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Abstract

In this paper we study the semi-local convergence of the Inverse
Weierstrass iterative method for simultaneous approximation of poly-
nomial zeros. We present a semi-local convergence theorem with com-
putationally verifiable initial conditions. Several numerical examples
are provided to show the practical applications of the presented theo-
retical results.
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1 Introduction

Let P (z) be a monic polynomial of degree n ≥ 2

P (z) = a0 + a1z + . . .+ an−1z
n−1 + zn , (1)

∗Accepted for publication on March 27, 2019
†g.nedzhibov@shu.bg Faculty of Mathematics and Informatics, Shumen University,

Shumen 9700, Bulgaria; Paper written with financial support of Shumen University under
Grant RD 08-145/2018.

247



248 G.H. Nedzhibov

with simple real or complex zeros α1, α2, . . . , αn, and let z
(0)
1 , z

(0)
2 , . . . , z

(0)
n

be distinct reasonable close approximations of these zeros. Throughout this
paper we assume without loss of generality that a0 6= 0, i.e. αi 6= 0 for
i = 1, . . . , n

In this study we consider a simultaneous iterative method defined by

z(k+1) = G
(
z(k)

)
= Gk+1

(
z(0)

)
, k = 0, 1, 2, . . . , (2)

where G : D ⊂ Cn → Cn is a vector valued function with components

Gi = Gi(z) =
z2i

zi +Wi(z)
, z = (z1, . . . , zn) , i = 1, . . . , n , (3)

and the Weierstrass’ correction Wi : D ⊂ Cn → C is defined by

Wi(z) =
P (zi)∏n

j 6=i(zi − zj)
(i = 1, . . . , n) , (4)

where D is the set of all vectors in Cn with distinct components. Then we
can define the operator W : D ⊂ Cn → Cn by W (z) = (W1(z), . . . ,Wn(z)).

The iteration method (2)-(3) was firstly introduced in [3], and some
recent results were obtained in [1, 2, 4, 5, 6, 7]. All the obtained results are
modifications of local convergence results of classical Weierstrass iterative
method presented in [8, 9, 10, 11, 13, 14, 12].

Throughout the paper, we will use only the maximum vector norm de-
fined by

‖z‖∞ = max
i
|zi| ,

and we use the function d : Cn → R+ defined by d(z) = min{δ(z), γ(z)},
where

δ(z) = mini 6=j |zi − zj | and γ(z) = minj |zj | (j = 1, . . . , n) . (5)

We denote the set of all polynomials over a field C by C[z]. In our last work
[1] we have proved the following convergence theorem (see also Theorem 1
in [2]).

Theorem 1 Let P ∈ C[z] be a monic polynomial of degree n ≥ 2, where
α = {α ∈ Cn : αi 6= 0 and αi 6= αj for i, j = 1, . . . , n} is the root vector of
P , and let 1 ≤ p ≤ ∞. Suppose z(0) ∈ Cn is an initial guess satisfying

E(z(0)) =
‖z(0) − α‖
d(α)

< R̄(n, p) =
2

1
n+1 − 1

2.2
1

n+1 − 1
. (6)
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Then the following statements hold true.
(i) Convergence. The Inverse Weierstrass iteration (2)-(3) is well defined
and converges quadratically to the root-vector α of P .
(ii) A posteriori error estimate. For all k ≥ 0 we have the estimate

‖z(k+1) − α‖ ≤ λ2k‖z(k) − α‖ , (7)

(iii) A priori error estimate. For all k ≥ 1 we have the estimate

‖z(k) − α‖ ≤ λ2k−1‖z(0) − α‖ , (8)

where λ = E(z(0))/R̄(n, p).

The main purpose of this work is to obtain new semi-local convergence
theorems and theorem with computationally verified conditions. The paper
is structured as follows: In Section 2, we consider some known and auxiliary
results about localization of polynomial zeros. In Section 3, we provide
new semi-local convergence theorems and in Section 4, we present several
numerical examples.

2 Localization of polynomial zeros

In this section we state some localization lemmas, which play an important
role in this study. The next lemmas are due to Proinov [15] in the case when

‖ u
δ(z)‖ is replaced by ‖u‖

d(z) .

Lemma 1 Let H = ‖u‖
d(z) , where u, z ∈ Cn and let c ≥ 0 be such that cH < 1

2 .
Then the closed disks

Di = {x ∈ C : |x− zi| ≤ c|ui|} , i = 1, 2, . . . , n , (9)

are mutually disjoint.

