
ISSN 2066-6594

Ann. Acad. Rom. Sci.
Ser. Math. Appl.

Vol. 11, No. 2/2019

ON A CLASS OF WEIGHTED

COMPOSITION OPERATORS ON THE

BERGMAN SPACE OF THE UPPER

HALF PLANE∗

Namita Das† Sworup Kumar Das‡

Abstract

In this paper we consider a class of weighted composition opera-
tors Ra, a ∈ D defined on the Bergman space L2

a(U+) of the upper
half plane. We showed that these classes of operators are unitary, self-
adjoint and have numerical radius 1. We calculated the fixed points
of these unitary operators and characterized the reducing subspace of
T ∈ L(L2

a(U+)) that commutes with Ra. We also derived various al-
gebraic properties of bounded linear operators defined on L2

a(U+), in
terms of certain distance estimates involving the weighted composi-
tion operators Ra. Our main focus is on Toeplitz operators defined on
L2
a(U+).
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1 Introduction

Let U+ = {s = x + iy ∈ C : y > 0} be the upper half plane, and let
dÃ = dxdy be the area measure on U+. Let L2(U+, dÃ) be the space of
complex-valued, absolutely square integrable, measurable functions on U+
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with respect to the area measure dÃ. The space L2(U+, dÃ) is a Hilbert
space with the inner product defined by

〈f, g〉 =

∫
U+

f(s)g(s)dÃ(s).

Let L2
a(U+) be the subspace of L2(U+, dÃ) consisting of those functions

of L2(U+, dÃ) that are analytic on U+. The space L2
a(U+) is a closed sub-

space of L2(U+, dÃ) and it is called the Bergman space of the upper half
plane. It is well known that L2

a(U+) is a reproducing kernel Hilbert space
[4] and the reproducing kernel is given by

Kw(z) = − 1

π(w − z)2
, w, z ∈ U+.

The orthogonal(Bergman) projection from L2(U+, dÃ) onto L2
a(U+) is given

by

(P+f)(w) = 〈f,Kw〉, w ∈ U+.

Let L∞(U+) be the space of complex valued, essentially bounded, Lebesgue
measurable functions on U+. For ϕ ∈ L∞(U+), define

||ϕ||∞ = ess sup
s∈U+

|ϕ(s)|.

The space L∞(U+) is a Banach space with respect to the essential supre-
mum norm. For ϕ ∈ L∞(U+), we define the Toeplitz operator Tϕ from
L2
a(U+) into L2

a(U+) with generating symbol ϕ by Tϕf = P+(ϕf), where

P+ denote the orthogonal projection from L2(U+, dÃ) onto L2
a(U+). The

Toeplitz operator Tϕ is bounded and ||Tϕ|| ≤ ||ϕ||∞. For more details
see [4]. The big Hankel operator Hϕ from L2

a(U+) into (L2
a(U+))⊥ is de-

fined by Hϕf = (I − P+)(ϕf), f ∈ L2
a(U+). The little Hankel operator hϕ

from L2
a(U+) into L2

a(U+) is defined by hϕf = P+(ϕf), where P+ is the

projection operator from L2(U+, dÃ) onto L2
a(U+) = {f : f ∈ L2

a(U+)}.
Let D := {z ∈ C : |z| < 1} be the open unit disk and dA(z) be the
Lebesgue area measure on the open unit disk D normalized so that the
measure of the disk D is 1. In rectangular and polar coordinates, we have
dA(z) = 1

πdxdy = 1
π rdrdθ. The Bergman space of open unit disk, L2

a(D)
is defined to be the subspace of L2(D, dA) consisting of analytic functions.
The sequence of functions en(z) =

√
n+ 1 zn, n = 0, 1, 2, · · · , z ∈ D form an

orthonormal basis for L2
a(D). The Bergman kernel or the reproducing kernel
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of D of L2
a(D) is given by K(z, w) = 1

(1−zw)2 . Let L∞(D) be the space of all

complex-valued, essentially bounded, Lebesgue measurable functions on D
and P : L2(D, dA)→ L2

a(D) be the Bergman projection given by

Pf(z) =

∫
D
K(z, w)f(w)dA(w) =

∫
D

f(w)

(1− zw)2
dA(w).

For ϕ ∈ L∞(D), we define the Toeplitz operator Tϕ from L2
a(D) into itself

by Tϕf = P (ϕf), f ∈ L2
a(D).

The layout of this paper is as follows: In section 2, we establish an iso-
morphism between L2

a(U+) and L2
a(D). We also introduce a class of weighted

composition operators Ra, a ∈ D defined on L2
a(U+) which are also self-

adjoint and unitary. We showed that these operators satisfy certain inter-
twining properties with Toeplitz, Hankel and little Hankel operators. In sec-
tion 3, we established that the numerical radius of the operators Ra, a ∈ D
are equal to 1 and calculated the fixed points of these unitary operators
that are also involutions. We characterized the reducing subspaces of the
operators T ∈ L(L2

a(U+)) that commutes with Ra for some a ∈ D. In section
4, we showed that the Toeplitz operator TG defined on L2

a(U+) with symbol
G ∈ h∞(U+) is positive if and only if the symbol G ≥ 0. We showed that if
ϕ ≥ 0 and ϕ ∈ h∞(U+) and ||Ra−Tϕ|| < 1, for some a ∈ D, then TG is invert-
ible. Further we showed that if ϕ ≥ 0, ϕ ∈ h∞(U+) and ||Ra − Tϕ|| ≤ 1, for

some a ∈ D then Tϕ is not invertible if and only if ||I−Tϕ|| = ||I− Tϕ
2 || = 1.

In section 5, we deal with Schatten class operators defined on L2
a(U+). We

showed that if ϕ ∈ L∞(U+) and Tϕ is invertible with the polar decompo-
sition Tϕ = U |Tϕ|, then for all a ∈ D and for every A ∈ L(L2

a(U+)) with
UA = AU, the inequality ||(U − Tϕ)A||2 ≤ ||(Ra − Tϕ)A||2 ≤ ||(U + Tϕ)A||2
holds. Further if T ∈ L(L2

a(U+)) is positive and Ra−T is compact for some
a ∈ D, then I − T is compact and if Ra − T ∈ Sp(0 < p ≤ ∞) for some
a ∈ D, then I − T ∈ Sp. We also established that if for some a ∈ D, Ra is
a local maximum or a local minimum of Op = ||U − T ||pp, p > 1 where U is
unitary, T > 0, then

Ma = {(L′ ◦ τςa)tςa(g ◦ L ◦ τςa) : g ∈ L2
a(D), g is even}

is a reducing subspace of T and ||I − T ||p < ||Ra − T ||p.

2 On a class of weighted composition operators

In this section we establish an isomorphism between L2
a(U+) and L2

a(D). We
also introduce a class of weighted composition operators Ra, a ∈ D defined
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on L2
a(U+) which are also self-adjoint and unitary. We showed that these

operators satisfy certain intertwining properties with Toeplitz, Hankel and
little Hankel operators.

Let L : U+ → D be defined by L(s) =
i− s
i+ s

= z. Then L is one one and

onto and L−1 : D→ U+ is given by

L−1(z) = i
1− z
1 + z

= s.

Further L
′
(s) =

−2i

(i+ s)2
and (L−1)

′
(z) =

−2i

(1 + z)2
. Let W : L2

a(D) →

L2
a(U+) be defined by

(Wg)(s) = g(Ls)
2i√

π(i+ s)2
.

Then W−1 : L2
a(U+)→ L2

a(D) is given by

(W−1G)(z) = (2i)
√
πG
(
L−1(z)

) 1

(1 + z)2
.

