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ON A CLASS OF WEIGHTED
COMPOSITION OPERATORS ON THE
BERGMAN SPACE OF THE UPPER
HALF PLANE*

Namita Das’ Sworup Kumar Das?

Abstract

In this paper we consider a class of weighted composition opera-
tors Ryq,a € D defined on the Bergman space L2(U,) of the upper
half plane. We showed that these classes of operators are unitary, self-
adjoint and have numerical radius 1. We calculated the fixed points
of these unitary operators and characterized the reducing subspace of
T € L(L%(Uy)) that commutes with R,. We also derived various al-
gebraic properties of bounded linear operators defined on L2 (U, ), in
terms of certain distance estimates involving the weighted composi-
tion operators R,. Our main focus is on Toeplitz operators defined on
L2(Us).
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composition operators, Schatten norm.

1 Introduction

Let Uy = {s = x +iy € C : y > 0} be the upper half plane, and let
dA = dxdy be the area measure on U,. Let L?(U,,dA) be the space of
complex-valued, absolutely square integrable, measurable functions on U,
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with respect to the area measure dA. The space LZ(UJF,dAV) is a Hilbert
space with the inner product defined by

{f,9) = ; F(s)g(s)dA(s).

Let L2(U,) be the subspace of L?(U, dﬁ) consisting of those functions
of L2(U,,dA) that are analytic on U,. The space L2(U,) is a closed sub-
space of L?(U,, dg) and it is called the Bergman space of the upper half
plane. It is well known that L2(U,) is a reproducing kernel Hilbert space
[4] and the reproducing kernel is given by

1

Kw(Z) = —m, w, 2z & [U+.

The orthogonal(Bergman) projection from L2(U,, dA) onto L2(U) is given
by

(P+f)(w) = <f7 Kw>7 w e [U-i-'

Let L>°(U4) be the space of complex valued, essentially bounded, Lebesgue
measurable functions on Uy. For ¢ € L>*°(U, ), define

l[olloo = ess sup |p(s)]-

selUy

The space L>°(UL) is a Banach space with respect to the essential supre-
mum norm. For ¢ € L>®(U;), we define the Toeplitz operator T, from
L%(Uy) into L2(U4) with generating symbol ¢ by T,f = Py(¢f), where
P, denote the orthogonal projection from L2(U,,dA) onto L2(U,). The
Toeplitz operator Ty, is bounded and ||T,|| < ||¢||co. For more details
see [4]. The big Hankel operator H, from L2(U.) into (L2(U4))t is de-
fined by H,f = (I — Py)(¢f), f € LE(U4). The little Hankel operator Ay,
from LZ(Uy) into L2(Uy) is defined by h,f = P.(¢f), where P is the
projection operator from L(Uy,dA) onto L2(Uy) = {f : f € L2(U;)}.
Let D := {z € C : |z] < 1} be the open unit disk and dA(z) be the
Lebesgue area measure on the open unit disk D normalized so that the
measure of the disk D is 1. In rectangular and polar coordinates, we have
dA(z) = %dmdy = %rdrd&. The Bergman space of open unit disk, L2(DD)
is defined to be the subspace of L?(ID,dA) consisting of analytic functions.
The sequence of functions e, (z) =+vn+1z2",n=0,1,2,--- ,z € D form an
orthonormal basis for L2 (D). The Bergman kernel or the reproducing kernel
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of D of L2(D) is given by K(z,w) = ﬁ Let L>(D) be the space of all
complex-valued, essentially bounded, Lebesgue measurable functions on D

and P : L?(D,dA) — L2(D) be the Bergman projection given by

Pf(z):/DK(z,w)f(w)dA(w):/D(1]:(1;)1))2@4(10).

For ¢ € L°°(D), we define the Toeplitz operator T, from L2(D) into itself
by Tof = P(of), f € L3 (D).

The layout of this paper is as follows: In section 2, we establish an iso-
morphism between L2(U, ) and L2 (D). We also introduce a class of weighted
composition operators R,, a € D defined on L2(U,) which are also self-
adjoint and unitary. We showed that these operators satisfy certain inter-
twining properties with Toeplitz, Hankel and little Hankel operators. In sec-
tion 3, we established that the numerical radius of the operators R,, a € D
are equal to 1 and calculated the fixed points of these unitary operators
that are also involutions. We characterized the reducing subspaces of the
operators T € L(L2(U.)) that commutes with R, for some a € D. In section
4, we showed that the Toeplitz operator T defined on L2(U, ) with symbol
G € h>°(U,) is positive if and only if the symbol G > 0. We showed that if
¢ >0and ¢ € h°(Uy) and |[|Ry—T,|| < 1, for some a € D, then Tg is invert-
ible. Further we showed that if ¢ > 0,9 € h*°(Uy) and ||R, — Ty|| < 1, for
some a € D then T, is not invertible if and only if || —T,|| = ||I — %H =1.
In section 5, we deal with Schatten class operators defined on L2(U,). We
showed that if ¢ € L>(UL) and T, is invertible with the polar decompo-
sition T, = U|T,|, then for all a € D and for every A € L(L2(Uy)) with
UA = AU, the inequality ||[(U —T,)All2 < ||(Ra — Ty)All2 < |[(U +T,)A||2
holds. Further if T € £(L2(U,)) is positive and R, — T is compact for some
a € D, then I — T is compact and if R, — T € S,(0 < p < oo) for some
a € D, then I —T € S,. We also established that if for some a € D, R, is
a local maximum or a local minimum of O, = ||{U — T|[},p > 1 where U is
unitary, T' > 0, then

M, ={(L o7,)te,(go Lor,): g € L;(D), g is even}
is a reducing subspace of T' and ||I — T'||, < ||Ra — T'||p-

2 On a class of weighted composition operators

In this section we establish an isomorphism between L2(U, ) and L2 (D). We
also introduce a class of weighted composition operators R,, a € D defined
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on L2(U,) which are also self-adjoint and unitary. We showed that these
operators satisfy certain intertwining properties with Toeplitz, Hankel and
little Hankel operators.

