into parts congruent to {1, 4} mod 5
equals the number of partitions of n into parts with the minimal dif-
ference 2.

2. The number of partitions of n into parts congruent to {2, 3} mod 5
equals the number of partitions of n with minimal part 2 and minimal
difference 2.

In this paper, we consider Q
(d,k)
m (n) the number of partitions of n into

m parts where each part differs from the next by at least d and the smallest
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part is greater than or equal to k. According to [2, Theorem 11.4.2], we
have

∞∑
n=0

Q(d,k)
m (n)qn =

qkm+d(m2 )

(q; q)m
.

In general, k is considered a positive integer. Assuming that k is a nonneg-

ative integer, we remark few special cases of Q
(d,k)
m (n):

1. When k is a positive integer, Q
(1,k)
m (n) denotes the number of partitions

of n into distinct m parts, each part greater than or equal to k.

2. When k is a positive integer, Q
(0,k)
m (n) denotes the number of partitions

of n into m parts, each part greater than or equal to k.

3. Q
(1,0)
m (n) denotes the number of partitions of n into distinct m parts

or distinct m− 1 parts, i.e.,

Q(1,0)
m (n) = Q(1,1)

m (n) +Q
(1,1)
m−1(n).

4. Q
(0,0)
m (n) denotes the number of partitions of n into at most m parts,

i.e.,

Q(0,0)
m (n) = Q

(0,1)
0 (n) +Q

(0,1)
1 (n) +Q

(0,1)
2 (n) + · · ·+Q(0,1)

m (n).

Instead of Q
(0,0)
m (n), we will use the notation pm(n).

It is clear that the famous Rogers-Ramanujan identities can be rewritten in

terms of Q
(d,k)
m (n) as follows:

1.
∞∑
n=0

∞∑
m=0

Q(2,1)
m (n)qn =

1

(q, q4; q5)∞
,

2.

∞∑
n=0

∞∑
m=0

Q(2,2)
m (n)qn =

1

(q2, q3; q5)∞
.

This approach allows us to derive combinatorial interpretations of the Rogers-
Ramanujan identities in terms of pm(n):

1. The number of partitions of n into parts congruent to {1, 4} mod 5
equals

∞∑
m=0

pm(n−m2).
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2. The number of partitions of n into parts congruent to {2, 3} mod 5
equals

∞∑
m=0

pm(n−m−m2).

In this paper, motivated by these results, we shall provide some recur-

rence relations for Q
(d,k)
m (n).

Theorem 1.1. For k > 0 and d,m, n > 0,

Q(d,k)
m (n) =

m∑
j=0

n−(d−1)(m2 )∑
r=0

(−1)jQ
(d,k)
m−j

(
r + k(m− j) + (d− 1)

(
m− j

2

))

× P
(
k − 1, j, n− r − (d− 1)

(
m

2

))
,

where P (k,m, n) denotes the number of partitions of n into at most m parts,
each part less than or equal to k.

Theorem 1.2. For d, k,m, n > 0,

Q(d,k)
m (n) =

min(k,m)∑
j=0

n+j−d(m2 )∑
r=0

(−1)jQ
(d,k)
m−j

(
r + k(m− j) + d

(
m− j

2

))

×Q
(
k, j, n+ j − r − d

(
m

2

))
,

where Q(k,m, n) denotes the number of partitions of n into exactly m dis-
tinct parts, each part less than or equal to k.

Some special cases of Theorem 1.1 can be easily derived considering that

P (0,m, n) = δ0,n,

where δi,j is the usual Kronecker delta function.

Corollary 1.3. For m,n > 0,

1. Q(0,1)
m (n) =

m∑
j=0

(−1)m−jQ
(0,1)
j

(
n+ j +

(
m

2

)
−
(
j

2

))
;

2. Q(1,1)
m (n) =

m∑
j=0

(−1)m−jQ
(1,1)
j (n+ j);
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3. Q(2,1)
m (n) =

m∑
j=0

(−1)m−jQ
(2,1)
j

(
n+ j −

(
m

2

)
+

(
j

2

))
.

On the other hand, taking into account that

P (1,m, n) =

{
1, for n 6 m,

0, for n > m,

by Theorem 1.1, we obtain the following relations.

Corollary 1.4. For m,n > 0,

1. Q(0,2)
m (n) =

m∑
j=0

m−j∑
r=0

(−1)m−jQ
(0,2)
j

(
n+ 2j − r +

(
m

2

)
−
(
j

2

))
;

2. Q(1,2)
m (n) =

m∑
j=0

m−j∑
r=0

(−1)m−jQ
(1,2)
j (n+ 2j − r);

3. Q(2,2)
m (n) =

m∑
j=0

m−j∑
r=0

(−1)m−jQ
(2,2)
j

(
n+ 2j − r −

(
m

2

)
+

(
j

2

))
.

The following recurrence relation can be obtained from Theorem 1.2,
replacing k by 1 and considering that

Q(1, 0, n) = δ0,n and Q(1, 1, n) = δ1,n.

Corollary 1.5. For d,m, n > 0,

Q
(d,1)
m+1(n+ 1) = Q

(d,1)
m+1(n−m) +Q(d,1)

m (n− dm).

Moreover, taking into account that

Q(2, 0, n) = δ0,n, Q(2, 1, n) = δ1,n + δ2,n, and Q(2, 2, n) = δ3,n,

the case k = 2 of Theorem 1.2 reads as follows.