Notice that W−1Wg = g for all g ∈ L2
a(D) and WW−1G = G for all

G ∈ L2
a(U+). This can be verified as follows:

((W−1W)g)(z) = W−1
(
g(Ls)

(2i)√
π(i+ s)2

)
=

(2i)√
π
W−1

(
g(Ls)

1

(i+ s)2

)
= (2i)

√
π

(2i)√
π
g(L(L−1z))

1

(i+ L−1z)2
1

(1 + z)2

= (−4)g(z)

(
1

i+ i−iz
1+z

)2
1

(1 + z)2

= (−4)g(z)

(
1 + z

i+ iz + i− iz

)2 1

(1 + z)2

= (−4)g(z)
1

(2i)2

= g(z), z ∈ D, g ∈ L2
a(D)
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and

(WW−1G)(s) = W
(

(2i)
√
πG(L−1(z))

1

(1 + z)2

)
= (2i)

√
πW

(
G(L−1(z))

1

(1 + z)2

)
= (2i)

√
π

(2i)√
π
G(L−1(Ls))

1

(i+ Ls)2
1

(i+ s)2

= (−4)G(s)

(
1

1 + i−s
i+s

)2
1

(i+ s)2

= (−4)G(s)

(
i+ s

i+ s+ i− s

)2 1

(i+ s)2

= (−4)G(s)
1

(2i)2

= G(s), s ∈ U+, G ∈ L2
a(U+).

The functions τa(s) given by τa(s) =
c+ sd− 1

s− d+ sc
=

(c− 1) + sd

(1 + c)s− d
are

automorphisms of U+ where a = c + id ∈ D and s ∈ U+ and τ
′
a(s) =

1− |a|2

[(1 + c)s− d]2
. Let ta(s) =

|a|2 − 1

[(1 + c)s− d]2
. Thus τ

′
a(s) = −ta(s). It is not

difficult to see that (τa ◦ τa)(s) = s and (ta ◦ τa)(s)ta(s) = 1, for all a ∈
D, s ∈ U+. For a ∈ D consider the map Ra : L2

a(U+) → L2
a(U+) defined by

(Raf)(s) = (f ◦ τa)(s)ta(s). For s ∈ U+,

(R2
af)(s) = Ra[(f ◦ τa)(s)ta(s)]

= (f ◦ τa ◦ τa)(s)(ta ◦ τa)(s)ta(s)
= f(s) since (ta ◦ τa)(s)ta(s) = 1.

That is, R2
a = I and Ra is an involution. The map Ra is also self-adjoint

and unitary for all a ∈ D. That is R∗a = Ra and RaR
∗
a = R∗aRa = R2

a = I
for all a ∈ D. Notice that Ra can also be defined on (L2(U+), dÃ). Further
Ra(L

2
a(U+)) ⊂ L2

a(U+) and Ra((L
2
a(U+))⊥) ⊂ (L2

a(U+))⊥. Thus P+Ra =
RaP+, for all a ∈ D.

Theorem 1. Let a ∈ D, ϕ ∈ L∞(U+). The following hold:

(i) RaTϕRa = Tϕ◦τa .

(ii) RaHϕRa = Hϕ◦τa .
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(iii) RahϕRa = hϕ◦τa .

Proof. (i) Let f ∈ L2
a(U+). Then

RaTϕRaf = RaP+(ϕRaf) = P+RaMϕRaf,

where Mϕf = ϕf and RaMϕRaf = RaMϕ[(f ◦ τa)ta] = Ra[ϕ(f ◦
τa)ta] = (ϕ ◦ τa)(f ◦ τa ◦ τa)(ta ◦ τa)ta = (ϕ ◦ τa)f. Thus RaTϕRaf =
P+[(ϕ ◦ τa)f ] = Tϕ◦τaf.

(ii) Let f ∈ L2
a(U+). Then

RaHϕRaf = RaHϕ[(f ◦ τa)ta]
= Ra(I − P+)[ϕ(f ◦ τa)ta]
= (I − P+)Ra[ϕ(f ◦ τa)ta]
= (I − P+)[(ϕ ◦ τa)(f ◦ τa ◦ τa)(ta ◦ τa)ta]
= (I − P+)[(ϕ ◦ τa)f ]

= Hϕ◦τaf.

Thus RaHϕRa = Hϕ◦τa .

(iii) Observe that P+ = JP+J, where Jg(s) = g(s), for g ∈ L2(U+) and
RaP+g = P+Rag, we obtain

RahϕRaf = Rahϕ[(f ◦ τa)ta]
= RaP+[ϕ(f ◦ τa)ta]
= P+Ra[ϕ(f ◦ τa)ta]
= P+[(ϕ ◦ τa)(f ◦ τa ◦ τa)(ta ◦ τa)ta]
= P+[(ϕ ◦ τa)f ]

= hϕ◦τaf, for all f ∈ L2
a(U+).

Hence RahϕRa = hϕ◦τa .

Theorem 2. If T ∈ L(L2
a(U+)), T ≥ 0, TRa ≥ 0 for some a ∈ D then

TRa ≤ T.

Proof. Since TRa ≥ 0, it follows that TRa = (TRa)
∗ = R∗aT

∗ = RaT and
(TRa)

2 = TRaTRa = TRaRaT = T 2. From Löwner-Heinz inequality [10],
it follows that TRa ≤ T.
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3 Numerical radius of Ra

In this section we established that the numerical radius of the operators
Ra, a ∈ D are equal to 1 and calculated the fixed points of these unitary
operators that are also involutions. We characterized the reducing subspaces
of the operators T ∈ L(L2

a(U+)) that commutes with Ra for some a ∈ D.
Let L(H) be the space of all bounded linear operators from the Hilbert space
H into itself and LC(H) be the space of all compact operators in L(H).

Definition 1. For a bounded linear operator T on a Hilbert space H, the
numerical range NR(T ) is the image of the unit sphere of H under the
quadratic form x → 〈Tx, x〉 associated with the operator. More precisely,
NR(T ) := {〈Tx, x〉 : x ∈ H, ||x|| = 1}.

Definition 2. Let H be a Hilbert space and T ∈ L(H). The numerical radius
of T is defined by

ρ(T ) = sup {|〈Tx, x〉| : x ∈ H, ||x|| = 1} .

Theorem 3. For all a ∈ D, ρ(Ra) = 1.

Proof. We shall first show that if T ∈ L(L2
a(U+)),m(T ) = inf

||f ||=1
|〈Tf, f〉|

and ρ(T ) = sup
||f ||=1

|〈Tf, f〉| then the following inequality holds:

1

2

√
|| |T |2 + |T ∗|2 ||+ 2m(T 2) ≤ ρ(T ) ≤ 1

2

√
|| |T |2 + |T ∗|2 ||+ 2ρ(T 2).

Let f be a unit vector in L2
a(D) and let θ ∈ R be such that

e2iθ〈T 2f, f〉 = |〈T 2f, f〉|.

Then we obtain

ρ(T ) ≥ ||Re(eiθT )|| =
1

2
||eiθT + e−iθT ∗||

=
1

2
||(eiθT + e−iθT ∗)2||

1
2

=
1

2

√
|| |T |2 + |T ∗|2 + 2Re(e2iθT 2)||

≥ 1

2

√
|〈(|T |2 + |T ∗|2 + 2Re(e2iθT 2)) f, f〉|

=
1

2

√
|〈(|T |2 + |T ∗|2)f, f〉+ 2〈Re(e2iθT 2)f, f〉|
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=
1

2

√
|〈(|T |2 + |T ∗|2)f, f〉+ 2Re(e2iθ〈T 2f, f〉)|

=
1

2

√
〈(|T |2 + |T ∗|2) f, f〉+ 2 |〈T 2f, f〉|

≥ 1

2

√
〈(|T |2 + |T ∗|2) f, f〉+ 2m(T 2).