Proof. From the definition of d(x) in (5), Holder’s inequality and 2cH < 1,
we obtain for i 6= j,

c(|ui|+ |uj |) ≤ c
( |ui|
d(z)

+
|uj |
d(z)

)
|zi − zj | ≤ 2cH|zi − zj | < |zi − zj | ,

which proves that the disks (9) are mutually disjoint.
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Lemma 2 Let P ∈ C[z] be a polynomial of degree n ≥ 2. Suppose there
exists z ∈ Cn with distinct components and let c ≥ 1 be such that

cEp <
1

2
and

1

c
+

(n− 1)Ep(z)

1− cEp(z)
≤ 1 , (10)

where the function Ep : D → R+is defined by Ep(z) = ‖W (z)‖
d(z) . Then P has

only simple zeros in C and the disks

Di = {x ∈ C : |x− zi| ≤ c|Wi|} , i = 1, 2, . . . , n , (11)

are mutually disjoint and each of them contains exactly one zero of P .

Proof. The proof is the same as the proof of Proposition 3.3 in [15].
As a corollary of Lemma 2 we can state the following theorem (see also

Theorem 3.4 in [15]).

Theorem 2 Let P ∈ C[z] be a polynomial of degree n ≥ 2. Suppose there
exists z ∈ Cn with distinct components such that

Ep(z) =
‖W (z)‖
d(z)

≤ 1

(1 +
√
n− 1)2

. (12)

In the case when n = 2 we assume that inequality (12) is strict. Then
P has only simple zeros in C. Besides, for any real number

c ∈ [θ(Ep(z)), φ(Ep(z))],

where θ and φ are real functions defined by

θ(t) =
2

1− (n− 2)t+
√

(1− (n− 2)t)2 − 4t
; φ(t) =

2

1− (n− 2)t
(13)

the disks (11) are mutually disjoint and each of them contains exactly one
zero of P .

Proof. It is easy to prove that

1

(1 +
√
n− 1)2

≤ 1

n+ 2

with equality only if n = 2. Then it follows from (12) that

Ep(z) <
1

n+ 2
.
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From this and c ≤ φ(Ep(z)), we get

cEp(z) ≤ Ep(z)φ(Ep(z)) <
1

2

which proves the first inequality in (10).

Note that 1 ≤ θ(t) ≤ φ(t) provided that 0 ≤ t ≤ 1/(1 +
√
n− 1)2. The

assumption c ∈ [θ(Ep(z)), φ(Ep(z))] implies the second inequality in (10).
Now the statement follows from Lemma 2.

3 Semilocal convergence theorems

In this section we state and prove the main results of the paper. The next
theorem improves the results of Theorem 1.

Theorem 3 Let P ∈ C[z] be a polynomial of degree n ≥ 2, where

α = {α ∈ Cn : αi 6= 0 and αi 6= αj for i, j = 1, . . . , n}

is the root vector of P . If the initial guess

z(0) = {z(0) ∈ Cn : z
(0)
i 6= 0 and z

(0)
i 6= z

(0)
j for i, j = 1, . . . , n}

is such that

‖z(0) − α‖
d(z(0))

≤ R(n) :=
2

1
n+1 − 1

4.2
1

n+1 − 3
, (14)

then the iteration (2)-(3) is well defined, converges to α quadratically and
the error estimates (7)-(8) hold true.

Proof. First we will prove the following relation

d(z(0))− 2‖z(0) − α‖ ≤ d(α) . (15)

Let us consider the two cases:

Case 1. Suppose that d(α) = δ(α), i.e. δ(α) ≤ γ(α). Then

d(z(0)) ≤ |z(0)i −z
(0)
j | ≤ |αi−αj |+|z

(0)
i −αi|+|z

(0)
j −αj | ≤ |αi−αj |+2‖z(0)−α‖ ,

according that, we have

d(z(0)) ≤ d(α) + 2‖z(0) − α‖ , (16)
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which implies (15).
Case 2. Suppose that d(α) = γ(α), then we have

d(z(0)) ≤ |z(0)i | ≤ |αi|+ |z
(0)
i − αi| ≤ |αi|+ ‖z

(0) − α‖ ≤ |αi|+ 2‖z(0) − α‖ ,

which implies (16) and then we get (15) by analogy of Case 1.
It follows from (15) that

d(z(0))

(
1− 2

‖z(0) − α‖
d(z(0))

)
≤ d(α) ,

which can be written in the form

1

d(α)
≤ 1

d(z(0))

(
1− 2

‖z(0) − α‖
d(z(0))

)−1
.

