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Abstract

In this paper, the author considered two specializations of the iden-
tity ¢-Chu Vandermonde and derived two recurrence relations for the
number of partitions of n into m parts with the smallest part greater
than or equal to k& and the minimal difference d.
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1 Introduction

For |q| < 1, the Rogers-Ramanujan functions are defined by
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where
(a;q)n = (1 —a)(1—aq) - (1 —ag"™")
is the g-shifted factorial with (a;q)o = 1.
Because the infinite product

(@; @)oo = lim (a;q)n

diverges when a # 0 and |¢q| > 1, whenever (a; ¢)~ appears in a formula, we
shall assume that |¢| < 1. For |¢| < 1, the functions G(q) and H(q) satisfy
the famous Rogers-Ramanujan identities [6, 7]:

1
LG = ——,
@ (¢:4% ¢°) o
1
2. Hg) = —————,
@ (@2, 6% ¢°) oo
where
(a1,a2...,0n;@) 00 = (a1;9)o0(a2; @)oo - - (A3 @)oo

The Rogers-Ramanujan identities are two of the most remarkable and
important results in the theory of ¢-series, having a remarkable applicabil-
ity in areas as enumerative combinatorics, number theory, representation
theory, group theory, statistical physics, probability and complex analysis
[1]. They were first discovered in 1894 by Rogers [7] and then rediscovered
by Ramanujan in 1913. It is a well-known fact that there is a list of forty
identities involving G(q) and H(q) that Ramanujan compiled. More details
about these identities can be found in the classical texts by Andrews and
Berndt [3].

Due to MacMahon [5], we have the following combinatorial version of
the Rogers-Ramanujan identities:

1. The number of partitions of n into parts congruent to {1,4} mod 5
equals the number of partitions of n into parts with the minimal dif-
ference 2.

2. The number of partitions of n into parts congruent to {2,3} mod 5
equals the number of partitions of n with minimal part 2 and minimal
difference 2.

In this paper, we consider %’k) (n) the number of partitions of n into

m parts where each part differs from the next by at least d and the smallest
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part is greater than or equal to k. According to [2, Theorem 11.4.2], we

have o
00 km~+d("
S QN (g =T
= (¢; D

In general, k is considered a positive integer. Assuming that k is a nonneg-

i

ative integer, we remark few special cases of Q n):

1. When £k is a positive integer, Q%’k) (n) denotes the number of partitions
of n into distinct m parts, each part greater than or equal to k.

2. When k is a positive integer, QS}’“) (n) denotes the number of partitions
of n into m parts, each part greater than or equal to k.

3. i,ll’o)(n) denotes the number of partitions of n into distinct m parts
or distinct m — 1 parts, i.e.,

QL0 (n) = Q1D (n) + QY (n).

4. Q’O) (n) denotes the number of partitions of n into at most m parts,
ie.,

QRO = Q" (m) + QM () + @V m) -+ QD ().

Instead of QSS’O) (n), we will use the notation p,,(n).

It is clear that the famous Rogers-Ramanujan identities can be rewritten in
(d.k) )
terms of Q" (n) as follows:

1. i i QY (n)g" = —

== (4, 0% ¢%) o0’
[ee] [ee] 1

2. Q(Q’z) n qn = - =t -
nzz;)mgo m (1) (42, 4% ¢®) o

This approach allows us to derive combinatorial interpretations of the Rogers-
Ramanujan identities in terms of py,(n):

1. The number of partitions of n into parts congruent to {1,4} mod 5

equals
oo
Z pm(n —m?).
m=0
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2. The number of partitions of n into parts congruent to {2,3} mod 5
equals

oo
Z pm(n —m —m?).
m=0

In this paper, motivated by these results, we shall provide some recur-
rence relations for Qn‘f k) (n).

Theorem 1.1. For k >0 and d,m,n > 0,
(17Q (74 wm =)+ @ -1 (" 7))

xP(k—l,j,n—r—(d—l)C;)),

where P(k,m,n) denotes the number of partitions of n into at most m parts,
each part less than or equal to k.

Q) =Y

j=0 =0

Theorem 1.2. Ford,k,m,n > 0,

min(k,m) n+j— d( )

S vt ek ("))

xQ(k:,j,n—l—j—r—d(gl)),

where Q(k,m,n) denotes the number of partitions of n into exactly m dis-
tinct parts, each part less than or equal to k.

Some special cases of Theorem 1.1 can be easily derived considering that
P(0,m,n) = don,
where §; ; is the usual Kronecker delta function.
Corollary 1.3. For m,n > 0,

L QEm) = Y1y gl (i (5)-(2)

7=0

m

2. QP =3 (-0 (n+);

J=0
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o =3soma (v (3) + (3))
=0

J

On the other hand, taking into account that

1, for n < m,

0, forn > m,

P(1,m,n) = {

by Theorem 1.1, we obtain the following relations.