Thus

ρ(T ) ≥ 1

2
sup
||f ||=1

√
〈(|T |2 + |T ∗|2) f, f〉+ 2m(T 2)

=
1

2

√
|| |T |2 + |T ∗|2 ||+ 2m(T 2),

which establishes the first part of the inequality.

To prove the second part of the inequality, notice that,

ρ(T ) = sup
ψ∈R
||Re(eiψT )||.

Thus we get,

ρ(T ) = sup
ψ∈R
||Re(eiψT )||

=
1

2
sup
ψ∈R
||eiψT + e−iψT ∗||

=
1

2
sup
ψ∈R
||(eiψT + e−iψT ∗)2||

1
2

=
1

2
sup
ψ∈R
|| |T |2 + |T ∗|2 + 2Re(e2iψT 2)||

1
2

≤ 1

2

√
|| |T |2 + |T ∗|2 ||+ 2 sup

ψ∈R
||Re(e2iψT 2)||

=
1

2

√
|| |T |2 + |T ∗|2 ||+ 2ρ(T 2),

which proves the second half of the inequality.
Since R∗a = Ra and R2

a = I, we obtain ρ(Ra) = 1
2

√
|| |Ra|2 + |R∗a|2 ||+ 2 =

1.

For any a ∈ D, let φa be the analytic mapping on D defined by φa(w) =
a−w
1−aw , w ∈ D. Let Aut (D) be the Lie group of all automorphisms of D and
G0 = {ψ ∈ Aut (D) : ψ(0) = 0}. For any a ∈ D, let γa be the unique
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geodesic (all geodesics are taken in the Bergman metric [19] on D) such that
γa(0) = 0, γa(1) = a. Since D is Hermitian symmetric, there exists a unique
ϕa ∈ Aut(D) such that ϕa ◦ϕa(z) ≡ z and γa(

1
2) is an isolated fixed point of

ϕa and ϕa is the geodesic symmetry at γa(
1
2). In particular, ϕa(0) = a and

ϕa(a) = 0. If a = 0, then we have ϕa(z) = −z for all z in D. We denote by ςa
the geodesic midpoint γa(

1
2) of 0 and a. Given ψ ∈ Aut(D), let a = ψ−1(0),

then we have

(ψ ◦ ϕa)(0) = ψ(a) = 0,

thus ψ ◦ ϕa ∈ G0 and so there exists a unitary matrix U such that ψ =
Uϕa(U ∈ G0). If ψ ∈ Aut(D) has an isolated fixed point in D, then ψ has a
unique fixed point and each ϕa has ςa as a unique fixed point. It is also not
difficult to see that for any a and b in D, there exists a unitary U ∈ G0 such
that ϕb◦ϕa = Uϕϕa(b). This can be verified as follows: let U = ϕb◦ϕa◦ϕϕa(b).
Then U(0) = ϕb ◦ ϕa(ϕa(b)) = ϕb(b) = 0, thus U ∈ G0 is unitary. It is also

not difficult to check that if a ∈ D, then ςa =
1−
√

1−|a|2
|a|2 a. One can also check

that ka(ςa) = 1 for all a ∈ D, Uakςa = 1 for all a ∈ D and ϕλ(ςa) = ςϕλ(a) for
any λ ∈ D and a ∈ D.

Lemma 1. let a ∈ D and f, g ∈ L2
a(U+). Then

(i) 〈f ◦ τa, g ◦ τa〉 = 〈taf, tag〉.

(ii) The eigenvectors of Ra corresponding to distinct eigenvalues are or-
thogonal.

(iii) (L ◦ τςa ◦ τa)(s) = −(L ◦ τςa)(s).

(iv) (L
′ ◦ τςa ◦ τa)(tςa ◦ τa)ta = (L

′ ◦ τςa)tςa .

(v) There does not exist λ ∈ C such that Ra = λI.

Proof. (i) Let f, g ∈ L2
a(U+). Then

〈f ◦ τa, g ◦ τa〉 =

∫
U+

(f ◦ τa)(w)(g ◦ τa)(w)dÃ(w)

=

∫
U+

f(w)g(w)| − ta(w)|2dÃ(w)

= 〈taf, tag〉.
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(ii) Let λ and µ be distinct eigenvalues of Ra. Suppose Raf = λf and
Rag = µg. Then

0 = 〈(R∗2a Ra − 2R∗aRa + I)f, g〉
= 〈R2

af,R
2
ag〉 − 2〈Raf,Rag〉+ 〈f, g〉

= (λ2µ2 − 2λµ+ 1)〈f, g〉.

Since λ 6= µ with |λ| = 1 = |µ|, we obtain λ2µ2−2λµ+1 = (λµ−1)2 6= 0.
This leads to 〈f, g〉 = 0, which proves the claim.

(iii) Notice that ϕςa ◦ϕa = −ϕςa , for all a ∈ D. Now since τa = L−1 ◦ϕa ◦L,
we obtain

(L ◦ τςa ◦ τa)(s) = (L ◦ L−1 ◦ ϕςa ◦ L ◦ L−1 ◦ ϕa ◦ L)(s)

= (ϕςa ◦ ϕa ◦ L)(s)

= −(ϕςa ◦ L)(s), for all s ∈ U+.

On the other hand,

−(L ◦ τςa)(s) = −(L ◦ L−1 ◦ ϕςa ◦ L)(s)

= −(ϕςa ◦ L)(s), for all s ∈ U+.

Thus we establish (iii) for all s ∈ U+.

To prove (iv) notice that ϕ
′
a(z) = −ka(z), for all z ∈ D and (kςa ◦

ϕa)ka = kςa . That is, Uakςa = kςa for all a ∈ D. Thus UaUςa1 = Uςa1.
This implies

(WUaW−1)(WUςaW−1)(L
′
) = (WUςaW−1)(L

′
).

Hence RaRςaL
′

= RςaL
′
. Now since for all a ∈ D, Radw = WUaka =

W1 = L
′

where w = La, we obtain VςadLςa = L
′
. That is,

dLςa = R−1ςa (L
′
) = RςaL

′
.

Hence RadLςa = dLςa and Ra

(
(L
′ ◦ τςa)tςa

)
= (L

′ ◦ τςa)tςa . That is,

(L
′ ◦ τςa ◦ τa)(tςa ◦ τa)ta = (L

′ ◦ τςa)tςa .

(iv) Suppose Ra = λI, for some constant λ ∈ C for some a ∈ D. Then
since R2

a = I, hence λ = ±1. But there exists f ∈ L2
a(U+) such that
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Raf 6= f and there exists f ∈ L2
a(U+) such that Raf 6= −f.

Let g = Wkςa , where ςa is the geodesics midpoint between 0 and 1
2 .

Then g ∈ L2
a(U+) and it is not difficult to check that Rag = g and

RaM
′

= dw, Radw = L
′
, dw 6= −L

′
, and dw 6= L

′
, where dw(s) =

1√
π

w + i

w − i
(−2i)Im w

(s+ w)2
, for s, w ∈ U+.

Theorem 4. Let a ∈ D and f ∈ L2
a(U+). Then

(i) Raf = f if and only if there exists an even function g ∈ L2
a(D) such

that f = (L
′ ◦ τςa)tςa(g ◦ L ◦ τςa).

(ii) Raf = −f if and only if there exists an odd function g ∈ L2
a(D) such

that f = (L
′ ◦ τςa)tςa(g ◦ L ◦ τςa).

Proof. We shall only establish (i). The proof of (ii) is similar. Suppose g is
even and g ∈ L2

a(D). That is, g(z) = g(−z) and f = (L
′ ◦ τςa)tςa(g ◦L ◦ τςa).