Multiplying both sides of this inequality by ‖z(0) − α‖, we get

‖z(0) − α‖
d(α)

≤ ‖z
(0) − α‖
d(z(0))

(
1− 2

‖z(0) − α‖
d(z(0)

)−1
. (17)

From the last inequality and using (14), we obtain

‖z(0) − α‖
d(α)

≤ 2
1

n+1 − 1

2.2
1

n+1 − 1
.

Now the statements of the theorem follows from (6) and Theorem 1.
Although Theorem 3 is an improvement of Theorem 1, the initial con-

ditions in the both theorems depend on the desired root-vector α which
is unknown. Which means that these two results are rather of theoretical
importance.

The next theorem is the main result of this paper. We shall prove local
convergence with computationally verifiable initial condition (see (18)). This
initial condition is of significant practical importance since it depends only
on available data: the coefficients ai and the degree n of the polynomial P ,
and the initial approximation z(0).

Theorem 4 Let P ∈ C[z] be a polynomial of degree n ≥ 2 (where a0 6= 0).
Suppose there exists a vector

z(0) = {z(0) ∈ Cn : z
(0)
i 6= 0 and z

(0)
i 6= z

(0)
j for i, j = 1, . . . , n}
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such that

Ep(z
(0)) =

‖W (z)‖
d(z(0))

≤ R̃(n) :=
R(1−R)

1 + (n− 2)R
, (18)

where

R = R(n) =
2

1
n+1 − 1

4.2
1

n+1 − 3
. (19)

Then P (z) has only simple zeros and the following statements hold true.
(i) Convergence. The Inverse Weierstrass iteration (2)-(3) is well defined
and converges quadratically to the root-vector α of P .
(ii) A posteriori error estimate. For all k ≥ 0 we have the estimate

‖z(k+1) − α‖ ≤ λ2k‖z(k) − α‖ , (20)

(iii) A priori error estimate. For all k ≥ 1 we have the estimate

‖z(k) − α‖ ≤ λ2k−1‖z(0) − α‖ , (21)

where λ = E(z(0))/R̄(n, p) and R̄ is defined by (8).

Proof. Let τ = 1/(1 +
√
n− 1) and µ = 1/(1 +

√
(n− 1)2. It can be shown

that

0 ≤ R ≤ τ . (22)

Consider the real function σ : [0, τ ]→ [0, µ] defined by

σ(t) =
t(1− t)

1 + (n− 1)t
.

Function σ is strictly increasing on [0, τ ] and the inverse function of σ is the
function ϕ : [0, µ]→ [0, τ ] defined by

ϕ(t) =
2t

1− (n− 2)t+
√

(1− (n− 2)t)2 − 4t
= tθ(t) ,

where θ(t) is defined by (13).Then from (22) and (18) it follows that

Ep(z
(0)) =

‖W (z)‖
d(z(0))

≤ σ(R) ≤ µ =
1

(1 +
√

(n− 1)2
. (23)

Then it follows from Theorem 2 that P has only simple zeros and the disks

Di =
{
x ∈ C : |x− zi| ≤ θ(Ep(z(0)))|Wi|

}
, i = 1, 2, . . . , n ,



254 G.H. Nedzhibov

are mutually disjoint and each of them contains exactly one zero of P . This
means that there is a root-vector α ∈ Cn of P such that

|zi − αi| ≤ θ(Ep(z(0)))|Wi(z
(0))| .

Last inequality implies

‖z(0) − α‖
d(z(0))

≤ θ(Ep(z(0)))Ep(z(0)) = ϕ
(
Ep(z

(0))
)
.

From this and (23), we conclude that

‖z(0) − α‖
d(z(0))

≤ ϕ
(
Ep(z

(0))
)
≤ ϕ

(
σ
(
Ep(z

(0))
))

= R .

Now all the statements (i)-(iii) of the theorem follow from the Theorem 3.

4 Numerical Examples

In this section, we consider several numerical examples in which we apply
Theorem 4 to prove the quadratic convergence of the method (2)-(3).