Let L : Uy — D be defined by L(s) = — ® — 2. Then L is one one and
onto and L~! : D — U, is given by
1-=2
! j =
() "1 +z
Further L'(s) = 2 and (L1 (2) = 2 Let W : L2(D)
(i +s)? 1+ 2)%
L2(U4) be defined by
(Wa)(s) = g(Ls) =
s) = g(Ls)———-.
g IS i+ s)?

Then W1 : L2(Uy) — L2(D) is given by

W'G)(2) = (206 (L7\(2))

Notice that W™iWg = g for all g € L2(D) and WW™IG = G for all
G € L2(U,). This can be verified as follows:

(VW) = W (mmw%)

) (2i) ! !
= @i)Vm=g(L(L™ )>(2+L—1Z)2(1+2)2

iV
B 1
) ) T

142 2
z+zz+z—zz (1+2)2

— (492 >(21)
= g(2), z€eD, g€ Lg(]D))
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and

WG = W (VFGIL ) )

—~

= eovaw (GO )

1 1

O S
= VR G N G T

NG
2
— (—4)G(s)<1+1z;+s) (i+18)2

1+ S 2 1
= (=4G0) (z’—i—sj—i—s) (i+s)?
1
= (—4)G(S)W

= G(s),s €U, Ge L2(Uy).

d—1 -1 d
The functions 7,(s) given by 74(s) = thﬂ—i— v = Ei —i—c;s—i_—sd are
automorphisms of U, where a = ¢ +id € D and s € U, and 7,(s) =

1-— ]a\Q ‘G‘Q -1 ’ .
I Tetty(s) = —— —— _ Th = —t,(s). Tt t
A+ )5 —d? et tq(s) T+ s — a2 us 7,(s) (s). It is no
difficult to see that (7, 0 75)(s) = s and (tq 0 74)(s)te(s) = 1, for all a €
D,s € Uy. For a € D consider the map R, : L2(U,) — L2(U,) defined by

(Raf)(s) = (f o Ta)(s)ta(s)' For s € U+,

(R2f)(s) = Ra[(fo7a)(s)ta(s)]
= (foTao7)(s)(taoTa)(s)ta(s)
= f(s) since (tg 0 74)(8)ta(s) = 1.

That is, R2 = I and R, is an involution. The map R, is also self-adjoint
and unitary for all a € D. That is R¥ = R, and R,R} = RiR, = R =1
for all a € D. Notice that R, can also be defined on (L2(Uy),dA). Further
Ro(L2(Uy)) € I2(U) and Ro((L2(U3))Y) © (L2(U;))*. Thus PyR,
Ry Py, for all a € D.

Theorem 1. Let a € D, p € L>®(U4). The following hold:
(1) RiToRa = Tipor, -
(ii) RoH, Ry = Hyor,.
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(1it) RohyoRa = hyor,.
Proof. (i) Let f € L2(Uy). Then
RaTgoRaf = RaP+(90Raf) = P—i-RaMchaf’

where M,f = ¢of and RaMyRoqf = R My[(f o Ta)ta] = Ralp(f o
Ta)ta] = (90 Ta)(f © Ta © 7a)(ta © Ta)ta = (p 0 74) f. Thus RT,R.f =
Py ota) f] = Tpor, [-

(ii) Let f € L2(U4). Then

RoHyRof = RaHp|[(f o Ta)td]
= Ra(I = Py)[e(f o 7a)ta]
= (I = Py)Ra[o(f o 7a)ta]
= (I—Py)[(¢o7a)(foTaoTs)(taoTa)ta
= (I —=Py)l(poTa)f]
= Hyor, f.

ThUS R H Ra - <po7'a

(iii) Observe that P, = JP.J, where Jg(s) = g(3), for g € L*(U,) and
R.P,g = P, R,g, we obtain

RohoRof = Rahy[(f o 7a)td]
R P+[<,O(f © Ta)ta]
[ (fo'ra)ta]
P+[(s0 0 7a)(f © Ta © 7a)(ta © Ta)ta)
Pi[(poTa)f]
= hgor, f, for all f € L2(Uy).

Hence R hyRy = hyor, -
O

Theorem 2. If T € L(L2(Uy)),T > 0,TR, > 0 for some a € D then
TR, <T.

Proof. Since TR, > 0, it follows that TR, = (T'R,)* = R:T* = R,T and
(TR,)? = TR,TR, = TR,R,T = T?. From Léwner-Heinz inequality [10],
it follows that TR, < T. L]
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3 Numerical radius of R,

In this section we established that the numerical radius of the operators
Ry, a € D are equal to 1 and calculated the fixed points of these unitary
operators that are also involutions. We characterized the reducing subspaces
of the operators T' € £(L2(U,)) that commutes with R, for some a € D.
Let L(H) be the space of all bounded linear operators from the Hilbert space
H into itself and LC(H) be the space of all compact operators in L£(H).

Definition 1. For a bounded linear operator T on a Hilbert space H, the
numerical range NR(T) is the image of the unit sphere of H under the
quadratic form x — (Tx,x) associated with the operator. More precisely,
NR(T) :={(Tz,x): x € H,||z|| = 1}.

Definition 2. Let H be a Hilbert space and T € L(H). The numerical radius
of T is defined by

p(T) =sup{|(Tz,x)| : x € H,||z|| = 1}.
Theorem 3. For all a € D, p(R,) = 1.

Proof. We shall first show that if T € L£(L2(Uy)),m(T) = H)i”ﬂfl T f, )]
and p(T) = sup [(Tf, f)| then the following inequality holds:
II£11=1

1 1
SVIHTE AT [[+2m(T?) < p(T) < SV/I1 TP+ [T [[ + 20(T?).
Let f be a unit vector in L2(D) and let § € R be such that

T2 L, f) = (T2 f, f)].