Then

Raf = (f ◦ τa)ta = (L
′ ◦ τςa ◦ τa)(tςa ◦ τa)(g ◦ L ◦ τςa ◦ τa)ta

Since by Lemma 1, L ◦ τςa ◦ τa = −(L ◦ τςa) and ta(L
′ ◦ τςa ◦ τa)(tςa ◦ τa) =

(L
′ ◦ τςa)tςa , we obtain

Raf = (L
′ ◦ τςa)tςag(−(L ◦ τςa)) = (L

′ ◦ τςa)tςag(L ◦ τςa) = f.

Conversely, suppose Raf = f. We need to find an even function g such that

f = (L
′ ◦ τςa)tςa(g ◦ L ◦ τςa).

Let g(Ls) = ((L−1)
′ ◦ L)(s)tςa(s)(f ◦ τςa)(s). Since tςa(s)tςa(τςa(s)) = 1, we

have

g(Ls)tςa(τςa(s)) = ((L−1)
′ ◦ L)(s)f(τςa(s)).

Thus replacing s by τςa(s), we obtain

(g ◦ L ◦ τςa)(s)tςa(s) = ((L−1)
′ ◦ L)(τςa(s))f(s)

and hence

(g ◦ L ◦ τςa)(s)tςa(s)L
′
(τςa(s)) = f(s).
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We shall now show that g is even. For any s ∈ U+,

(g ◦ L ◦ τςa)(s) = ((L−1)
′ ◦ L ◦ τςa)(s)tςa(τςa(s))f(s)

= ((L−1)
′ ◦ L ◦ τςa)(s)tςa(τςa(s))ta(s)(f ◦ τa)(s)

= ((L−1)
′ ◦ L ◦ τςa)(s)tςa

· (τςa(s))ta(s)(L
′ ◦ τςa ◦ τa)(s)tςa(τa(s))(g ◦ L ◦ τςa ◦ τa)(s)

= ((L−1)
′ ◦ L ◦ τςa)(s)tςa(τςa(s))(L

′ ◦ τςa)(s)tςa(s)g(−(L ◦ τςa))(s)

= g(−(L ◦ τςa))(s), (1)

since tςa(τςa(s))tςa(s) = 1, for all s ∈ U+ and

((L−1)
′ ◦ L ◦ τςa)(s)(L

′ ◦ τςa)(s) =
([

((L−1)
′ ◦ L)L

′
]
◦ τςa

)
(s)

= [(1 ◦ τςa)] (s) = 1.

Replacing s by τςa(s) in (1), we get

g(Ls) = g(−Ls)for all s ∈ U+.

That is, g(z) = g(−z) for all z ∈ D. Hence g is an even function.

Corollary 1. Suppose a ∈ D and f ∈ L2
a(U+). Then Raf = f if and only

if f = (L
′ ◦ τςa)(g1 ◦ L ◦ τςa)tςa , where

(g1 ◦ L)(s) =
1

2

[
((L−1)

′ ◦ L)(s)(f ◦ τςa)(s)tςa(s)

+((L−1)
′ ◦ L)(−s)(f ◦ τςa)(−s)tςa(−s)

]
and Raf = −f if and only if f = (L

′ ◦ τςa)(g2 ◦ L ◦ τςa)tςa , where

(g2 ◦ L)(s) =
1

2

[
((L−1)

′ ◦ L)(s)(f ◦ τςa)(s)tςa(s)

−((L−1)
′ ◦ L)(−s)(f ◦ τςa)(−s)tςa(−s)

]
.

Proof. Let Ra = Pa−P+
a be the spectral decomposition of Ra. Then Raf =

f if and only if Paf = f for any f ∈ L2
a(U+). Thus if Ma is the range space

of Pa, we have

Ma =
{

(L
′ ◦ τςa)(g ◦ L ◦ τςa)tςa : g is even

}
.
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Suppose f ∈ L2
a(U+), then the even function g1 satisfying Paf = (L

′ ◦
τςa)(g1 ◦ L ◦ τςa)tςa = f is given by the formula

(g1 ◦ L)(s) =
1

2

[
((L−1)

′ ◦ L)(s)(f ◦ τςa)(s)tςa(s)

+((L−1)
′ ◦ L)(−s)(f ◦ τςa)(−s)tςa(−s)

]
.

and the odd function g2 with P+
a f = (L

′ ◦ τςa)(g2 ◦ L ◦ τςa)tςa = f is given
by the formula

(g2 ◦ L)(s) =
1

2

[
((L−1)

′ ◦ L)(s)(f ◦ τςa)(s)tςa(s)

−((L−1)
′ ◦ L)(−s)(f ◦ τςa)(−s)tςa(−s)

]
.

These formulas are obtained by using the identity Pa = 1
2(I + Ra) and

Theorem 4.

Theorem 5. Let T ∈ L(L2
a(U+)). If TRa = RaT for some a ∈ D, then

Ma =
{

(L
′ ◦ τςa)tςa(g ◦ L ◦ τςa) : g is even

}
is a reducing subspace of T.

Proof. Let TRa = RaT for some a ∈ D. Let Ra = Pa − P⊥a be the spectral
decomposition of Ra. Then Raf = f if and only if Paf = f for f ∈ L2

a(U+).
It follows from Theorem 4 that Raf = f if and only if there exists an even
function g ∈ L2

a(D) such that f = (L
′ ◦ τςa)tςa(g ◦ L ◦ τςa). Thus if Ma is

the range space of Pa, we have Ma =
{

(L
′ ◦ τςa)tςa(g ◦ L ◦ τςa) : g is even

}
.

Now TRa = RaT for some a ∈ D if and only if TPa = PaT. This is true if
and only if Ma is a reducing subspace of T.

4 Toeplitz operators and their distance from Ra

In this section we showed that the Toeplitz operator TG defined on L2
a(U+)

with symbol G ∈ h∞(U+) is positive if and only if the symbol G ≥ 0. We
showed that if ϕ ≥ 0 and ϕ ∈ h∞(U+) and ||Ra − Tϕ|| < 1, for some a ∈ D,
then TG is invertible. Further we showed that if ϕ ≥ 0, ϕ ∈ h∞(U+) and
||Ra − Tϕ|| ≤ 1, for some a ∈ D then Tϕ is not invertible if and only if

||I − Tϕ|| = ||I − Tϕ
2 || = 1.

Let Wh∞(D) = h∞(U+), where h∞(D) is the space of all bounded har-
monic functions on D.
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Theorem 6. Let G ∈ h∞(U+). Then TG ≥ 0 if and only if G ≥ 0.

Proof. First we shall show that if u ∈ h∞(D), then u(D) ⊂ NR(Tu), the
numerical range of the Toeplitz operator Tu defined on L2

a(D).

Let ka be the normalized reproducing kernel of L2
a(D). Now 〈Tuka, ka〉 ∈

NR(Tu) for all a ∈ D. Thus 〈Tuka, ka〉 = 〈uka, ka〉 =

∫
D
u|ka|2dA =

∫
D

(u ◦

ϕa)dA = u(a) for all a ∈ D. Hence u(D) ⊂ NR(Tu). Now we proceed
to verify that if u ∈ h∞(D), then Tu ≥ 0 if and only if u ≥ 0. The
operator Tu ≥ 0 if and only if 〈Tuf, f〉 ≥ 0 for all f ∈ L2

a(D). Thus if
Tu ≥ 0 then NR(Tu) ⊂ [0,∞). From the first part of the proof, it follows
that u(D) ⊂ NR(Tu) ⊂ [0,∞). Hence u ≥ 0. Now assume u ≥ 0. Then

〈Tuf, f〉 = 〈P (uf), f〉 = 〈uf, f〉 =

∫
D
u|f |2dA ≥ 0, for every f ∈ L2

a(D).

Hence Tu ≥ 0. We shall now verify that if G ∈ h∞(U+), the Toeplitz operator
TG defined on L2

a(U+) with symbol G is unitarily equivalent to the Toeplitz

operator Tϕ defined on L2
a(D) with symbol ϕ(z) = G

(
i1−z1+z

)
= (G◦L−1)(z).