According to Theorem 4, if there exists an integer k ≥ 0 such that

Ep(z
(k)) ≤ R̃ =

R(1−R)

1 + (n− 2)R
, (24)

where

R =
2

1
n+1 − 1

4.2
1

n+1 − 3
.

then the iteration (2)-(3) is well defined and converges quadratically to the
root vector α of P . We use the following stop criterion

‖z(i) − α‖ ≤ 10−15 , (i ≥ k) . (25)

Example 1 Consider the polynomial (see [16])

P (z) = z9 + 3z8 − 3z7 − 9z6 + 3z5 + 9z4 + 99z3 + 297z2 − 100z − 300

with the root vector α = (2i, 2 + i,−3,−2i,−1, 1,−2 + i, 2− i,−2− i).
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We use Abert’s initial approximation vector z(0) given by

z
(0)
k = −a1

n
+ r0 exp iθk , θk =

π

n

(
2k − 3

2

)
, k = 1, . . . , n ,

where n = 9 and r0 = 10 (see also [2]). The radius of convergence is

R̃ ≈ 0.0379

and the convergence condition (24) is satisfied for k = 8 (Ep(z
(8)) ≈ 0.0207).

The stopping criteria is reached after eleven iterations, see Table 1.

Table 1: Numerical results for Example 1.

iter(i) z
(i)
1 z

(i)
2 z

(i)
3

0 -1.263 +1.736i -4.683 +7.660i -11.11+10i
8 0.0050 + 1.9960i 1.9847 + 0.9861i -3.0039 - 0.0003i
11 2.963× 10−18 + 2i 2+i −3 + 1.009× 10−18i

iter(i) z
(i)
4 z

(i)
5 z

(i)
6

0 -17.53 +7.660i -20.95+1.736i -19.77 -5i
8 - 2.0005i -1.0003 + 0.0005i 1.0031 - 0.0022i
11 5.340× 10−18 − 2i −1 1 + 2.568× 10−18i

iter(i) z
(i)
7 z

(i)
8 z

(i)
9

0 -14.53-9.396i -7.690 -9.396i -2.450-5i
8 -1.9999 + 1.0000i 2.0086 - 1.0093i -1.9971 - 0.9993i
11 −2 + i 2− i −2− i

Example 2 Consider the polynomial (see [14])

P (z) = z3 − (2 + 5i)z2 − (3− 10i)z + 15i

with the root vector α = (−1, 3, 5i). We use the initial vector z(0) =
(−1.5, 2.7, 4.5i).

The radius of convergence is

R̃ ≈ 0.0868

and the convergence condition (24) is satisfied for k = 2 (Ep(z
(2)) ≈ 0.0059).

The stopping criteria is reached after five iterations, see Table 2.
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Table 2: Numerical results for Example 2.

iter(i) z
(i)
1 z

(i)
2 z

(i)
3

0 -1.5 2.7 4.5i
1 -1.0768 + 0.0092i 3.0196 - 0.0162i -0.0949 + 5.0545i
2 -1.0060 + 0.0001i 3.0008 - 0.0006i -0.0018 + 5.0004i
3 -1.0000 + 0.0000i 3.0000 - 0.0000i -0.0000 + 5.0000i
4 -1.0000 + 0.0000i 3.0000 - 0.0000i 0.0000 + 5.0000i
5 -1.0000 3.0000 5i

Example 3 Consider the polynomial

P (z) = z5 − 15z4 + 22z3 + 438z2 − 1175z − 1575

with the root vector α = (−5,−1, 5, 7, 9). We use the initial vector z(0) =
(−5.7,−1.8, 4.1, 6.2, 9.8).

The radius of convergence is

R̃ ≈ 0.0605

and the convergence condition (24) is satisfied for k = 2 (Ep(z
(2)) ≈ 0.00599).

The stopping criteria is reached after five iterations, see Table 3.

Table 3: Numerical results for Example 3.

iter(i) z
(i)
1 z

(i)
2 z

(i)
3 z

(i)
4 z

(i)
5

0 -5.7000 -1.8000 4.1000 6.2000 9.8000
1 -4.8988 -1.2583 5.1844 6.5166 9.3553
2 -5.0094 -1.0396 4.9707 7.0226 9.0623
3 -5.0000 -1.0017 4.9992 7.0012 9.0005
5 -5 -1 5 7 9

5 Conclusion

In this work we investigate convergence analysis of the Inverse Weierstrass
iterative method for simultaneous approximation of polynomial zeros. Our
goal was to obtain semi-local convergence analysis results. We establish
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a new convergence theorems with new radiuses of convergence. The main
theorem provides also a-priori and a-posteriori error estimates. Numerical
results with different examples confirm the theoretical results.

Acknowledgement. This paper is supported by Shumen University
under Grant RD 08-145/2018.
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