Then we obtain
i 1, . )
p(T) > ||R€(€ZGT)H = §||619T+€_10T*||

1 . .
— §||(620T_|_6—ZHT*)2||%

1 ;
- 2 *|2 210772
= 2\/” T+ [T*[* + 2Re(e*T?)]

> %\/K(!le +IT[2 + 2Re(e20T2) £, f)]

_ %\/K(!TP +|T*2)f, £) + 2(Re(eX°T2) £, f)]
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- %\/\<(\T|2 +[T*2)f, f) + 2Re(e20(T2f, f))|
- %\/<(!T\2+\T*\2)f,f>+2!<T2f,f>|

> VTR + TR £, ) + 2m(T)

Thus

oT) > o swp TR TP, )+ 2m(T?)
[1f11=1

1
= VTP +[T*[ || +2m(T?),

which establishes the first part of the inequality.

To prove the second part of the inequality, notice that,

p(T) = sup |[Re(e™T)||.
PeR

Thus we get,

p(T) = supl|Re(e™T)|
PeER

1 . .

= —sup |[eVT + e VT
2 yer
1 ‘ .

= —sup H(e“/’T + ef“pT*)QH%
2 yer

1 )
= Zsup|| [T + T2 + 2Re(e2¥T?)||2
2 peR

1 -
< M [ T2 + [T%[2 || + 2 sup | Re(¢*¥T2)]|
PeER

1
= SVIHTP+[T[ || +20(T?),

which proves the second half of the inequality.
Since R} = R, and R? = I, we obtain p(R,) = 3+/|| |Ral® + [RE? || + 2 =
1. O

For any a € D, let ¢, be the analytic mapping on I defined by ¢, (w) =
= w € D. Let Aut (D) be the Lie group of all automorphisms of I and

l—aw’

Go = {¢ € Aut (D) : ¢(0) = 0}. For any a € D, let v, be the unique
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geodesic (all geodesics are taken in the Bergman metric [19] on D) such that
74(0) = 0,74(1) = a@. Since D is Hermitian symmetric, there exists a unique
@a € Aut(D) such that ¢, 0p4(2) = 2 and 7,(3) is an isolated fixed point of
@a and @, is the geodesic symmetry at 74(3). In particular, ¢,(0) = a and
©wq(a) = 0. If a = 0, then we have p,(z) = —z for all z in D. We denote by ¢,
the geodesic midpoint v4(3) of 0 and a. Given 1 € Aut(D), let a = ¢~1(0),
then we have

(¢ 0 ©a)(0) = ¥(a) =0,

thus ¢ o ¢, € Gg and so there exists a unitary matrix U such that ¢ =
Upa(U € Gy). If ¢ € Aut(D) has an isolated fixed point in D, then ) has a
unique fixed point and each ¢, has ¢, as a unique fixed point. It is also not
difficult to see that for any a and b in D, there exists a unitary U € Gy such
that pyops = Upy, ). This can be verified as follows: let U = pp004,00,, (5)-
Then U(0) = ¢p © @a(pa(b)) = pp(b) = 0, thus U € G is unitary. It is also

not difficult to check that if a € D, then ¢, = 1=yV1jal® vl7‘a|2a. One can also check

|a]?
that k,(c,) = 1 for all a € D, Uske, = 1 for all @ € D and ¢ () = Sy, (o) for
any A € D and a € D.

Lemma 1. let a €D and f,g € L2(Uy). Then

(7’) <f07'a7g OTa> = <taf) tag>'

(ii) The eigenvectors of R, corresponding to distinct eigenvalues are or-
thogonal.

(iit) (L o7, 07a)(s) = —(Lo7g,)(s).
(iv) (LI 0 Tg, 0 Ta)(te, © Ta)ta = (LI 0 T, )by
(v) There does not exist A € C such that R, = \.

Proof. (i) Let f,g € L2(U,). Then

(fotmgom) = /U (f 0 72) () (g 0 1) (@) dA(uw)

= [ fwglw] - ta(w)[*dA(w)

= <taf7 tag>'
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Let A and p be distinct eigenvalues of R,. Suppose R,f = Af and
R,g = pg. Then

0 = ((RRy—2R:R.+1)f,g)
<R(21f7 Rgg> - 2<Rl1f7 Ra.g> + <f7 g)
= (VB -22m+1)(f9).

Since A # p with [A| = 1 = ||, we obtain \2u? —2\+1 = (%—1)2 # 0.
This leads to (f,g) = 0, which proves the claim.

Notice that ¢, 0, = —,, for all @ € D. Now since 7, = Lo, 0L,
we obtain

(L o7, ©7a)(s) oL opg 0Lo L™ opg0L)(s)

(L
(0 © a0 L)(s)
= —(pg, oL)(s),forall s € Uy.

On the other hand,

~(Lotg)(s) = —(LoL o, oL)(s)
= —(pg, oL)(s),for all s € U,.

Thus we establish (i7i) for all s € Uy.

To prove (iv) notice that o, (z) = —kq(2), for all z € D and (k, o
©q)kq = ke,. That is, Uk, = ke, for all a € D. Thus U,U, 1 = U, 1.
This implies

WUV HWU W) (L) = WU W)L,

Hence R,R., L' = R, L. Now since for all a € D, Rydy = WUk, =
W1 = L' where w = L@, we obtain Ve dre, = L'. That is,

dLga = Rg_al(L,) = RgaL,‘
Hence R,drc, = drc, and R, ((L/ o Tga)tga) = (L' o7 )t,,. That is,
(L/ 0 T, ©Ta)(te, © Ta)ta = (L/ 0 T, )te,-

Suppose R, = AI, for some constant A\ € C for some a € . Then
since R2 = I, hence A\ = +1. But there exists f € L2(U,) such that
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Rof # f and there exists f € L2(U,) such that R,f # —f.

Let g = Wk, , where ¢, is the geodesics midpoint between 0 and %
Then g € L2(U4) and it is not difficult to check that R,g = g and
R,M' = dy,Rody = L',dg # —L',and dy # L', where dg(s) =

1 j (—24)1
7w+z( Im w for s,w € Uy.