Corollary 1.4. For m,n > 0,

m m—j .
L Q2w =3 S (17 Q? (wr2i -+ (5) - (§)):

7=0 r=0
m m-—) '
2 QLA ) =303 ()" QY (n+2) —r);
j=0 r=0
(2,2) N (2,2) J
2,2 _ m—j ) s
2 Q) =323 (-1 <n+2y - <2>+(2))

The following recurrence relation can be obtained from Theorem 1.2,
replacing k by 1 and considering that

Q(1,0,n) = don and Q(1,1,n) = d1p.
Corollary 1.5. For d,m,n > 0,
Qitt(n+1) = Qi (n —m) + QLD (n — dm).
Moreover, taking into account that
Q(2,0,n) = don, Q(2,1,n) =01, + d2.pn, and Q(2,2,n) = d3.n,
the case k = 2 of Theorem 1.2 reads as follows.

Corollary 1.6. For m >0, d,n >0,

Qi (n) = QWD (n —2m) + Q2 (n — dm +d - 2)
+ Q%) (n —dm +d - 3) — Q2 (n — 2dm + 3d — 5).

m—2
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2 Proof of Theorem 1.1

For any positive integers n, m and k, Andrews [1] examined the partitions
of n into at most m parts, each part less than or equal to k£ and remarked
few results for the partition function P(k,m,n) which denotes the number
of these restricted partitions (see for example [1, Eq. (3.2.6), Theorems 3.1
and 3.10]). The generating function of P(k, m,n) is given by

km k+
ZP(k,m,n)q” = [ km] .
n=0
For k£ > 0 and n > 0, we have the following specialization of the identity

¢-Chu Vandermonde I [4]:

S a )

won = =V o

3]

Considering this identity and the generating functions for Qﬁ,‘f”“) (n) and
P(k,m,n), we can write:

> QMK (n)q
n=0

HMS TMS

s

m n

Z JQn}LOJ( JP(k—1,5,n—7)q".

j=0r
Extracting the coefficients of ¢" in the last identity, we obtain
m n
1,0) .
QP () =3 3 (1P QL )Pk —1,5,n — 7). 3)
7=0r=0
On the other hand, we have the relation

km—&—d’; %)
DS g

(¢ Qm n=km+(d—1)(72)

= i Q%k) <n +km+(d—1) (?)) qn+km+(d,1)(72n)’

n=0
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that can be written as

(qq;(:f))m :iQ%k) (n—i—km+ (d— 1)(2)) "

Taking into account that

(%) >
4N o) () o
(4 @)m ;Qm ")
we deduce
Qik) <n +km+ (d—1) <7;)> = QL (n). (4)

In a similar way, we obtain

Qi (n+ @-1)(7) ) = oHm. (5)

The proof follows easily from (3)-(5).

3 Proof of Theorem 1.2

The proof of this theorem is quite similar to the proof of Theorem 1.1.
Following the notation in Andrews’s book [1], we denote by Q(k,m,n) the
number of ways in which the integer n can be expressed as a sum of exactly
m distinct positive integers less than or equal to n, without regard to order.
By [1, Theorem 3.3|, we have

3 () [F
n o m
> Qk,m,n)g" =g\ [m} :
n=0
For n,k > 0, we have the following specialization of the identity ¢-Chu
Vandermonde I [4]:

nk min(n,k

R C R 2
a 4
(QS Q)n B =0 ( 1) (QS Q)n—j |;7:| ‘
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Considering this identity and the generating functions for §,‘f”“) (n) and

Q(k,m,n), we can write

> QUM (n)q
n=0
min(k,m) ( 00
= 2 (ZQ 2 (n ) (Z Q(k,j,mq”)
7=0 n=0

oo min(k,m) n

=3 > WG jn =g

n=0 j=0 r=0
00 min(k,m) n+j
(0,0
=2 | X XEVQLMRKjnti-r) | d"
n=0 7j=0 r=0

Extracting the coefficients of ¢" in the last identity, we obtain the identity

min(k,m) ntj

QW)= 3= 3 (-17QuY QK.+~ 7). (6)

7j=0 r=0
Since
km+d(") oo
e IR Rl
’ n=d(7)

= S (nra() ) e,
n=0

we deduce that

km o
q _ (d,k) m n
(q;q)m_;Qm <n+d<2>>q

On the other hand, we have

km o
T _ (O.F) (1,
. ;Qm (n)q

Q) (n+a(’y) ) = @tHm). )

Now it is clear that
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The identity
m
Q%R <n + km + d( 9 >) = QWO (n) (8)

follows in a similar way. By (6)-(8), we arrive at our conclusion.
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