The operatorW maps
√
n+ 1zn to the function 2i√

π

√
n+ 1

(
i−s
i+s

)n
1

(i+s)2

which belongs to L2
a(U+). The Toeplitz operator TG maps this vector to

P+

(
G(s) 2i√

π

√
n+ 1

(
i−s
i+s

)n
1

(i+s)2

)
which is equal to

WPW−1(G(s)
2i√
π

√
n+ 1

(
i− s
i+ s

)n 1

(i+ s)2
).

Now

WPW−1
(
G(s)

2i√
π

√
n+ 1

(
i− s
i+ s

)n 1

(i+ s)2

)
=WP

(
W−1

(
G(s)

2i√
π

√
n+ 1

(
i− s
i+ s

)n 1

(i+ s)2

))
=

2i√
π

√
n+ 1WP

(
2i
√
πG(L−1z)

1

(1 + z)2
(
L(L−1z)

)n 1

(i+ L−1z)2

)

= 2i
√
π

2i√
π

√
n+ 1WP

G(i1− z
1 + z

)
zn

1

(1 + z)2
1(

i+ i1−z1+z

)2
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= (−4)WP

(
G

(
i
1− z
1 + z

)
zn
√
n+ 1

1

(1 + z)2
(1 + z)2

(i(1 + z) + i(1− z))2

)
=WP

(
G

(
i
1− z
1 + z

)
zn
√
n+ 1

)
=WTϕ

(
zn
√
n+ 1

)
,

where ϕ(z) = G
(
i1−z1+z

)
=
(
G ◦ L−1

)
(z). Since the sequence of vectors

{
√
n+ 1zn}∞n=0 forms an orthonormal basis for L2

a(D), this proves our claim.
Thus TG◦L−1 is unitarily equivalent to TG defined on L2

a(U+). We have al-
ready shown TG◦L−1 ≥ 0 if and only if G ◦L−1 ≥ 0 on D. Now TG◦L−1 ≥ 0 if
and only if 〈TG◦L−1g, g〉 ≥ 0 for all g ∈ L2

a(D). That is, if 〈P (G◦L−1)g, g〉 ≥ 0
for all g ∈ L2

a(D). But

〈P (G ◦ L−1)g, g〉 = 〈(G ◦ L−1)g, g〉

=

∫
D

(G ◦ L−1)(z)|g(z)|2dA(z)

=

∫
U+

G(s)|(g ◦ L)(s)|2|L′(s)|2dÃ(s)

=

∫
U+

G(s)|Wg(s)|2dÃ(s)

= 〈GWg,Wg〉
= 〈Gf, f〉,where f =Wg ∈ L2

a(U+)

= 〈TGf, f〉

Thus 〈TG◦L−1g, g〉 ≥ 0 for all g ∈ L2
a(D) if and only if TG ≥ 0 on L2

a(U+).
On the other hand (G ◦L−1)(z) ≥ 0 for all z ∈ D if and only if G(s) ≥ 0 for
all s ∈ U+. Thus we showed that TG ≥ 0 if and only if G ≥ 0 on U+.

Lemma 2. Suppose ϕ ∈ L∞(U+). The following hold:

(i) If ϕ ≥ 0, ϕ ∈ h∞(U+) and ||Ra − Tϕ|| < 1, for some a ∈ D then Tϕ is
invertible and ||I−Tϕ|| ≤ ||Ra−Tϕ|| ≤ ||I+Tϕ||, where I ∈ L(L2

a(U+))
is the identity operator on L2

a(U+).

(ii) If ϕ ≥ 0, ϕ ∈ h∞(U+) and ||Ra − Tϕ|| ≤ 1, for some a ∈ D then Tϕ is

not invertible if and only if ||I − Tϕ|| = ||I − Tϕ
2 || = 1.

(iii) If for some a ∈ D, ||Ra − Tϕ|| ≤ 1 then ||Tϕ|| ≤ ρ(RaTϕ) + 1
2 .

(iv) Let T ∈ L(L2
a(U+)). If for some a ∈ D, ||T − Ra|| ≤ ε < 1, then the

operator T is invertible and ||T − T |T |−1|| < ε(1+ε)
1−ε .
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Proof. (i) If f ∈ L2
a(U+) and ||f || = 1, then

||(Ra − Tϕ)f ||2 = 〈(Ra − Tϕ)f, (Ra − Tϕ)f〉
= ||Raf ||2 + ||Tϕf ||2 − 〈Raf, Tϕf〉 − 〈Tϕf,Raf〉
= ||f ||2 + ||Tϕf ||2 − 〈f,RaTϕf〉 − 〈RaTϕf, f〉
= 1 + ||Tϕf ||2 − 〈f,RaTϕf〉 − 〈RaTϕf, f〉
= 1 + ||Tϕf ||2 − 〈RaTϕf, f〉 − 〈RaTϕf, f〉
= 1 + ||Tϕf ||2 − 2Re〈RaTϕf, f〉
≥ 1 + ||Tϕf ||2 − 2|〈RaTϕf, f〉|
≥ 1 + ||Tϕf ||2 − 2||RaTϕf || ||f ||
= 1 + ||Tϕf ||2 − 2||Tϕf || ||f ||
= 1 + ||Tϕf ||2 − 2||Tϕf ||
= (1− ||Tϕf ||)2 .

Now since Tϕ ≥ 0,

inf
||f ||=1

〈Tϕf, f〉 = inf
||f ||=1

||Tϕf || and sup
||f ||=1

〈Tϕf, f〉 = sup
||f ||=1

||Tϕf ||

and we have

||Ra − Tϕ|| = sup
||f ||=1

||(Ra − Tϕ)f ||

≥ sup
||f ||=1

| 1− ||Tϕf || |

= sup
||f ||=1

| 1− 〈Tϕf, f〉 |

= sup
||f ||=1

| 〈(I − Tϕ)f, f〉 |

= ||I − Tϕ||.

Thus if ||Ra − Tϕ|| < 1, then ||I − Tϕ|| < 1 and this implies Tϕ is
invertible [2].
Further,

||Ra − Tϕ|| = sup
||f ||=1

||Raf − Tϕf ||

≤ sup
||f ||=1

(1 + ||Tϕf ||)

= sup
||f ||=1

||〈(I + Tϕ)f, f〉||

= ||I + Tϕ||.
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(ii) Since ||Ra − Tϕ|| ≤ 1, hence from the argument of (i) it follows that,

||I − Tϕ|| ≤ 1 and ||I − Tϕ
2 || ≤ ||

I
2 || + ||

I
2 −

Tϕ
2 || ≤

1
2 + 1

2 = 1, by convexity.
Now if Tϕ is not invertible then it follows from Neumann Lemma [18] that

||I − Tϕ|| = 1 and ||I − Tϕ
2 || = 1. Conversely, if ||I − Tϕ|| = ||I − Tϕ

2 || = 1,
then by the parallelogram law [14], we obtain∣∣∣∣∣∣∣∣12Tϕf

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣(I − Tϕ
2

)
f

∣∣∣∣∣∣∣∣2 = 2

∣∣∣∣∣∣∣∣12f
∣∣∣∣∣∣∣∣2 + 2

∣∣∣∣∣∣∣∣12(I − Tϕ)f

∣∣∣∣∣∣∣∣2 ≤ 1

for ||f || ≤ 1. Hence I − Tϕ
2 approximately achieves its norm at some norm

one vector f with ||Tϕf || as close as we wish to 0. Hence Tϕ is not invertible.