VTw—i (s+w)?’

O
Theorem 4. Let a €D and f € L2(Uy). Then

(i) Rof = f if and only if there exists an even function g € L2(D) such
that f = (L/ o7, )te,(go Lot,).

(ii) Rof = —f if and only if there exists an odd function g € L2(D) such
that f = (L/ o7, )te,(go Lot,).

Proof. We shall only establish (7). The proof of (i) is similar. Suppose g is
even and g € L2(D). That is, g(z) = g(—2) and f = (L' o7, )t,(go LoT,).
Then

R.f = (f © Ta)ta = (L/ O Tg, © Ta)(tca o Ta)(g oLorg,o Ta)ta

Since by Lemma 1, Lo7, o7, = —(Lo7,) and ta(L/ 0T, 0Tg)(te, ©Ta) =
(L' o1)t,,, we obtain

Rof = (L/ o7, )t 9(—(Lotg,)) = (L/ o7, )te,9(LoTy,) = f.

Conversely, suppose R, f = f. We need to find an even function g such that
f = (L © T§H.)t§u(g © L © T{a)'

Let g(Zs) = (17 0 L5t ()(f 0 ) (8- Since t (o) (5) = 1 we

9(Ls)te, (76, (5)) = (L71) 0 L)(5)f (75, (5))-

Thus replacing s by 7, (s), we obtain

(90 Lome,)(8)te,(s) = (L") o L)(r¢,(5))f(s)

and hence

!’

(g0 Lot )(s)te ()L (16, (s)) = f(5)-
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We shall now show that ¢ is even. For any s € Uy,

(goLor,)(s) = (L") o Lom,)(s)t, (T, () ()

= ((L7Y) 0 Lomg, )(8)te, (7e, (5))ta(5) (f 0 7a)(5)

(L) e Lom,)(s)t,

(T ())ta($)(L 07, ©7a) ()1, (Ta(5))(g © L0 7, ©7a) (5)

(L7 0 Lo, )(5)te (T () (L 0 7, ) (8)te, (8)9(—(L 0 7,))(s)
9(=(L o 7g,))(s), (1)

since t, (7, (s))te, (s) =1, for all s € Uy and

(E7) 0 Lom,)(s)(L o 7,)(s) = ([(L7™) o L)L | 07, ) (s)

Replacing s by 7, (s) in (1), we get
g(Ls) = g(—Ls)for all s € Uy.
That is, g(z) = g(—=z) for all z € D. Hence g is an even function. O

Corollary 1. Suppose a € D and f € L2(U,). Then Rof = f if and only
if f= (L o7e,)(g10 LoTg,)te,, where

(71 0 LY($)(f 0 7o) (5)tea (5)
H(L) 0 L)(=8)(f 0 72, )(=8)te, (—5)

N

(g10L)(s) =

and Rof = —f if and only if f = (L' o7,)(g20 L o 7, )ts,, where

(920 L)) = 5 [((L7) 0 L)(3)(f 0 72,) ()t (5)
(L7 o L)(=)( 07 (-8t (~5)]

Proof. Let R, = P, — P, be the spectral decomposition of R,. Then R, f =
f if and only if P, f = f for any f € L2(U,). Thus if M, is the range space
of P,, we have

M, = {(L/ o1, )(goLoT,)te, : gis even} )
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Suppose f € L2(U,), then the even function g; satisfying P, f = (L o
7e,)(g1 0 L o7, )t, = f is given by the formula

1

(gr0L)(s) = 5 |(L71) 0 L)(s)(f 0 76,) (st (5)

H(E™ 0 L)(=8)(f 0 7 (=8, (=5)]

and the odd function go with PFf = (L o7, )(g2 0 Lo1,)t, = f is given
by the formula

(L) 0 L)()(f 070, ) (5t (5)
~(L7) 0 L)(=8)(f 0 7) (~9)teu (3)]

N —

(920 L)(s) =

These formulas are obtained by using the identity P, = (I + R,) and
Theorem 4. O

Theorem 5. Let T € L(L2(Uy)). If TRy, = R,T for some a € D, then
M, = {(L/ o7, )te,(goLoT,): g is even} is a reducing subspace of T.

Proof. Let TR, = R,T for some a € D. Let R, = P, — PGL be the spectral
decomposition of R,. Then R, f = f if and only if P, f = f for f € L2(U,).
It follows from Theorem 4 that R,f = f if and only if there exists an even
function g € L2(D) such that f = (L o7 )t (9o L or,). Thus if M, is

the range space of P, we have M, = { (L o7, )t (goLoT,):gis eveny.
Now TR, = R,T for some a € D if and only if TP, = P,T. This is true if
and only if M, is a reducing subspace of T. O

4 Toeplitz operators and their distance from R,

In this section we showed that the Toeplitz operator T defined on L2(U,)
with symbol G € h*>°(U,) is positive if and only if the symbol G > 0. We
showed that if ¢ > 0 and ¢ € h*°(U,) and ||R, — T,|| < 1, for some a € D,
then Tg is invertible. Further we showed that if ¢ > 0,9 € h*°(U;) and
||Ra — T,|| < 1, for some a € D then T, is not invertible if and only if
1 =Tl = |11 = F I =1.

Let Wh*(D) = h*>°(U), where h>°(DD) is the space of all bounded har-
monic functions on D.
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Theorem 6. Let G € h*°(U,.). Then T > 0 if and only if G > 0.

Proof. First we shall show that if u € h*°(D), then w(D) C NR(T,), the
numerical range of the Toeplitz operator T, defined on L2(DD).

