ISSN 2066-6594

INITIAL SIMPLICIAL COMPLEXES ASSOCIATED TO SOME TORIC VARIETIES*

Adelina Fabiano[†]

Abstract

We study the triangulation of the initial simplicial complex arising from the toric deformation of the Grassmann variety $\mathbb{G}(1,n)$ and the Hankel variety H(1,n), for n = 3, 4.

MSC: 13P10, 13F55

keywords: Computational Geometry, Algebraic Geometry, Simplicial Complexes, Gröbner bases

1 Introduction

Simplicial complexes on a finite set of vertices arise in different ways in commutative algebra, as described in ([14], [16]). In particular, if we consider a graded ideal I of the polynomial ring $S = K[x_1, \ldots, x_n]$, K any field, and a total order on the monomials of S, let $in_{\prec}(I)$ be the initial ideal of I. The ideal $J = \sqrt{(in_{\prec}(I))}$ is a monomial squarefree ideal of S and it defines a simplicial complex Δ , whose the Stanley-Reisner ideal is J. If we have a semigroup ring $R \subset S$, generated on \mathbb{K} by monomials of S its definition ideal is a binomial ideal $I_{\mathcal{A}}$ and $J_{\mathcal{A}} = \sqrt{(in_{\prec}(I_{\mathcal{A}}))}$ defines a simplicial complex $\Delta_{\mathcal{A}}$, where \mathcal{A} is the set of lattice points generating the semigroup subtended by R. We call such a simplicial complex the simplicial complex arising from the semigroup ring R. In this paper we are interested to semigroup

^{*}Accepted for publication on May 24, 2019

[†]fabiano@unical.it, DIATIC, University of Calabria, Arcavacata di Rende, 87036, Italy