(iii) The condition ||Ra − Tϕ|| ≤ 1 is equivalent to the inequality

||Tϕf ||2 + 1 ≤ 2Re〈(RaTϕ)f, f〉+ 1,

for any f ∈ L2
a(U+) with ||f || = 1. Since ||Rag||2 = ||g||2, for g ∈ L2

a(U+),
and Re〈(RaTϕ)f, f〉 ≤ |〈(RaTϕ)f, f〉|, hence

||Tϕf ||2 + 1 ≤ 2|〈(RaTϕ)f, f〉|+ 1

for any f ∈ L2
a(U+) with ||f || = 1. Hence

sup
f∈L2

a(U+),||f ||=1

||Tϕf ||2 + 1 ≤ 2 sup
f∈L2

a(U+),||f ||=1

〈(RaTϕ)f, f〉+ 1.

Thus ||Tϕ||2+1 ≤ 2ρ(RaTϕ)+1. Since 2||T || ≤ ||T ||2+1, for T ∈ L(L2
a(U+)),

we obtain
2||Tϕ|| ≤ ||Tϕ||2 + 1 ≤ 2ρ(RaTϕ) + 1.

That is,

||Tϕ|| ≤ ρ(RaTϕ) +
1

2
.

(iv) If T = Ra + S with ||S|| ≤ ε then

(1− ε)2I ≤ T ∗T ≤ (1 + ε)2I.

Thus it follows that T is invertible. Since (1 + ε)−1I ≤ |T |−1 ≤ (1 − ε)−1I
and ||T || ≤ (1 + ε), we obtain

||T − T |T |−1|| ≤ (1 + ε)||I − |T |−1||
≤ (1 + ε)ε(1− ε)−1.
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Theorem 7. If ϕ ∈ h∞(U+), then ϕ ≥ 0, ||ϕ||∞ ≤ 1 if and only if ||I −
Tnϕ || ≤ 1 for all n ∈ N.

Proof. If ϕ ≥ 0, then by Theorem 6 Tϕ is positive. Now since ϕ ∈ h∞(U+)
and ||Tϕ|| = ||ϕ||∞ ≤ 1, hence Tϕ is a contraction. That is, 0 ≤ Tϕ ≤ I.
Hence ||I − Tnϕ || ≤ 1 for all n ∈ N. To prove the converse, let f ∈ L2

a(U+)
and ||f || = 1. Thus |1 − 〈Tnϕ f, f〉| = |〈(I − Tnϕ )f, f〉| ≤ ||I − Tnϕ || ≤ 1. So
NR(Tnϕ ) is contained in the closed right half plane for all n ∈ N. Hence Tϕ is
positive. Now if there exists a positive number r ∈ σ(Tϕ) (the spectrum of
Tϕ) such that r > 1, then there exists a positive integer n such that rn > 2.
Thus the spectral radius of I − Tnϕ is greater than 1. This contradicts the
assumption that ||I − Tnϕ || ≤ 1. Hence 0 ≤ Tϕ ≤ I.

Theorem 8. If TNϕ and TN+1
ϕ are positive contractions for some positive

integer N then ||I − Tnϕ || ≤ 1 for all n ≥ N ;n ∈ N.

Proof. Notice that ker TNϕ = ker TN+1
ϕ , as ker TNϕ ⊂ ker TN+1

ϕ ⊂ · · · ⊂
ker T 2N

ϕ = ker (TNϕ )∗TNϕ = ker TNϕ . Decompose the Bergman space L2
a(U+)

as L2
a(U+) = ker TNϕ ⊕ (ker TNϕ )⊥ = ker TNϕ ⊕Range TNϕ . Then Tϕ, T

N
ϕ and

TN+1
ϕ have the form Tϕ =

(
Tϕ1 Tϕ2
Tϕ3 Tϕ4

)
, TNϕ =

(
0 0
0 Tϕ5

)
and TN+1

ϕ =(
0 0
0 Tϕ6

)
with respect to the above decompositions of L2

a(U+). Thus

TN+1
ϕ = TϕT

N
ϕ =

(
0 Tϕ2 T

ϕ
5

0 Tϕ4 T
ϕ
5

)
= TNϕ Tϕ =

(
0 0

Tϕ5 T
ϕ
3 Tϕ5 T

ϕ
4

)
. Hence

Tϕ2 T
ϕ
5 = 0, Tϕ5 T

ϕ
3 = 0 and Tϕ4 T

ϕ
5 = Tϕ5 T

ϕ
4 = Tϕ6 = Tϕ

∗

6 = (Tϕ5 T
ϕ
4 )∗ =

Tϕ
∗

4 Tϕ5 . Since Range Tϕ5 = (ker Tϕ5 )⊥ = (ker TNϕ )⊥, we obtain Tϕ2 = 0, Tϕ3 =

0, and Tϕ4 = Tϕ
∗

4 . Thus (Tϕ1 )N = 0. Since TNϕ and TN+1
ϕ are positive con-

tractions, we obtain Tϕ is a positive contraction.

Theorem 9. Let T be a proper contraction on L2
a(U+) with TRa = RaT

for some a ∈ D. Then∣∣∣∣Ra(I + T )(I − T )−1 − 1 + r2

1− r2
Ra
∣∣∣∣ ≤ 2r

1− r2
(2)

if and only if ||T || ≤ r.

Proof. Assume TRa = RaT for some a ∈ D. Notice that Ra is unitary and
the inequality (2) is equivalent to∣∣∣∣(I + T )(I − T )−1 − 1 + r2

1− r2
∣∣∣∣ ≤ 2r

1− r2
. (3)
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Let S = (I + T )(I − T )−1 − 1+r2

1−r2 I and t = 2r
1−r2 . Then if (2) holds, that is,

if ||S|| ≤ t then ||SRa|| ≤ ||S|| ||Ra|| ≤ t as ||Ra|| = 1. Therefore (2) holds.
Conversely, if (2) holds, i.e. ||SRa|| ≤ t, we get (3) using the fact that Ra is
unitary. Thus (2) and (3) are equivalent. Since (3) is equivalent to[

(I − T ∗)−1(I + T ∗)− 1 + r2

1− r2
I

] [
(I + T )(I − T )−1 − 1 + r2

1− r2
I

]
≤ 4r2

(1− r2)2
I,

we obtain

(1− r2)2(I + T ∗)(I + T ) + (1 + r2)2(I − T ∗)(I − T )− 2(1− r4)(I − T ∗T )

≤ 4r2(I − T ∗)(I − T ).

Thus

(1− r2)(I + T ∗T ) ≤ (1 + r2)(I − T ∗T ).

That is, T ∗T ≤ r2I and hence ||T || ≤ r. The result follows.

5 Schatten Class and Frechet Derivative

In this section we deal with Schatten class operators defined on L2
a(U+). We

showed that if ϕ ∈ L∞(U+) and Tϕ is invertible with the polar decompo-
sition Tϕ = U |Tϕ|, then for all a ∈ D and for every A ∈ L(L2

a(U+)) with
UA = AU, the inequality ||(U − Tϕ)A||2 ≤ ||(Ra − Tϕ)A||2 ≤ ||(U + Tϕ)A||2
holds. Further if T ∈ L(L2

a(U+)) is positive and Ra−T is compact for some
a ∈ D, then I − T is compact and if Ra − T ∈ Sp(0 < p ≤ ∞) for some
a ∈ D, then I − T ∈ Sp. We also established that if for some a ∈ D, Ra is
a local maximum or a local minimum of Op = ||U − T ||pp, p > 1 where U is
unitary, T > 0, then Ma = {(L′ ◦ τςa)tςa(g ◦L ◦ τςa) : g ∈ L2

a(D), g is even}
is a reducing subspace of T and ||I − T ||p < ||Ra − T ||p.

For any non-negative integer n, the nth singular value of T ∈ LC(H) is
defined by

sn(T ) = inf {||T −K||,K ∈ LC(H), rank K ≤ n} .