Let k, be the normalized reproducing kernel of L2(ID). Now (T, kq, ko) €
NR(T,) for all a € D. Thus (Tuka, ko) = (ukq, ke) = /u|k:a|2dA = /(u o
D

©q)dA = wu(a) for all a € D. Hence u(D) C NR(EID)). Now we proceed
to verify that if u € h*(D), then 7, > 0 if and only if v > 0. The
operator T, > 0 if and only if (T,.f, f) > 0 for all f € L(D). Thus if
Tu > 0 then NR(T,) C [0,00). From the first part of the proof, it follows
that u(D) € NR(T,) C [0,00). Hence u > 0. Now assume u > 0. Then

(Tuf ) = (Pluf). ) = wf ) = [ alfPaa = 0, for every f € L2(D).
D
Hence T, > 0. We shall now verify that if G € h*°(U,.), the Toeplitz operator

T¢ defined on L2(U, ) with symbol G is unitarily equivalent to the Toeplitz

operator T, defined on LZ(D) with symbol p(z) = G (z ;Z = (GoL™H(2).

The operator W maps v/n + 12" to the function -2 \/n (HS) (HS)
which belongs to L2(U,). The Toeplitz operator TG maps this vector to

P, (G(s)%\/n 1 (Z—i)n ﬁ) which is equal to

1
i+ s)2

WPW LG (s)2av/mF 1 <Z:_S>n(

VT i+ s )

Now

wpw-! (G(s)j;\/m <z; )

-s\" 1
z—i—s) (i+3)2>)
i (M7 )
1 1

2 2
L+2) (i+i12)

D) o)
= WP (w-l (G(s)j;\/m (Z:
_ j;\/mwp <2z‘\/7?G(L—1z)

= QZf

L n T IWP G<1+z)z"(

NG
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_ 11—z n 1 (1 + 2)2
= (4P <G <Z1 z) S G e T z))2)
= WP (G (il — Z) 2"/n + 1>
1+z2
W, (VAT T).
where p(z2) = G (z ijrj) = (GoL™)(z). Since the sequence of vectors

{v/n +12"}2° , forms an orthonormal basis for LZ(D), this proves our claim.
Thus Tgor—1 is unitarily equivalent to T defined on L2(U,). We have al-
ready shown Tgor-1 > 0 if and only if Go L= > 0 on D. Now Tgop-1 > 0 if
and only if (Tgor-19,9) > 0forall g € L2(D). That is, if (P(GoL™1)g,g) > 0
for all g € L2(D). But

(P(GoL ™ Yg,9) = ((GoL Yg,g)
_ /D (G o L) (2)|g(2)|2dA(2)

= G(s)l(g o L)(s)I*|L () *dA(s)

Uy
- G(s)|Wg(s)|*dA(s)
= (GWg, Wg)
= (Gf, f),where f =Wg € L2(Uy)
= <TGf7 f>

Thus (Tgor-19,9) > 0 for all g € L2(D) if and only if T > 0 on L2(U,).
On the other hand (G o L™1)(z) > 0 for all z € D if and only if G(s) > 0 for
all s € Uy. Thus we showed that T > 0 if and only if G > 0 on U,.. O

Lemma 2. Suppose ¢ € L>®(U4.). The following hold:

(1) If ¢ > 0,90 € h°(Uy) and ||Ry — Ty || < 1, for some a € D then T, is
invertible and ||I—=Ty|| < ||Ra—Ty|| < |[I+T,||, where I € L(L2(U))
is the identity operator on L2(U,).

(it) If ¢ > 0,90 € h°(Uy) and ||Ry — Ty|| < 1, for some a € D then T, is
not invertible if and only if ||[I —T,|| = ||I — %H =1.

(iti) If for some a € D, ||R, — Ty|| < 1 then ||Ty|| < p(R.Ty) + 5.

(iv) Let T € L(L2(Uy)). If for some a € D,||T — R,|| < € < 1, then the

operator T is invertible and ||T — T|T|~Y|| < %
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Proof. (i) If f € L2(Uy) and ||f|| = 1, then

N(Ra = To) fII? = ((Ra—Tp)f,(Ra —T,)f)
= RS IP + |ITpfII? = (Raf, Ty f) — (Tof, Raf)
= |IfIP + 1T f1I> = (f. RaTyp f) — (RaTyf, f)
= 1+ |[TofII> = (f, RaT,f) — (RaT,f. f)
= 1+ ||TofI]> = (RaT,f, f) — (RaT,f. f)
= 1+||TufII* — 2Re(RaT, f, f)

L+ || T 1P = 2/(RaT, f, £

L+ || T 1P = 2[R | I £]]

= 14T, I = 2T FIl 1]

= 1+||TpfI1> = 2T, f]]

= (1—[|TfI)*.

Now since T, > 0,

inf (T, f, f) = inf [|T,f|| and sup (T, f, f) = sup ||T,f||
[1fl=1 l1fll=1 I1f]1=1 [1f]l=1

and we have

|Ra =Tl = sup [|(Ra —T,)f]l

17]1=1

> sup | 1—||Tofl |
171=1

= sup [ 1= (Tf, f) |
171=1

= sup [ (I =T)f, [) |
1£1=1

= [ =Tl

Thus if ||R, — T,|| < 1, then |[I — T,|| < 1 and this implies T, is
invertible [2].

Further,
|Ra —Ty|| = sup [[Raf —Tpfl|
1f11=1
< sup (1+[[Tyf])
I1fl1=1
= o KU+ TA )]

= |1+ Toll-
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(ii) Since ||[R, — Ty|| < 1, hence from the argument of () it follows that,
T, T .
IT =Tl < 1and 1= Z)l < 121+ 11— 211 < 3+ 1 = 1, by convexity
Now if T, is not invertible then it follows from Neumann Lemma [18] that
11 —T,|| = 1 and ||I — Z2|| = 1. Conversely, if || — T,|| = |[I — %&|| =1,
then by the parallelogram law [14], we obtain

2 2 2

117 T, 1 1
=T, -2 =2||5 2||=(I - T, <1
for ||f|| < 1. Hence I — % approximately achieves its norm at some norm

one vector f with ||T;, f|| as close as we wish to 0. Hence T, is not invertible.
(iii) The condition ||R, — T,|| <1 is equivalent to the inequality
ITof11? +1 < 2Re((RaT,) f, f) +1,

for any f € L2(Uy) with ||f|| = 1. Since ||Rag||* = ||g]|?, for g € L2(U,),
and Re<(RaT§0)f7 f> S ‘((RaTip)fv f>’7 hence

1T I +1 < 2[{(RaT) f, )] +1
for any f € L2(U,) with ||f|| = 1. Hence

sup  |ITfIP+1<2  sup  ((RaTp)f. f)+ 1.
FELZ(UL),If]1=1 FELZ(UL),|If]1=1

Thus ||T,||>+1 < 2p(R.T,)+1. Since 2||T|| < ||T|[>+1, for T € £L(L2(Uy)),
we obtain
20| Te|| < TP +1 < 2p(RaTy) + 1.