Corollary 1.6. For m > 0, d, n > 0,

Q(d,2)
m (n) = Q(d,2)

m (n− 2m) +Q
(d,2)
m−1(n− dm+ d− 2)

+Q
(d,2)
m−1(n− dm+ d− 3)−Q(d,2)

m−2(n− 2dm+ 3d− 5).
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2 Proof of Theorem 1.1

For any positive integers n, m and k, Andrews [1] examined the partitions
of n into at most m parts, each part less than or equal to k and remarked
few results for the partition function P (k,m, n) which denotes the number
of these restricted partitions (see for example [1, Eq. (3.2.6), Theorems 3.1
and 3.10]). The generating function of P (k,m, n) is given by

km∑
n=0

P (k,m, n)qn =

[
k +m
k

]
.

For k > 0 and n > 0, we have the following specialization of the identity
q-Chu Vandermonde I [4]:

qnk+(n2)

(q; q)n
=

n∑
j=0

(−1)j
q(

n−j
2 )

(q; q)n−j

[
k − 1 + j

j

]
.

Considering this identity and the generating functions for Q
(d,k)
m (n) and

P (k,m, n), we can write:

∞∑
n=0

Q(1,k)
m (n)qn

=
m∑
j=0

(−1)j

( ∞∑
n=0

Q
(1,0)
m−j(n)qn

)( ∞∑
n=0

P (k − 1, j, n)qn

)

=

∞∑
n=0

m∑
j=0

n∑
r=0

(−1)jQ
(1,0)
m−j(r)P (k − 1, j, n− r)qn.

Extracting the coefficients of qn in the last identity, we obtain

Q(1,k)
m (n) =

m∑
j=0

n∑
r=0

(−1)jQ
(1,0)
m−j(r)P (k − 1, j, n− r). (3)

On the other hand, we have the relation

qkm+d(m2 )

(q; q)m
=

∞∑
n=km+(d−1)(m2 )

Q(d,k)
m (n)qn

=

∞∑
n=0

Q(d,k)
m

(
n+ km+ (d− 1)

(
m

2

))
qn+km+(d−1)(m2 ),



On the Number of Partitions 161

that can be written as

q(
m
2 )

(q; q)m
=

∞∑
n=0

Q(d,k)
m

(
n+ km+ (d− 1)

(
m

2

))
qn.

Taking into account that

q(
m
2 )

(q; q)m
=

∞∑
n=0

Q(1,0)
m (n) qn,

we deduce

Q(d,k)
m

(
n+ km+ (d− 1)

(
m

2

))
= Q(1,0)

m (n). (4)

In a similar way, we obtain

Q(d,k)
m

(
n+ (d− 1)

(
m

2

))
= Q(1,k)

m (n). (5)

The proof follows easily from (3)-(5).

3 Proof of Theorem 1.2

The proof of this theorem is quite similar to the proof of Theorem 1.1.
Following the notation in Andrews’s book [1], we denote by Q(k,m, n) the
number of ways in which the integer n can be expressed as a sum of exactly
m distinct positive integers less than or equal to n, without regard to order.
By [1, Theorem 3.3], we have

∞∑
n=0

Q(k,m, n)qn = q(
m+1

2 )
[
k
m

]
.

For n, k > 0, we have the following specialization of the identity q-Chu
Vandermonde I [4]:

qnk

(q; q)n
=

min(n,k)∑
j=0

(−1)j
q(

j
2)

(q; q)n−j

[
k
j

]
.
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Considering this identity and the generating functions for Q
(d,k)
m (n) and

Q(k,m, n), we can write

∞∑
n=0

Q(0,k)
m (n)qn

=

min(k,m)∑
j=0

(−1)j

qj

( ∞∑
n=0

Q
(0,0)
m−j(n)qn

)( ∞∑
n=0

Q(k, j, n)qn

)

=
∞∑
n=0

min(k,m)∑
j=0

n∑
r=0

(−1)jQ
(0,0)
m−j(r)Q(k, j, n− r)qn−j

=

∞∑
n=0

min(k,m)∑
j=0

n+j∑
r=0

(−1)jQ
(0,0)
m−j(r)Q(k, j, n+ j − r)

 qn.

Extracting the coefficients of qn in the last identity, we obtain the identity

Q(0,k)
m (n) =

min(k,m)∑
j=0

n+j∑
r=0

(−1)jQ
(0,0)
m−j(r)Q(k, j, n+ j − r). (6)

Since

qkm+d(m2 )

(q; q)m
=

∞∑
n=d(m2 )

Q(d,k)
m (n)qn

=

∞∑
n=0

Q(d,k)
m

(
n+ d

(
m

2

))
qn+d(m2 ),

we deduce that

qkm

(q; q)m
=

∞∑
n=0

Q(d,k)
m

(
n+ d

(
m

2

))
qn.

On the other hand, we have

qkm

(q; q)m
=

∞∑
n=0

Q(0,k)
m (n)qn.

Now it is clear that

Q(d,k)
m

(
n+ d

(
m

2

))
= Q(0,k)

m (n). (7)
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The identity

Q(d,k)
m

(
n+ km+ d

(
m

2

))
= Q(0,0)

m (n) (8)

follows in a similar way. By (6)-(8), we arrive at our conclusion.
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