Here ||.|| is the operator norm. Clearly s0(T ) = ||T || and s0(T ) ≥ s1(T ) ≥
s2(T ) ≥ · · · ≥ 0. The Schatten Von Neumann class Sp = Sp(H), 0 < p <∞,
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consists of all operators T ∈ LC(H) such that

||T ||Sp =

( ∞∑
n=0

(sn(T ))p

) 1
p

<∞.

If 1 ≤ p < ∞, then ||.||Sp is a norm, which makes Sp a Banach space. For
p < 1, ||.||Sp does not satisfy the triangle inequality, it is a quasinorm (i.e.,
||T1+T2||Sp ≤ C(||T1||Sp+ ||T2||Sp) for T1, T2 ∈ Sp and C, a constant), which
makes Sp a quasi-Banach space. The space S1 is called the trace-class of H
and S2 is called the Hilbert-Schmidt class.

If T ∈ S1 and {εi} is any orthonormal basis for the Hilbert space H then

the quantity trace(T ) defined by trace(T ) =

∞∑
i=1

〈Tεi, εi〉 is independent of

the choice of {εi} and is called the trace of T. The Hilbert schmidt norm of
T is defined as,

||T ||2 =

( ∞∑
n=0

||Ten||2
) 1

2

=

 ∞∑
n,m=0

|〈Ten, fm〉|2
 1

2

,

where {en}∞n=0 and {fm}∞m=0 are any two orthonormal bases for L2
a(U+). No-

tice that if T ∈ Sp then ||T ||pp = trace(|T |p). It has been shown by McCarthy
[15] that Sp(1 < p < ∞) is uniformly convex. It also follows from [16] that
Sp has Frechet differentiable norm and the map T 7→ ||T ||pp is differentiable.

Let S be any bounded linear operator on a Hilbert space H. Then S can
be expressed uniquely [2](polar decomposition) as S = U1P1 where P1 is a
positive operator and U1 is a partial isometry and kerU1 = kerP1. If S is
self-adjoint then U1 is self-adjoint and commutes with P1.

In the following result we show that the nearest and farthest unitary
operators to and from an arbitrary positive Toeplitz operator are I and −I
respectively.

Theorem 10. Let ϕ ≥ 0, ϕ ∈ h∞(U+). Then for every unitary operator
Ra ∈ L(L2

a(U+)), a ∈ D, and for every A ∈ L(L2
a(U+)),

||(I − Tϕ)A||2 ≤ ||(Ra − Tϕ)A||2 ≤ ||(I + Tϕ)A||2. (4)
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Proof. Since ϕ ≥ 0, the Toeplitz operator Tϕ is positive. If Tϕ is a positive
diagonal operator and if Ra is unitary diagonal operator then (4) follows
from the following scalar inequalities

|a− 1| ≤ |a− z| ≤ |a+ 1|

for every a ≥ 0 and for every z with |z| = 1. Now the general case as claimed
in the theorem follows using Voiculescu pertubation theorem [1].

The following result shows that the nearest and farthest unitary opera-
tors to an arbitrary invertible operator T are U and −U, respectively, where
U is the unitary factor occurring in the polar decomposition of T.

Theorem 11. Let ϕ ∈ L∞(U+) and suppose Tϕ ∈ L(L2
a(U+)) is invertible

with the polar decomposition Tϕ = U |Tϕ|. Then for all a ∈ D, and for every
A ∈ L(L2

a(U+)) with UA = AU, the inequality ||(U − Tϕ)A||2 ≤ ||(Ra −
Tϕ)A||2 ≤ ||(U + Tϕ)A||2 holds.

Proof. Applying Theorem 10 to the positive operator |Tϕ| and the unitary
operator U∗Ra, we obtain

|| |Tϕ|A−A ||2 ≤ || |Tϕ|A−AU∗Ra ||2 ≤ || |Tϕ|A+A ||2.

Since ||.||2 is unitarily invariant and since UA = AU and U∗A = AU∗, it
follows that

||TϕA−AU ||2 = ||U |Tϕ|A−AU ||2 = || |Tϕ|A−U∗AU ||2 = || |Tϕ|A−A ||2,

||TϕA−ARa||2 = ||U |Tϕ|A−ARa||2 = || |Tϕ|A− U∗ARa ||2
= || |Tϕ|A−AU∗Ra ||2,

and

||TϕA+AU ||2 = ||U |Tϕ|A+AU ||2 = || |Tϕ|A+U∗AU ||2 = || |Tϕ|A+A ||2.

Thus,
||TϕA−AU ||2 ≤ ||TϕA−ARa||2 ≤ ||TϕA+AU ||2.

This completes the proof of the theorem.

Let T = {z ∈ C : |z| = 1} and f : T → C be a sufficiently smooth
function of the form

f(z) =

∞∑
n=−∞

f̂(n)zn, z ∈ T,
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where f̂(n) = 1
2π

∫ π

−π
f(eiθ)e−inθdθ.

Theorem 12. Let f be a complex-valued function defined on T such that

m =
∞∑

n=−∞
|nf̂(n)| <∞. Then

||f(Ra1)− f(Ra2)||p ≤ m ||Ra1 −Ra2 ||p,

for all a1, a2 ∈ D and 1 ≤ p ≤ ∞.

Proof. Clearly, if n > 0, then

Rna1 −R
n
a2 =

n−1∑
k=0

Rna1(Ra1 −Ra2)Rn−1−ka2 ,

and so

||Rna1 −R
n
a2 ||p ≤

n−1∑
k=0

||Rka1 || ||Ra1 −Ra2 ||p ||R
n−1−k
a2 || = n||Ra1 −Ra2 ||p.

For n < 0,

||f(Ra1)− f(Ra2)||p ≤
∞∑

n=−∞
|f̂(n)| ||Rna1 −R

n
a2 ||p

≤
∞∑

n=−∞
|nf̂(n)| ||Ra1 −Ra2 ||p = m||Ra1 −Ra2 ||p.

The result follows.

Lemma 3. If p > 1, define the map Ξ : Sp → R as Ξ(S) = ||S||pp. The map
Ξ is Frechet differentiable with derivative DS at S and is given by

DS(T ) =
1

2
p trace

(
|S|p−1U∗T + T ∗U |S|p−1

)
= p Re

[
trace

(
|S|p−1U∗T

)]
where |S| is the positive square root of S∗S and S = U |S| is the polar
decomposition of S.
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Proof. Let S, T ∈ Sp, 1 < p <∞. Let Q be a projection such that Range Q
is a reducing subspace of S. Notice that the operator 2Q− I is unitary and

(2Q− I)[S +QT (I −Q)](2Q− I) = S −QT (I −Q).

Hence
||S +QT (I −Q)||pp = ||S −QT (I −Q)||pp.

Thus

DS [QT (I −Q)]p = p Re
(
|| |S|p−2QS∗T − |S|p−2QS∗TQ ||pp

)
= 0.

Now let S ≥ 0. Then S =

∞∑
i=1

λi(εi ⊗ εi) where λi ≥ 0 and (εi) is an

orthonormal basis for H. Let Qi be the projection onto sp{εi} and let

Cn = I −
n∑
i=1

Qi. Since DS(Q1TC1) = DS(C1TQ1) = 0, we obtain DS(T ) =

DS(Q1TQ1) +DS(C1TC1).

Repeating the above argument and using mathematical induction, it is
not difficult to see that for any integer n,

DS(T ) =

n∑
i=1

DS(QiTQi) +DS(FnTFn).

Further, notice that

DS(QiTQi) = p Re[λp−1i 〈Tεi, εi〉]
= p Re[〈Sp−1Tεi, εi〉].

This can be verified by observing that ||S + tQiTQi||pp = |λi + t〈Tεi, εi〉|p +∑
j 6=i

λpj and evaluating
d

dt
||S + tQiTQi||pp

∣∣
t=0

. Thus

DS(T ) = p
n∑
i=1

Re〈Sp−1Tεi, εi〉+DS(CnTCn).