That is,
IT,I1 < p(RaTp) + 5.
(iv) If T = R, + S with ||S|| < € then
(1— eI <T*T < (1+€)I.

Thus it follows that T is invertible. Since (14 €)™ < |T|7! < (1 —¢€)711
and ||T'|| < (1 + €), we obtain
17— 7|77 L+l =TI

(1+e)e(l—e)t.
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Theorem 7. If ¢ € h*°(Uy), then ¢ > 0,]|¢|loc < 1 if and only if ||I —
T3l <1 for allm € N.

Proof. If ¢ > 0, then by Theorem 6 T, is positive. Now since ¢ € h*°(Uy)
and ||T,|| = ||¢|lc < 1, hence T, is a contraction. That is, 0 < T, < 1.
Hence ||I — T7|| <1 for all n € N. To prove the converse, let f € L7 (Uy)
and |[fl] = 1. Thus |1 — (T2f, f)] = [{(I — T2)f, f)l < |l - 2| < 1. So
NR(T}) is contained in the closed right half plane for all n € N. Hence 7T}, is
positive. Now if there exists a positive number r € o(7T,) (the spectrum of
T,) such that » > 1, then there exists a positive integer n such that r > 2.
Thus the spectral radius of I — T is greater than 1. This contradicts the

assumption that ||I — T:,}H <1.Hence 0 <T, <1I. O

Theorem 8. If Tév and TéVH are positive contractions for some positive
integer N then |[I —T}|| <1 for alln > N;n € N.

Proof. Notice that ker TY = ker TY ™, as ker TV C ker TV C - C
ker TL%N = ker (Té,v )*Tév =ker T, év . Decompose the Bergman space L2(U. )
as L2(U;) = ker Tév @ (ker Tév )+ = ker TN @ Range TY. Then T, Tfpv and

¢ T“’ 0 O
N+1 _ 1 N __ N+1 __
Tw have the form T, = < Tép T“D ) T = ( 0 Tgp > and T‘p =

< 8 720 ) with respect to the above decompositions of L2(U,). Thus
6

P
TéVH _ TngﬁV — ( 8 ;}%D ) = TéVTw = ( TgOOTg’ TngTf > . Hence
TYTE = 0,TFTY = 0 and TYTY = TETY = T = 1Y = (IETF)* =
T¢ T Since Range T¥ = (ker TF): = (ker TX)*, we obtain Ty = 0,T§ =
0, and Tf = T¢ . Thus (T¥)Y = 0. Since TY and T)+! are positive con-
tractions, we obtain T, is a positive contraction. ]

Theorem 9. Let T be a proper contraction on L2(Uy) with TR, = R,T
for some a € D. Then

27"
1-—

||Re(I+T)(I —T)"" - R || < (2)

1-—
if and only if ||T|| < r.

Proof. Assume TR, = R,T for some a € . Notice that R, is unitary and
the inequality (2) is equivalent to

1+ 2 H

|(I+T)I-T)~ —1—3

(3)

1—r2
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Let S= (I +T)(I —T)"' — 27 and t = {2, Then if (2) holds, that is,
if ||S|| <t then ||SRq|| < ||S|| ||Ral| <t as ||R4|| = 1. Therefore (2) holds.
Conversely, if (2) holds, i.e. ||SR,|| < t, we get (3) using the fact that R, is

unitary. Thus (2) and (3) are equivalent. Since (3) is equivalent to

o N 1+ 72 _ 1+ 72
(I—-T% 1(I+T)—1TZI} [(I+T)(I—T) 1—1421
4r?
< — T
—(1-r2)27

we obtain

(1= T +THUI+T)+ (1 +r)2T =TI - T) - 2(1 — rH(I - T*T)
<4r*(I-T*(I -T).

Thus
(1=r)I+TT) < (1+r*)(I - T*T).

That is, T*T < r2I and hence ||T|| < 7. The result follows. O

5 Schatten Class and Frechet Derivative

In this section we deal with Schatten class operators defined on L2(U, ). We
showed that if ¢ € L*(U,) and T, is invertible with the polar decompo-
sition T, = U|T,|, then for all a € D and for every A € L(L2(U4)) with
UA = AU, the inequality [|[(U — T},)Al|l2 < ||[(Ra — Ty)All2 < ||[(U +Ty)All2
holds. Further if '€ £(L2(U,)) is positive and R, — T is compact for some
a € D, then I — T is compact and if R, — T € S,(0 < p < o0) for some
a € D, then I —T € S,. We also established that if for some a € D, R, is
a local maximum or a local minimum of O, = ||{U — T|[p,p > 1 where U is
unitary, T > 0, then M, = {(L' o7, )t (goLot,): g€ L:(D), g is even}
is a reducing subspace of T' and ||I — T||, < ||Rq — T'||p-

For any non-negative integer n, the nth singular value of T € LC(H) is
defined by

sp(T) =int {||T — K||,K € LC(H), rank K < n}.

Here ||.|| is the operator norm. Clearly so(T") = ||T'|| and so(T") > s1(T") >
so(T) > --- > 0. The Schatten Von Neumann class S, = S,(H),0 < p < o0,
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consists of all operators T' € LC(H) such that

IIT||s, = (Z(Sn(T))p> ’ < oo.

n=0

If 1 < p < oo, then [|.||s, is a norm, which makes S}, a Banach space. For
p < 1,]|.||s, does not satisfy the triangle inequality, it is a quasinorm (i.e.,
| T1+T3l|s, < C(||T1]|s, +|T2]|s,) for T1, T € Sp and C, a constant), which
makes S, a quasi-Banach space. The space S is called the trace-class of H
and Ss is called the Hilbert-Schmidt class.