Since Cn converges strongly to 0 as n→∞, it follows from [5] that (CnTCn)
converges to 0 in Sp. Since DS is continuous, (DS(CnTCn))→ 0 and we see
that

DS(T ) = p

∞∑
i=1

Re〈Sp−1Tεi, εi〉

= p Re trace(Sp−1T ) ,when S ≥ 0.
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Now let S ∈ Sp and S = U |S| be its polar decomposition. By definition
of partial isometry there exists K such that either K or K∗ is an isometry
and such that K and U coincide on (ker|S|)⊥. Thus S = K|S|. If K∗ is an
isometry then for any T ∈ Sp we have

|S + T |2 = |S|2 + |S|K∗T + T ∗K|S|+ T ∗KK∗T = | |S|+K∗T |2 ,

and so
||S + T ||pp = || |S|+K∗T ||pp.

Therefore DS(T ) = D|S|(K
∗T ). Hence

DS(T ) = D|S|(K
∗T ) = p Re trace(|S|p−1K∗T ).

When K is an isometry, taking the adjoint and proceeding similarly we
obtain

DS(T ) = D|S∗|(KT
∗) = p Re trace(|S∗|p−1KT ∗).

Since |S∗|p−1 = K|S|p−1K∗, the result follows.

Theorem 13. Let T ∈ L(L2
a(U+)) and T ≥ 0. If Ra− T ∈ LC(L2

a(U+)) for
some a ∈ D, then I − T ∈ LC(L2

a(U+)). Further if Ra − T ∈ Sp(0 < p ≤ ∞)
for some a ∈ D, then I − T ∈ Sp.

Proof. Notice that RaT − TRa = (Ra− T )Ra−Ra(Ra− T ) ∈ LC(L2
a(U+)).

Since R2
a = I, hence I−T 2 = (Ra−T )(Ra+T )+TRa−RaT ∈ LC(L2

a(U+)).
Now T ≥ 0 implies I + T is invertible and so

I − T = (I − T 2)(I + T )−1 ∈ LC(L2
a(U+)).

A similar argument shows that if Ra − T ∈ Sp(0 < p ≤ ∞) for some a ∈ D,
then I − T ∈ Sp.

Let T ∈ L(L2
a(U+)). Suppose 1 < p <∞ and

LT = {U ∈ L
(
L2
a(U+)

)
: U is unitary and U − T ∈ Sp}.

If LT 6= φ, define Op(U) = ||U − T ||pp, p > 1.

Theorem 14. If T ∈ L(L2
a(U+)) and T > 0, then the following hold:

(i) If Ra is a local maximum or a local minimum of Op, for some a ∈ D,
then Ma = {(L′ ◦ τςa)tςa(g ◦ L ◦ τςa) : g ∈ L2

a(D), g is even} is a
reducing subspace of T and if p > 1 then ||I − T ||p < ||Ra − T ||p.
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(ii) If E ∈ L(L2
a(U+)) is a local extremum (either a local maximum or a

local minimum) of Op then E is a symmetry and ET = TE. If further
T ≥ 0, then ker T is a reducing subspace of E and E

∣∣
(ker T )⊥

is a
symmetry.

Proof. Let f ∈ L(L2
a(U+)) with ||f || = 1 and η ∈ R. Define Gf (η) on L2

a(U+)
as follows:

Gf (η)g = eiη〈g, f〉f + g − 〈g, f〉f, g ∈ L2
a(U+).

The map Gf (η) is an unitary operator on L2
a(U+).

For p > 1, the derivative of Op exists everywhere. Further if Op has a

local extremum at E, then for each f,
dOp
dη

(EGf (η)) vanishes at η = 0. Let

E − T = U |E − T | be the polar decomposition of E − T. Then

d

dη
Op [EGf (η)]

∣∣
η=0

= p Re trace
[
|E − T |p−1U∗Ei(f ⊗ f)

]
= 0.

Evaluating the trace using an orthonormal basis containing f, we obtain
〈|U − T |p−1U∗Ef, f〉 ∈ R. Since this holds for any f, it follows that |E −
T |p−1U∗E is self adjoint. Further, since E∗U is a partial isometry and
ker (E∗U) = ker U = ker |E − T | = ker |E − T |p−1. Hence E∗U |E − T |p−1
is the unique polar decomposition of a self adjoint operator. Hence E∗U is
self adjoint and commutes with |E − T |p−1. Therefore E∗U commutes with
every power of |E − T |p−1, in particular with |E − T |. Thus

E∗(E − T ) = E∗U |E − T |
= |E − T |E∗U
= |E − T |U∗E
= (E∗ − T )E

and so E∗T = TE showing that E∗T is self-adjoint. Now since T > 0,
we obtain 0 = ker T = ker E∗ and it follows that E is a symmetry and
ET = TE. Now if T ≥ 0, then it is not difficult to verify that E∗T = TE.
Let Q be the orthogonal projection onto (ker T )⊥. Then E∗QT is the unique
polar decomposition of a self-adjoint operator. Thus E∗Q is self-adjoint, that
is E∗Q = QE. This implies EE∗QE∗ = EQEE∗. Thus QE∗ = EQ. Thus
QEQ = (E∗Q)Q = E∗Q = QE and QEQ = Q(QE∗) = QE∗ = EQ. Hence
Q commutes with E and ker T reduces E. Now since (EQ)2 = E(QEQ) =
EE∗Q = Q, we obtain that E restricted to (ker T )⊥ is a symmetry. This
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proves (ii) and the first part of (i) follows from Theorem 5. Now we shall
show that if p > 1 then the function Op(U) = ||U − T ||pp has a unique local
minimum which occurs at U = I and which is also a global minimum and
in particular,

||I − T ||p < ||Ra − T ||p.

From Theorem 13, if LT 6= φ then I ∈ LT . Also, since a global minimum is
also a local minimum, from the first part it follows that the local minimum
can only be attained at some symmetry E, commuting with T. But then I−E
and I−T are commuting compact normal operators and so have a common
orthonormal basis {εi} of eigenvectors. Let αi = 〈Tεi, εi〉, βi = 〈Eεi, εi〉.
Then |βi| = 1 and

||E − T ||pp =
∞∑
i=1

|βi − αi|p ≥
∞∑
i=1

|1− αi|p = ||I − T ||pp. (5)

Equality holds in (5), only when βi = 1 for all i. That is, only if E = I.
Thus from Lemma 1, it follows that ||I − T ||p < ||Ra − T ||p as Ra 6= I for
all a ∈ D.

References

[1] K. R. Davidson, Normal operators are diagonal plus Hilbert-Schmidt,
J. Operator Theory, 20 (1988), 241-248.

[2] R. G. Douglas, Banach algebra techniques in operator theory, Academic
Press, New York, (1972).

[3] S. S. Dragomir, Reverse inequalities for the numerical radius of linear
operators in Hilbert spaces, Bull. Austral. Math. Soc., 73 (2006), 255-
262.

[4] S. Elliott, A. Wynn, Composition operators on weighted Bergman spaces
of a half plane, Proc. Edinb. Math. Soc., 54 (2011), 373-379.

[5] J. A. Erdos, On the trace of a trace class operator, Bull. Lond. Math.
Soc., 6 (1974), 47-50.

[6] M. Goldberg, On certain finite dimensional numerical ranges and nu-
merical radii, Linear Multilinear Algebra, 7 (1979), 329-342.

[7] K. E. Gustafson, D. K. M. Rao, Numerical range, Springer-Verlag, New
York, (1997).



On a class of weighted Composition operators 311

[8] P. R. Halmos, Introduction to Hilbert space and the theory of spectral
multiplicity, Chelsea, New York, (1951).

[9] P. R. Halmos, A Hilbert space problem book, Springer-Verlag, New York,
Second edition, (1982).
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