If T € Sy and {¢;} is any orthonormal basis for the Hilbert space H then

[e.9]

the quantity trace(T) defined by trace(T') = Z(T€¢,6i> is independent of

=1
the choice of {¢;} and is called the trace of T. The Hilbert schmidt norm of
T is defined as,
1

1
2

||T||2=<Z|T6n!|2> = D WTen fm)?]
n=0

n,m=0

where {e,}°, and { f,, }%°_, are any two orthonormal bases for L2(U.). No-
tice that if T € S, then ||T'||5 = trace(|T'|P). It has been shown by McCarthy
[15] that S,(1 < p < 00) is uniformly convex. It also follows from [16] that

S, has Frechet differentiable norm and the map 7'+ ||T||} is differentiable.

Let S be any bounded linear operator on a Hilbert space . Then S can
be expressed uniquely [2](polar decomposition) as S = U; Py where P; is a
positive operator and U; is a partial isometry and kerU; = kerP;. If S is
self-adjoint then Uj is self-adjoint and commutes with P;.

In the following result we show that the nearest and farthest unitary
operators to and from an arbitrary positive Toeplitz operator are I and —1I
respectively.

Theorem 10. Let ¢ > 0,0 € h*™(Uy). Then for every unitary operator
Ry € L(L2(U,)),a € D, and for every A € L(L2(Uy)),

(I = Tp)All2 < [[(Ra = T5) All2 < [|(1 + ) Alfo- (4)
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Proof. Since ¢ > 0, the Toeplitz operator T, is positive. If T}, is a positive
diagonal operator and if R, is unitary diagonal operator then (4) follows
from the following scalar inequalities

a—1]<la—z<la+1

for every a > 0 and for every z with |z| = 1. Now the general case as claimed
in the theorem follows using Voiculescu pertubation theorem [1]. O

The following result shows that the nearest and farthest unitary opera-
tors to an arbitrary invertible operator 1" are U and —U, respectively, where
U is the unitary factor occurring in the polar decomposition of 7.

Theorem 11. Let ¢ € L®(U;) and suppose T, € L(L2(Uy)) is invertible
with the polar decomposition T,, = U|Ty|. Then for all a € D, and for every
A € L(L2(Uy)) with UA = AU, the inequality ||(U — T,)All2 < [|(Ra —
T,)All2 < ||(U + Ty,)All2 holds.

Proof. Applying Theorem 10 to the positive operator |T,| and the unitary
operator U*R,, we obtain

Tl A= Alls < [[ [To]A = AURq [[2 <[] [To|A + A ]2

Since ||.||2 is unitarily invariant and since UA = AU and U*A = AU*, it
follows that

T A = AU|lz = [|U|T,|A = AUz = || |Tp|A = UM AU [[2 = || [T|A = A ]2,

|IToA = ARyll2 = [[U|T,|A = ARa|2 = || |T|A = U AR, |2
= || [To|A = AU"Rq ]2,

and
T, A+ AU|ly = [|UIT,|A+ AUz = | [T, A+ U*AU Jlo = || [T} A+ A .

Thus,
IT,A — AUjz < ||TpA — ARu|l2 < ||T,A + AU] 2.

This completes the proof of the theorem. O

Let T={z € C: |z] = 1} and f : T — C be a sufficiently smooth
function of the form

f)= 3 f)en, e,

n=—oo
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~ o7

where f(n) = o f(e?)e=m04p.

Theorem 12. Let f be a complex-valued function defined on T such that
m= Z Inf(n)| < oo. Then

n=—oo

|1/ (Ray) = f(Ray)llp < m [|Ra; — Ray|lp,
for all ai,as €D and 1 < p < co.

Proof. Clearly, if n > 0, then
n—1
Ry — Ry, = Rp (Ra, — R Ry F,
k=0
and so
n—1
IRy, = Rl < D NRE N [Ray = Rasllp 1R, ¥ = nl|Ray — Raslp.
k=0
For n < 0,

> fm)lIRG, = R,y

||f(Ra1) - f(Raz)HP S
_O; A
< > [nf ()] [|Ray = Rayllp = m|Ra; — Ray |-
The result follows. O

Lemma 3. If p > 1, define the map = : S, — R as 2(S) = ||S|[5. The map
= is Frechet differentiable with derivative Dg at S and is given by

Dg(T) = %p trace (|SP~1U*T + T*U|S|P™1)
= p Re [trace (|S|P'U*T)]

where |S| is the positive square root of S*S and S = U|S| is the polar
decomposition of S.
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Proof. Let S,T € S,,1 < p < oo. Let @ be a projection such that Range )
is a reducing subspace of S. Notice that the operator 2Q) — I is unitary and

2Q-NS+QTI -Q)2Q-1)=5-QT( - Q).
Hence
1S+ QT = Q)II} =[S — QT — Q)Il}-
Thus

Ds[QT(I - Q)I" =p Re (|| [SP2QS*T — |S]P*QS™TQ [[}) = 0.

Now let S > 0. Then S = Z)\i(si ® g;) where \; > 0 and (g;) is an
i=1
orthonormal basis for H. Let @; be the projection onto sp{e;} and let

Cp=1- Z Qi. Since Dg(Q1TC1) = Dg(CiTQ1) = 0, we obtain Dg(T') =
=1
Ds(@Q1TQ1) + Ds(C1TCh).

Repeating the above argument and using mathematical induction, it is
not difficult to see that for any integer n,

Ds(T) = Ds(QiTQ:) + Ds(F.TF,).

i=1

Further, notice that

Ds(QiTQ;) = p Re[N"!(Tey,e;)]

p Re[(SP™1Te;, &)

This can be verified by observing that ||S + tQ;TQ;||b = |\ + t{Te;,e:)|P +

. d
Z AY and evaluating o7 1S +tQiTQll; |t:0' Thus
J#i

Ds(T)=p»  Re(S""'Te; i) + Ds(CuTCh).
i=1

Since C), converges strongly to 0 as n — oo, it follows from [5] that (C,,T'C},)
converges to 0 in S). Since Dg is continuous, (Dg(C,T'Cy)) — 0 and we see
that

DS(T) = pZR€<Sp_1T€i,€Z’>
i=1
= p Re trace(SP™T) ,when S > 0.
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Now let S € S, and S = U|S| be its polar decomposition. By definition
of partial isometry there exists K such that either K or K* is an isometry
and such that K and U coincide on (ker|S|)*. Thus S = K|S|. If K* is an
isometry then for any T' € S, we have

1S+ T)? =|S|?+ |S|K*T + T*K|S| + T*"KK*T = | |S| + K*T|?,

and so
1S+ T =1 [S]+ KT [[5.

Therefore Dg(T') = D|g(K*T). Hence
Ds(T) = Dig(K*T) = p Re trace(|S|P" K*T).

When K is an isometry, taking the adjoint and proceeding similarly we
obtain
Dg(T) = Djg«|(KT*) = p Re trace(|S*[P~'KT™).

Since |S*|P~1 = K|S[P71K*, the result follows. O

Theorem 13. Let T € L(L2(U,)) and T > 0. If R, — T € LC(L2(Uy)) for
some a €D, then I —T € LC(L2(Uy)). Further if R, — T € Sp(0 < p < 00)
for some a € D, then I —T € S,,.

Proof. Notice that R,T — TR, = (R, — T)R, — Ro(Ry — T) € LC(L2(Uy)).
Since R2 = I, hence I —T? = (R, —T)(Ry+T)+TRy— R, T € LC(L2(UL)).
Now T > 0 implies I + T is invertible and so

I-T=I-T)(I+T)"eLC(L2(Uy)).

A similar argument shows that if R, — T € S,(0 < p < 00) for some a € D,
then I =T € Sp. O

Let T € L£(L2(U.)). Suppose 1 < p < 0o and
Ly ={U € £ (L2(U4)) : U is unitary and U —T € S,}.
If Ly # ¢, define O,(U) = ||U =T[5, p > 1.
Theorem 14. If T € L(L2(U,)) and T > 0, then the following hold:

(1) If Ry is a local mazimum or a local minimum of Oy, for some a € D,
then M, = {(L' ot )t,(goLor,) : g€ L:D), g is even} is a
reducing subspace of T and if p > 1 then ||[I —T||, < ||Rq — T||p-
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(ii) If E € L(L2(Uy)) is a local extremum (either a local mazimum or a
local minimum) of O, then E is a symmetry and ET = TE. If further
T > 0, then ker T is a reducing subspace of E and E’( L isa
symmetry.

Proof. Let f € £L(L2(U,)) with ||f|| = 1 and € R. Define G¢(n) on L2(Uy)
as follows:

ker T)

Gi(n)g =g, /)f +9—{g.f)f g€ LEUy).

The map G¢(n) is an unitary operator on LZ(Uy).

For p > 1, the derivative of O, exists everywhere. Further if O, has a
doO
local extremum at E, then for each f, d—p (EG¢(n)) vanishes at n = 0. Let
n
E —T =U|E — T be the polar decomposition of £ — T. Then

Ci]Op [EGf(n)] ‘n:() = p Re trace [|[E — TPP"'U*Ei(f ® f)] = 0.
Evaluating the trace using an orthonormal basis containing f, we obtain
(U — T|PU*Ef, f) € R. Since this holds for any f, it follows that |E —
TP~'U*E is self adjoint. Further, since E*U is a partial isometry and
ker (E*U) =ker U = ker |E — T| = ker |E — T|P~%. Hence E*U|E — T|P~!
is the unique polar decomposition of a self adjoint operator. Hence E*U is
self adjoint and commutes with |E — T'|P~1. Therefore E*U commutes with
every power of | — T|[P~1, in particular with |E — T'|. Thus

E*(E—-T) = E*U|E-T|

|E — T|E*U
= |E-T|U*E
(E*—T)E

and so B*I' = TE showing that E*T is self-adjoint. Now since T > 0,
we obtain 0 = ker T" = ker E* and it follows that E is a symmetry and
ET =TFE. Now if T' > 0, then it is not difficult to verify that E*T = TFE.
Let @ be the orthogonal projection onto (ker T)J-. Then E*QT is the unique
polar decomposition of a self-adjoint operator. Thus E*() is self-adjoint, that
is £*Q = QFE. This implies FE*QE* = EQFEE*. Thus QFE* = EQ. Thus
QEQ = (E*Q)Q = E*Q = QF and QEQ = Q(QE*) = QE* = EQ. Hence
Q commutes with E and ker T reduces E. Now since (EQ)? = E(QEQ) =
EE*Q = Q, we obtain that E restricted to (ker T)* is a symmetry. This
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proves (7i) and the first part of (i) follows from Theorem 5. Now we shall
show that if p > 1 then the function O,(U) = ||U — T||5 has a unique local
minimum which occurs at U = I and which is also a global minimum and
in particular,

1= Tlly < 1Ra = Tl

From Theorem 13, if Ly # ¢ then I € Lp. Also, since a global minimum is
also a local minimum, from the first part it follows that the local minimum
can only be attained at some symmetry F, commuting with 7". But then /— F
and I —T are commuting compact normal operators and so have a common
orthonormal basis {g;} of eigenvectors. Let a; = (Te;, &), 0i = (Fey,e;).
Then |B;] =1 and

(e} [e.e]
IE=TIE=> 1B —ail? =D [1—au|’ = [T =T, (5)

=1 =1
Equality holds in (5), only when §; = 1 for all 4. That is, only if F = I.
Thus from Lemma 1, it follows that ||I — T, < ||Ry — T||p as R, # I for
all a € D. O
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